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If F is a closed subset of the unit circle in C of
Lebesgue measure 0 then by the Rudin-Carleson theorem
every continuous function /: F -> C has a norm-preserving
extension belonging to the disc algebra. If we prescribe
some Fourier coefficients of the extension g then in general
the norm of g will exceed the norm of /. In the paper
we relate this problem to an extremal problem and give
optimal estimations of the norms of extensions with pre-
scribed Fourier coefficients. In particular, we give a
precise description of those functions / which have norm-
preserving extensions g with finitely many prescribed
Fourier coefficients.

Introduction* Denote by C{K) the Banach space of all con-
tinuous complex-valued functions on a compact Hausdorff space K,
with sup norm, and let T be the unit circle in C. Given feC(T)
we denote the Fourier coefficients of / by f(n), i.e.,

(1) f(n) = ~ [ e-ίnOf(eiθ)dθ (n - 0, ± 1 , ±2, • •) .

We write A for the disc algebra, i.e., the closed subspace of C(T)
of those functions which have continuous extensions to the closed
unit disc, analytic in its interior, or equivalently, of those functions
in C(T) whose negative Fourier coefficients vanish [12].

Denote by N the set of all nonnegative integers and let FaT
be a closed set of Lebesgue measure 0. By the well-known Rudin-
Carleson theorem [12, 17] every feC(F) has an extension geA. It
follows easily that given n e N and complex numbers α̂ O ̂  i ^ n)
there always exists an extension he A of / which satisfies h(i) —
α̂ O <; i Sn). More generally, there are infinite sets EaN and
complex-valued functions a on E such that given any closed set
FaT of Lebesgue measure 0 every feC(F) has an extension he A
satisfying

(2 ) h(n) = a(n) (n e E)

[see 18].

In the Rudin-Carleson theorem the extension g of / can be
chosen so that \\g\\ = \\f\\. Clearly this is no longer possible in
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general if one prescribes the Fourier coefficients of the extension as
in (2) so it is natural to ask: Which functions / 6 C(F) admit norm-
preserving extensions he A satisfying (2)? If a function feC(F)
has no such extensions what can be said about the norms of its
extensions he A satisfying (2)?

We will see that for a large class of sets E the answer is
extremely simple and is related to an extremal problem: Let Mo =
inf 11 fe|| where inf is taken over all he A satisfying (2). Then for
arbitrary M> Mo every feC(F) has an extension he A satisfying
||fe|| = max {||/II, M}. In all cases considered here the set of ex-
tremal functions (i.e., functions he A satisfying (2) and \\h\\ = Λf0)
is too small to allow extremal interpolation (i.e., interpolation in the
case M = Mo Φ 0).

Section 1 contains the main results about the extensions with
prescribed Fourier coefficients. In §2 we first prove the crucial
Lemma 2.2 which enables us to extend [10, Theorem] to subspaces
of the disc algebra. This theorem is our main tool which we then
use to prove the results from § 1. In § 3 we consider first some
special cases and then we show that our main tool can be applied
to prove some other interpolation theorems.

We denote by A, J, T the open unit disc in C, its closure and
its boundary, respectively. Let K be a compact Hausdorff space
and let X be a complex Banach space. By C(K, X) we denote the
Banach space of all continuous functions from K to X, with sup
norm, and write C(K) for C{K, C). The Fourier coefficients of / e
C(T, X) are defined by (1) (the integral being the Riemann integral
[11]). We denote by A{X) the closed subspace of C(T, X) of those
functions which admit continuous extensions to J, analytic [11] on
A, or equivalently, of those functions whose negative Fourier coeffi-
cients vanish [15] and write A for A(C). Sometimes we identify
the functions in A(X) with their analytic extensions. If B is a
subspace of C(K) we denote by 5 ® X the closed span in C(K, X)
of functions of the form z~^φ(z)x (φeB, xeX). We denote by
M{K) the space of complex regular Borel measures on K of bounded
variation; if μeM(K) we denote its total variation by \μ\ and if
FdK is a closed set we define μFeM(K) by μF(U) = μ(UΠ F)
(£7 Borel set in K). If B is a subspace of C{K) we denote by J51

its annihilator in M(K). We write S for the closure of a set S c l
and denote by Br(X) the open ball in X of radius r, centered at
the origin. We say that a map Φ:K-*2X (where 2X is the set of
all subsets of X) is open [10] if the set {(s, x): s e K, x e Φ(s)} is open
in K x X. If {Sa; a e A is a family of open subsets of X with xa e
Sa{a e A) we say that Sa are equilocally connected at xa if given
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any ε > 0 there is some d > 0 such that S« Π (x« + Bδ(X)) lies in a
conected component of Sa Π (xa + Bε(X)) for each a e A. We denote
by N the set of all nonnegative integers.

1* Main results* Call a closed subspace B of C(T) a Riesz
subspace if every μeBL is absolutely continuous (with respect to
Lebesgue measure on T). By F. and M. Riesz theorem [12] A is
a Riesz subspace of G(T). There are proper closed subspaces of A
having this property. Let EaN and denote

If E is finite then it is easy to see that AE is a Riesz subspace of
C(T). Rudin [14] observed that the same is true for a large class
of infinite sets E. We call a set EaN a Rudin set if AE is a Riesz
subspace of C(T). At present no characterization of Rudin sets
seems to be known although there are many examples in the
literature [4, 5,14] the simplest being the Hadamard gap sequences
[14].

Denote by m the Lebesgue measure on T and let V be a sub-
space of M(T). We say that ra is V-absolutely continuous if μe
V - {0}, \μ\(S) = 0 implies that m(S) = 0. Note that this definition
is different from the one used in [8]. By F. and M. Riesz theorem
A1 can be identified by Hi, the space of functions in L\T) whose
nonpositive Fourier coefficients vanish [12]. Since no function in H}
can vanish on a set of positive Lebesgue measure without vanishing
a.e. [12] it follows that m is ^/-absolutely continuous and con-
sequently m is Ai-absolutely continuous for any finite set EdN.

THEOREM 1.1. Let X be a complex Banach space and let EaN
be a Rudin set. Assume that a: E —» X is a function such that

(3) g(n) = a(n) (neE)

for some geA(X). Put

Mo = mt{\\g\\:geA(X), g(n) - a{n) (neE)}

and let Fa T be a nonempty closed set of Lebesgue measure 0. //
M > Mo then given any fe C(F, X), \\f\\ ^ M there is some g e A(X)
(4) which extends f and satisfies (3) and \\g\\ 5̂  M.

Suppose, in addition, that the Lebesgue measure on T is AE-
absolutely continuous. Then any function g e A(X) satisfying (3)
and \\g\\ = Mo satisfies \\g(t)\\ = | |flr| |(*6Γ) and consequently (4) is
false for M — MQ if M0Φ 0.
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The following corollary gives a complete answer to the questions
in Section 0 in the case when E is finite.

COROLLARY 1.2. Let X be a complex Banach space, EaN a
finite set and a: E —> X a function. Put Mo = inf {\\g\\: g eA(X),
g(n) = a(n)(n e E)} and let Fez T be a nonempty closed set of
Lebesgue measure 0. Assume that M>M0. Then given any fe
C(F, X), 11/11 ̂  M there is an extension g eA(X) of f which satisfies
\\g\\<^M and g{n) = a(n) (neE). This is false for M — Mo if

2* Proofs*

LEMMA 2.1. [1, 16]. Let K be a compact Hausdorff space and let
FcK be a closed set. Let B be a closed subspace of C(K) with the
property that μeB1 implies that μF — 0. Then given any positive
continuous function p on K and any f e C(F) such that | f(s | < p(s)
(s 6 F) there exists f e B which extends f and satisfies \ f(z) \ < p(z)
(zeK).

LEMMA 2.2. Let K, F and B satisfy the assumptions of Lemma
2.1. Assume that F = G U H where G and H are nonempty disjoint
compact sets. Let P be an open connected subset of a complex
Banach space X which contains the point 0 and let xeP. Given
any ε > 0 and any neighborhood U of G there exists a function
feB0X such that

( i ) f(K)dP
(ii)
(iii)

(iv)

Proof. Let ε > 0 and let U be a neighborhood of G. Since P
is open and connected there are neN, δ: 0 < δ < ε and xt e P(0 <̂
i ^ w), 0̂ = 0, xn = x such that

(5) max \\xt — ̂ ^H < δ

and

(6) xt + B3δ(X) aP (O^i^ri) .

Assume that there are functions fteB0X (1 ̂  i ^ n) and neigh-
borhoods Z7<(1 £ i £ n) of G, U1 = Ϊ7, E7,- c 17^ (2 ̂  i ^ Λ) such that

(a) HΛIK2*
(b)
(c)
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(d) IIΣUΛ(z) -xt\\< δ/n (z6 Ui+1; 1 ^ i S n ~ 1)
(e) \\fi(z) || < δ/n (zίU. l ^ i ^ n).

Define / = Σ?=i/.. U ztU then zίU^l^i^ n) so by (e)
δ which proves (iv). Also, for such z, f(z)eP by (6). For conve-
nience, put Un+1 — φ and let zeUt — Uί+1 for some i, 1 <; i <ί n. By
(d) we have Σ;=ί/;O) e£*-i + ft/ W Since zg C7>(ΐ + 1 ̂  j ^ w)
we have by (e) that ΣU+iU*) eB{n_i)δ/n(X). By (a) and by (6) it
follows that f{z) e x^ + Bδ/n(X) + /,(«) + Bin_i)δ/n(x) c x^ + B3δ(X)aP
which proves (i). By (b) and (c), (ii) and (iii) are also satisfied.

It remains to prove the existence of ft and t^. Put Ux = U.
By Lemma 2.1 (using Urysohn lemma to get suitable p) there exists
φ,eB such that ψx(G) = {1}, φ,{H) - {0}, | | ^ ] | < 2 and |&(z)| < l/n(βί
C/i). Define /i(«) = Λ(»)(a?i — α?0)(«6JBΓ). Clearly fteB(g)X and by
(5), /i satisfies (a), (b), (c) and (e) above for ΐ = 1. Let 2 <* j ^ n
and assume that there are fk e B (g) X and Uk(l ̂ k<.j — l), neighbor-
hoods of G, satisfying (a), (b), (c) and (e) for 1 <̂  i ^ j — 1. By
(c) (ΣfcίΛ)(^) = ί̂ i-i} s o by the continuity of fk there exists ϊ/^c
£/,_!, C/̂  neighborhood of G, such that (d) is satisfied for i — j — 1.
Now again by Lemma 2.1 there is some Φ3βB such that defining
fs(z) = Φj(z)-(Xj - xά_x), fj satisfies (a), (b), (c) and (e) for i = i.

THEOREM 2.3. Let K be a compact metric space and let FczK
be a closed set such that any finite cover of F consisting of open
balls has a finite refinement consisting of pairwise disjoint closed
sets. Suppose that B c C(K) is a closed subspace such that μe BL

implies that μF = 0.
Let X be a complex Banach space and Φ: K-^2Σ an open map

such that g(z)eΦ(z)(zeK) for some gzB®X. Let fe€(F,X)
satisfy f(s) eΦ(s)(s e F). Assume that the sets Φ(s)(seF) are con-
nected and equilocally connected at the points f(s). Then there is
some f e B® X which extends f and satisfies f(z) e Φ{z){z e K — F).

Proof. Follow the proof of [10, Theorem] and use Lemma 2.2
instead of [9, Lemma 4].

COROLLARY 2.4. Let K, F and B satisfy the assumptions of
Theorem 2.3 and let X be a complex Banach space. Suppose that
ge C(K, X) and let M> 0. If there is some hQeB® X such that
\\9 + ho\\ < M then given any ueC(F, X), \\u\\ ^ M there is an
extension u of u of the form u = g + h with h e B (g) X such that
\\u{z)\\ <M(ztF). '

Proof. Let hoeB(g)X satisfy \\g + ho\\ < M. Define Φ(z) =
{x e X: \\g(z) + x\\ < M] and f{s) - u(s) - g(s)(s e F). Clearly ho(z) e
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Φ(z)(zeK) and f(s) eΦ(s)(seF). By the continuity of g and the
convexity of Φ(s)(s e F), Φ and / satisfy the assumptions of Theorem
2.3 and consequently there is some feB®X which extends / and
satisfies f(z) eΦ(z)(zί F). Putting u — g + / it is obvious that u
has the required properties.

Proof of Theorem 1.1. Let M>M0 and let fe C(F, X),
By definition of Mo there is some goe A{X) such that \\go\\ < M and
gQ(n) — a(n)(neE). By the assumption AE is a Riesz subspace of
C{T) so F and B = AE satisfy the assumptions of Corollary 2.4. By
Corollary 2.4 (with h0 = 0) there is an extension g of / of the form
g = go+h with h G AE (g) X such that || g(z) \\ < ΛT(« eT - F). Clearly
fifei(I) and §(^) = a(n)(neE). This proves the first statement in
Theorem 1.1.

REMARK. We see from the proof that under the assumptions
of the first part of Theorem 1.1 one can prove (4) with \\g\\ <^ M
being replaced by \\g(z)\\ < M(ze T — F).

The proof of Theorem 1.1 will be complete once we have proved
the following

LEMMA 2.5. Let X be a complex Banach space and let BaC(T)
be a closed subspace such that the Lebesgue measure m on T is BL-
absolutely continuous. Assume that LaC(T, X) is a closed subspace
containing i?(x)X and let /eC(Γ, X) and goeL satisfy

| | / + flroll = i n f | | / + 0 | | .
geL

Then

( 7 )

Proof. Let M(Tf X') be the Banach space of all regular Borel
measures μ with values in X' which have bounded variation \μ\
with the norm \\μ\\ = \μ\ (Γ). It is known [2, 3] that M(T, X') is

isometric to C(T, X)' the pairing being (ψ | μ) = [ ψdμ(φeC(T, X),

μeM(T, X')) (see [2, 3] for the definition and the properties of the
integral with respect to a vector measure). By the well-known
duality relation [6, p. I l l ] there is some μeL1, \\μ\\ = 1 such that

f + Oo)dμ
JT

and it follows that



FOURIER COEFFICIENTS OF THE RUDIN-CARLESON EXTENSIONS 75

( 8 ) 11/

Assume that (7) is false. By the continuity of / and g0 there is an
ε > 0 such that \\f(t) + go(t)\\ < \\f + ft 11 - e(teU) on a nonempty
open set UczT. Since \\μ\\ = \ d\μ\ =z I it follows by (8) that
\μ\ (J7) = o and consequently | (x \ μ(>)) | (Z7) = 0(x e X). Note that
m{U)Φθ. Since μeL1 a(B® X)L we have (x \ μ(-)) e Bλ(xeX).
Now, by the assumption m is ^-absolutely continuous so it follows
that (x\μ(-)) = 0(xeX) which implies that μ = 0, a contradiction.

3* Special cases and generalizations*
/ e i of the form

Let meN. A function

= eί<?(z e J) if m = 0) where Θ e R and αέ 6 J(l ^ i ^ m) is called
a finite Blaschke product (of m factors). Denote by H°° the Banach
space of all bounded complex-valued analytic functions A, with sup
norm.

If we prescribe the first n Fourier coefficients of the scalar-
valued Rudin-Carleson extension then the solution of the correspond-
ing extremal problem is known:

LEMMA 3.1. [6, pp. 139, 140, 143]. Let α0, au •• ,α Λ eC. Among
all functions f of the form f(z) = Σ?=o a^ + zn+1g(z)(z e A) where
g e H°° there is one with minimal norm. This function is unique
and is a scalar multiple of a Blaschke product of <Ln factors.
Its norm is equal to the greatest absolute value of the eigenvalues
of the matrix

( 9 )
a0 0

Lα0
0 θJ

Further, if h{z) = ΣΓ=o oiz
i{κz eA) is a scalar multiple of a Blaschke

product of ^n factors then h is uniquely determined by c0, cu , cn.

REMARK. In particular, this shows that there is a unique func-
tion fQeA such that | |/0 | | = inf {||/||: / e A, f(i) = a<(0 ^ i ^ n)}.
Simple examples show that this is no longer true in the vector case
although by Theorem 1.1 the extremal functions f0 still have the
property that t->| |/ 0 (t) | | is constant on T.
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COROLLARY 3.2. Let M>0 and let α0, al9 •••, α » e C . Suppose

that FaT is a nonempty closed set of Lebesgue measure 0. Then
the greatest absolute value of the eigenvalues of the matrix (9) is
less than M iff

given any feC(F), \\f\\ <̂  M there is an extension

g e A of f, \\g\\ ^ M satisfying g{i) = 0̂ (0 <: i ^ n) .

Our next corollary gives a surprisingly simple description of
infinite sequences at satisfying (10) for every n:

COROLLARY 3.3. Let M>0 and let {a^ieN} be a sequence of
complex numbers. Let Fa T be a nonempty closed set of Lebesgue
measure 0. The following are equivalent

( i ) given any neN and any feC(F), \\f\\ ^ M, there exists
an extension geA of /, || g || ^ M, such that g(i) — a^O ̂  i <; n).

(ii) the series ΣΠ=o (1/M)aiz
i converges on Δ to a function in

H°° whose norm does not exceed 1 and which is not a finite Blaschke
product.

Proof. For neN denote pn(z) = Σ?=o cbfi1 and An={ue A: ujzn e
A), H» ={ueH°°: u/zn e H°°}. Note that by Lemma 3.1 dist (pn, An+1) =

'dist(pn, Hn+i) (neN) and observe that by Lemma 3.1 and Corollary
3.2 (i) is equivalent to dist (pn, An+1) < M(n e N).

Let dist (pn, An+1) < M for all n. Then for some sequence gn e
An+ί we have \\pn + gn\\ < M(neN) so a subsequence of the sequence
pn + gn converges uniformly on compact subsets of Δ to a function
ueH™, \\u\\ ^ M and consequently also the Fourier coefficients of
Pn + gn converge to corresponding Fourier coefficients of u so u(z) =
Σΐ^a^tzeΔ). Let neN and suppose that u/M is a Blaschke
product of ^n factors. Let uQ = pn + g, geH~+ί satisfy ||wo|| = dist
{pn, JBΓ^J. By Lemma 3.1 uQ is a scalar multiple of a Blaschke
product of t=*n factors. By Lemma 3.1 there is only one scalar
multiple of a Blaschke product of <^n factors having the form pn+
g, ge H^. Consequently u = u0 so dist (pn, H^Λ) = \\f\\ = M and it

follows that dist (pn, An+1) = M, a contradiction.
Conversely, let ΣΓ=0 atz* = u{z){z e Δ) where u e H°°, \\u\\ <. M.

If | | tt | | < M then given any ^eiVwe have M > \\u\\ ^ dist (pn, An+1).
Suppose that | |^ | | = M and that u/M is not a finite Blaschke pro-
duct. Assume that dist(pn, An+1) ^ M for some neN. It follows
that dist (pnt H?+1) ^ M and since \\u\\ = M we have dist (pΛ, Jff,Γ+1) =
Λf. By Lemma 3.1 there is a unique function h — pn + g9 geH~+1

such that | |λ | | = M. Since % has this property, h = u. Also,
is a finite Blaschke product and so is u/M, a contradiction.



FOURIER COEFFICIENTS OF THE RUDIN-CARLESON EXTENSIONS 77

Next we present another application of Theorem 2.3.

COROLLARY 3.4. Let zlf z2f , zk e Δ and let nu n2y , nk e N.

Assume that a\ e X(l ^ j ^ n^ 1 ^ i 5̂  k) where X is a complex
Banach space. Put MQ = inf {\\g\\: g e A(X), gΊ~x\z^ = αί(l ^ j ^ w,;
1 ^ ΐ ^ &) α^d let Fa T be a nonempty closed set of Lebesgue
measure 0. Assume that M>M0. Then given any feC(F,X),
11/11 tiί M there is some geA(X) which extends f and satisfies \\g\\^
M, g{β~l){z%) = α{(l ^ j ^ nt\ 1 ^ i ^ fc). 27m iβ /αίse /or M" = Mo if

Proof. Let L be a subspace of A of those functions which have
zero of order at least nk at zk(l ^ k ^ n). Put

(11) Φ(z) = Π

Then ^6 4 , | ^ ) | Ξ l ( ί e T ) . Clearly μeL1 iftφμeA1. Since A is
a Riesz subspace of C(Γ) and since the Lebesgue measure m on T
is Λx-absolutely continuous it follows that L is a Riesz subspace of
C(T) and that m is ZΛ-absolutely continuous. Now follow the proof
of Theorem 1.1.

If φ is a finite Blaschke product then B = φA is a closed ideal
in A whose hull misses T and if F c T is a closed set of measure 0
then using [17, Theorem 20.12] instead of Lemma 2.1 one can prove
the assertion of Lemma 2.2 for K = Δ and consequently also the
second paragraph of Theorem 2.3 for K — Δ. This enables us to
prove the following partial generalization of Corollary 3.4 which
generalizes and sharpens [7, Theorem p. 284-285],

COROLLARY 3.5. Let zu z2, , zk e Δ and let nlf n2f — ,nkeN.
Assume that a\ e X(l <; j ^ nt; 1 ^ i ^ k) where X is a complex
Banach space. Let p be a positive continuous function on Δ such
that \\h(z)\\ < p(z)(zeΔ) for some heA(X) which satisfies hu~1)(zi) =
ai(l ^ j ^ n%; 1 ^ i ^ k). Suppose that FdT is a closed set of
Lebesgue measure 0 and let feC(F, X) satisfy \\f(s)\\ ̂  p(s)(seF).
Then there is some geA(X), extending f and satisfying \\g(z)\\ <
p(z)(zeΔ- F)9 g{*-l){z%) = α|(l £j£nt;l£i£ k).

Proof. Put B = φA where φ is defined by (11) and define Φ(z) =
{x 6X: \\h(z) + x\\< p{z)}{zeΔ). Clearly K=Δ, Φ, f and g=0 satisfy
the assumptions in the second paragraph of Theorem 2.3 and the
assertion follows.

4* Questions and remarks* To prove the existence of Rudin-
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Carleson extensions with prescribed Fourier coefficients or some
related properties the basic fact we needed about a subspace B of
A was that

given any closed set FaT of Lebesgue measure 0 and

(12) a n y f 6 ^ ^ a n ( * a n y P ° s ^ v e V^C{T) satisfying \f(έ)\<
p(s)(seF) there is some feB extending / and satisfy-
ing \f(z)\<p(z)(zeT).

If B is a Riesz subspace of C(T) then B satisfies (12) by Lemma
2.1. It is interesting to observe that the converse is also true so
that (12) in fact characterizes the Riesz subspaces of C(T). To see
this, let Fa T be any closed set of Lebesgue measure 0. It is easy
to construct a positive function peC(T) such that p{F) ={1}, p{z)<
l(s e T — F). Assume that a closed subspace BaC(T) satisfies (12).
Then it satisfies (11) with < signs replaced by <> [16]. Consequently
there exists a sequence fneB such that for each n

(13) fn(F) = {1}, \fn(z)I < p*(z)(zeT~F).

If μeB1 then I fndμ = 0 for all n so by the Lebesgue dominated

convergence theorem (13) implies that μ(F) = 0. Since F was
arbitrary it follows by regularity that μ is absolutely continuous
[17].

We do not know whether one can characterize the Riesz sub-
spaces of C(T) by some weaker extension properties.

Note that there are closed subspaces BaA satisfying B\F =
C{F) for every closed set Fa T of Lebesgue measure 0, which are
not Riesz subspaces of C(T). B = {/ 6 A: /(0) = r/(l)j [7] is an
example if rΦO. However, any closed ideal BaA satisfying B\F—
C(F) for every closed set FaT of measure 0 is necessarily a Riesz
subspace of C(T). For, its hull misses T so B satisfies (12) by [17,
Theorem 20.12].

No characterization of Rudin sets seems to be known. Also,
the author knows of no description of the Riesz subspaces of C(T)
contained in A.

The argument used in the proof of Lemma 2.5 is an extension
of a classical argument [6, p. 133] which relates the properties of
extremal functions with the fact that equality sign holds in Holder
inequality. We have seen that in order to prove that the extremal
functions have constant absolute value on T it is sufficient that the
Lebesgue measure m on T is J3-^absolutely continuous. We ask
whether the latter condition is also necessary. Also, we know of
no description of closed subspaces BaC(T) with the property that
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m is i? ̂ absolutely continuous.
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