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THE SYMMETRY OF SESSILE AND PENDENT DROPS

HeNry C. WENTE

Let X denote a bounded, open, and connected subset of
R*?' (n>1) which we consider to represent the interior of a
liquid drop (when #=2). The principal result of this paper will
be to show that under suitable conditions X is an axially sym-
metric drop in the sense that there is a vertical line (axis) such
that any nonempty intersection of X with a horizontal hyper-
plane is an open disk whose center lies on the axis. Condition
1: X adheres to a horizontal hyperplane, ¥ (i.e., XNY=0 but
XN I +0), with the mean curvature, H, of the liquid-air inter-
face, 2, a differentiable function of the vertical coordinate and
the angle of contact, «, of £ with ¥ a constant along 02,
O0<a<nr, (Theorem 1. 1). Condition 2: X adheres to X with the
mean curvature a smooth function of height and the contact
region of X with Y a disk (special case of Theorem 1. 2).

1. Introduction. Let (x, ---, 2,, ) be a Euclidean coordinate
system for R"*'. Theorem 1.1, which we now state, corresponds to
the equilibrium state of a homogeneous pendent (or sessile) drop
adhering to a horizontal hyperplane, Y.

THEOREM 1.1. Let X be a bounded, open, and connected subset
of R™™ which s adhering to the hyperplane ¥: {u = 0}. Suppose
that the boundary of X, 0X = Y, U R where 3, =3 N X and 2, the
liquid-atr interface, is a hypersurface with boundary of class C*
embedded in R™ such that I' =02 = QN3. Suppose that the mean
curvature, H, of 2 measured relative to the exterior normal is the
restriction to 2 of a C’-function on R™*' depending on the wu-coor-
dinate alone. Finally, suppose that the angle of contact, a, of £
with Y measured interior to X is a constant along 082 where
0=a =<x. Then there is a vertical line about which X is axially
symmetric such that any monempty intersection of X with a hovi-
zontal hyperplane 1s an open disk with center on the axis.

The physical case of X C R® and mean curvature H=—ku + ¢
(k > 0) corresponds to a sessile drop when X is above ¥, a pendent
drop when X is below Y. The case &k = 0 of constant mean curva-
ture is the situation of no gravity.
J. Serrin [8] treated the case where the liquid-air interface, 2, may
be expressed nenparametrically, w = u(x, ---, x,) with H a linear
funetion of height. It turns out that the method of proof used
there may be adapted to the present situation. The key tools are
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the E. Hopf maximum principle [5], the Hopf boundary point lemma
[6], and Serrin’s boundary point lemma at a corner [8]. We shall
state these “lemmas” in §II. The method of proof is to take a
vertical hyperplane, T,, which initially lies outside of X and move
it towards and into X through the one parameter family of hyper-
planes, T, parallel to T,. As T moves into X one takes that part
of 2 through which 7T has passed and reflects it about T forming
the reflected surface, Q(T). Initially 2'(T) lies inside X and we
look for a first time when this will fail. At this point one applies
one of the touching lemmas to conclude that Q'(T) is identical to
the unreflected portion of Q.

This device was first introduced by Alexandrov [1] who was
able to show that the only embedded compact hypersurface of con-
stant mean curvature is a sphere. The procedure was then refined
by Serrin in [7] and [8].

I became interested in this problem through the work of P.
Concus and R. Finn [2] who made a study of axially symmetric
pendent drops. Their work induced the author to investigate the
stability properties of such drops [9]. A detailed study of the
axially symmetric sessile drop has recently been done by Finn [3].
I should also like to mention the paper of E. Gonzalez [4], in which
it is proven that for any prescribed volume and any angle of con-
tact a, 0 < a < 7, there exists a sessile drop of minimum energy.
By a symmetrization argument, such a drop must be axially sym-
metric. I am indebted to S.T. Yau who brought up the problem
considered in this paper and suggested that the method of Alex-
androv might work.

The question of symmetry also arises naturally in the “medicine
dropper” problem. Again let X denote the interior of the drop in
contact with the horizontal hyperplane, 3. Suppose that ¥, =
XNYis a disk and the mean curvature of 2 is linear in height.
The conjecture is that X is contractable and axially symmetric.
The following theorem covers this case.

THEOREM 1.2. Suppose X 1is the hyperplane {u = 0} and let X
be a bounded, open, and connected subset of R™' adhering to 2.
Suppose that ¥, = SN X has nonempty interior in 3 which is sym-
metic about an (n — )-plane, II, in 3 with the property that the
boundary, I', of X, can be decomposed into two parts I' =1, U _
where [+ is the graph of a nonnegative C’-function, g, from I, =
XN II such that g is positive on the interior of its domain and
vanishes onm oIl .. I'_ is the reflection of I'. about II.

Suppose that the boundary of X, 06X = QU2 where 2 1s a hy-
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persurface with boundary, I' = 02 = 2 N2, which is of class C* on
its interior and on that part of 02 not touching II. Suppose also
that the mean curvature, H, of £ is the restriction to 2 of a
C'-funection of u alone (except perhaps on 2N I1I). Let T, be the
vertical hyperplane generated by II. Under these conditions X s
symmetric about T; and the nonemply intersection of X with any
normal line to Ty 1s a line segment with center on T'.

Remark 1. Clearly, if 02cC2X is a circle we may apply Theorem
1.2 to conclude the axial symmetry of X as asserted earlier.

Remark 2. If 02 C X = R* is a square region with rounded
corners we may conclude that X is symmetric about the vertical
hyperplanes generated by the two diagonals. However, if 02 is a
rectangle with smoothed corners, unequal sides, and 4, 4 are the
lines of symmetry for 682, then our theorem does not allow us con-
clude corresponding symmetry for X about the generated vertical
hyperplanes. (We do not consider the case when 02 may have
corners off of II although the arguments should work at least in
certain cases.)

Remark 3. Consider the dumbell-shaped region A.c3 = R? con-
sisting of the union of two disks D, = {(x, x.)|(#? & 2)* + % < 1} con-
nected by a narrow neck R, ={(z, )] —2=2, <2, —e < w, < ¢},
and suppose X adheres to 3 with ¥, = A, (again with rounded
corners). The results of Theorem 1.2 assert that X must be sym-
metric about the plane z, = 0. A, is also symmetric about z, = 0.
However, in this case 0A. cannot be represented by a graph plus
its reflection and so we cannot conclude that X is symmetric about
2, = 0. In fact, for the case of no gravity, with H = constant, and
large volume for X, one would not expect the equilibrium configu-
ration for X of least area for 2 to possess such symmetry.

II. The touching principle. The theorems stated in this sec-
tion are well-known results from the literature. We state them
here for the sake of completeness and reference.

Let w(x) = w(x, ---, x,) be a differentiable function in some
region of R*. We shall write w;, = w,ix, ---, 2,) to represent the
partial derivative of w with respect to ;. Higher order derivatives
are represented similarly.

Let M(w) be a linear differential operator in some open set
G C R*.

2.1 M(w) = ZZ a;(e)yw,; + ZZ, b,(x)w,; .
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We assume that a,(x) and b x) are continuous in G, that a,;(z) =
a;,(x), with the summations in (2.1) for 1 <7, 5 = n. M(w) is elliptic
on G if

(2.2) Sia@eg; >0 for all zeG

and £ =(&, -+, &) # (0, ---,0). It is uniformly elliptic on G with
ellipticity constant £ > 0 if

(2.3) e w)Es; = e|glP for all xeG.

LemMmA 2.1. (E. Hopf Maximum Principle [5]). Let weC¥G)
satisfy M(w) =0 where M is an elliptic operator on G. If there is

a point x, € G with w(x,) = w(x) for all x €@, then w(x) is constant
on G.

LemMMA 2.2. (Hopf’s Boundary Point Lemma [6]). Let G be a
region in R* and suppose that im a mneighborhood of x,€0G, the
boundary of G is of class C'. Let M(w) be a uniformly elliptic
operator on G and suppose that w(x) € CX(G) N CHG) satisfies M(w) = 0
on G. If w(xy) = wx) for all x&€ G then either w(x) is a constant
on G or the inward normal derivative ow/oy < 0 at x,.

LEMMA 2.3. (Serrin’s Boundary Point Lemma at a Corner [8]).
Let GC R* be a bounded region which has a C* boundary in «a
neighborhood of x,€0G. Let T be a mormal plane to 0G at x, and
let G* be that component of G lying on one side of T which contains
x, wn its closure. Let M(w) be a wuniformly elliptic differential
operator on G+ which satisfies (2.3) for some £ >0 on G+. Suppose
also that

| 2 a@)i;| = Kl + l¢ld]

for some constant K >0, all xcG*, any & = (&, -+, &), Where 7 =
@y, <, Me) 18 a unit normal to T, and where d 1is the distance
from xz to T.

Let weCHG*) satisfy M(w) =0 on G+ and suppose that w(x,) =
w(x) for all xeG*. If w(x) is not constant on G*, then either
owfos < 0 or dFwlos’ <0 in any direction which enters G* non-
tangentially at x,.

There is a touching principle corresponding to each of these
maximum principles. The proofs are well known and similar. We
sketeh the proof in the first instance.
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LEMMaA 2.4. (Interior Touching Principle). Let M(w) be an el-
liptic operator on G as described in Lemma 2.1. Suppose there is
a function w(x)ec CXG) which satisfies

(2.4) Lw) = Mw) + ¢x)w =0

on G where c(x) s continuous. If w(x) <0 on G and wx,) = 0,
then w(x) =0 on G.

Proof. 1t is sufficient to prove the lemma on any relatively
compact neighborhood, U, of &, where UCG. We set w(x) = e’ u(x)
where 8 >0 and x, is the first coordinate. A direct calculation
yields L(w) = e#L(u) where L(u) = M(u) + é(x)u. Here M(w) has
the form (2.1) with a,;(x) = a,;(x) and (@) = Sau(x) + Ba(x) + c(x).
Thus M(u) is uniformly elliptic on U and for large enough g,
é¢(x) >0 on U. Therefore M) =—é(x)u=0 on U, and u(x) has a
maximum at 2, showing that w(x) [and thus w(®)] is identically 0
on U.

LemMA 2.5. (Boundary Point Touching Principle). Let G, x, be
as in Lemma 2.2. Suppose that w(x) e CHG) N CYG) satisfies (2.4)
where M(w) is a uniformly elliptic operator on G and c(x) is conti-
nuous on G. If w(x) =0, wkx) =<0 for xcG, and the inward
normal derivative ow/oy = 0 at x,, then w is identically 0.

LEMMA 2.6. (Boundary Point Touching Principle at a Corner
[8). Let G, G", T, and x, be as in Lemma 2.3. Suppose that
w(x) € C(G*) satisfies the differential inequality (2.4) on G* where
the uniformly elliptic operator, M(w), on G+ satisfies the conditions
of Lemma 2.3 and c(x) is continuous on G*. Let w() =0, wx) <0
for xeG*, and suppose that for any nontangential direction enter-
ing G* at ®, we have dw/ds = d*w/ds* = 0. Then w(x) vanishes on G.

Now let u(x) and »(x) be two solutions to the same preseribed
mean curvature equation

(2.5) div(Tw) = nH(x, w), Tw =Fu/(l + |Ful)

in a region, G. The operator div(Tw) is quasi-linear and may be
written in the form
div(Tuw) = 3 a;(x, u, Fu)u,;
i
2.6 .,
@6 = (W) S — QW) 5wy

where W2 =1-+ [Fu>=1+ Ipl>. It follows that
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@.7) X ay@, u, Fu)es; = A/WHA + pIIEl — 3 pp£sil =AW

Now let w(z) = u(x) — v(x). Then, as is well known, w(z) is a solu-
tion to a homogeneous linear elliptic P.D.E. of the form M(w) +
c(@)w = 0. Here M(w) is in the form (2.1) and the principle part of
M(w) is

2.8) (@) = g;a,_.j(x, w -+t —w), Fu + 17 — Pu)dt

where a,;(x, u, p) is given by (2.6) and (2.7). In particular, M(w) is
elliptic and on any bounded domain is uniformly elliptic with el-
lipticity constant

£ = 1/max(W¢, Wi)

where Wi(x) =1 + [Ful* and Wix) =1 + |[Fv.
These remarks lead to the following coneclusions.

Application 1. Let wu(x) and v(x) be two C* solutions to the
same differential equation of preseribed mean-curvature, (2.5), on a
region GC R* where H(x, u) is continuously differentiable on G X R.
Suppose that w(x) <v(x) on G and wu(x,) = v(x,) for some x,€G.
Then u(x) = v(x) on G.

Application 2. Let G, x, be as in Lemma 2.2. Suppose that
w(z) and v(x) e C(G)N C*G) are both solutions to the same prescrib-
ed mean-curvature differential equation, (2.5), where H(x, u) is conti-
nuously differentiable on G xXR. If wu(x,) = v(®,), u(x) < v(x) for
2 €@, and the inward normal derivatives ou/oy = ov/ov at x,, then
w(x) = v(x) on G.

Application 3. Let G,G*, T and «, be as in Lemma 2.3. Sup-
pose that u(x) and v(x) € C¥(G+) are both solutions to the same pre-
scribed mean-curvature differential equation, (2.5), on G+ where
H(xz, w) is continuously differentiable on G*xR. If u(x,) = v(x,),
w(®) < v(x) for x € G*, and if for any nontangential direction point-
ing into G* at the corner x, we have oJu/ds = 0v/ds and o°u/ds® =
0*v/0s?, then u(x) = v(x) on G+.

III. Proofs of the main theorems.

Proof of Theorem 1.1. Following the procedure of Alexandrov
and Serrin we let T, be a vertical hyperplane in R*+' which lies
outside of X. We move T, through a one-parameter family of
parallel hyperplanes, T, towards and into X. Once T has cut into
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X, let 2'(T) be the reflection about 7 of that part of 2 through
which T has passed. We adopt the convention that Q'(T) is closed
so that QN T < 2(T). Similarly, we let 2(7T) be that part of @
through which T has not passed. Again 2(T) is assumed closed so
that 2N T T).

When T first cuts into X, the interior of 2'(T) will be contain-
ed in X. For 0 < a < x, this will continue to be true until at least
one of the following possibilities occur for some 7 = T,.

1. Q(T,) will be internally tangent to Q(T,) at a point, P, off
of ¥ and away from T.,.

2. At some point, P, on 2N 7T, but off of ¥ the normal, n(P),
to 2 at P will be parallel to T..

3. 2(T) will touch (T, internally at a point, P, on X but

away from T,.
4. At some point, P, on 2 N T, lying on ¥ the exterior normal,

m(P), to 2 = I' in X will be parallel to T,.

We first show that there is a first time, T = T,, where at least
one of these possibilities occur.

For each Qe T, let #(Q) be the normal half line to T, from @
directed towards X. Let P, be the initial contact point of ~(Q)
with 2 if such exists. Now set a(Q) to be the distance from @ to
P, if P, exists, otherwise set a(@)=+ . a(Q) is a lower semi-conti-
nuous function on T,.

Next let Qe T, be a point off of ¥ such that /(Q) meets 2. If
Z(Q) cuts through 2 transversally at P, let P, be the second time
that /(@) meets 2 and set Q) to be the distance from @ to P,.
If the normal, n(P,), to 2 at P, is parallel to T, then set P, = P,
and (@) = a(@). Again, if #(@) fails to meet 2, set b(Q)= + .

Now suppose Q € T, N X with #(Q) meeting £ for the first time
at P,. Suppose that the normal, m(P), to 02 in ¥ is not parallel
to T,. If 0 <a <z then the normal vector, n(P), to 2 at P, also
is not parallel to T,. It follows that ~(@) will cut through 2 and
there will be a second point, P,, where ~(Q) meets 2. Observe that
this will remain true for points @’ e T, near @ for which #(Q) meets
£2. As above we set b(@) to be the distance from @ to P..

Now suppose that ¢ =0 or « = 7. In this case we observe
that the prescribed mean-curvature function, H(u), for £2 must
satisfy H(0) = 0. If H(0) =0, it would follow that in a neigh-
bornood of P, both 2 and ¥ could be expressed nonparametrically
in the form u = w(x) as solutions to the same prescribed mean-cur-
vature equation (2.5). It follows from Application 2 that 2 =23, a
contradiction. Since @ = 0 or # and the mean curvature of 2 at P,
is not zero it follows that the normal curvature, k(P) of 2NN
where N is the normal 2-plane to 02 at P, is different from zero.
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This implies that for points P’ near P, on £ but off of X, the
normal vector, n(P’), to £ at P’ is not parallel to 7,. Once again
this means that for all points Q" near Q on T, any directed normal
line, #(Q'), which meets 2 will cut through 2 and thus will meet
a second time at a point, P,. As above we let 5(Q) to be the dis-
tance from Q@ to P,. Finally, if m(P) is parallel to T, then set
P, = P, and o(Q) = b(Q).

Our discussion allows us to conclude that b(Q) is a lower semi-
continuous function on 7,. Now let ¢(Q) = [a(Q) + b(@)]/2. ¢(Q) is
also lower semi-continuous and so there is a point Q* € T, where
¢(Q) takes on a positive minimum. This minimum value is precisely
the distance through which we must move T, to reach the hyper-
plane, T,, where at least one of the conditions (1)-(4) first apply.

We now consider each of the four possibilities.

Possibility 1. Choose a Euclidean coordinate system (x, ---,
x,, ) with the origin at P such that the tangent space to 2 at P
is 4 = 0 and so that the wu-axis is directed into X. In a neigh-
borhood of z = O both 2(T,) and Q(T,) may be represented non-
parametrically in the form wu(x) and wv(x) respectively where both
functions satisfy the same presceribed mean-curvature equation, (2.5),
for some C’-function H(x, u). We also have u(0) = v(0), u(x) < v(®)
and so by Application 1 u(x) = v(x) and 2(T,) = 2'(T)).

Possibility 2. Choose a Euclidean coordinate system to that P
is the origin, 4 = 0 is the tangent space to £ at P, the hyperplane,
T, is given by x, =0, with the positive wu-axis pointing into X,
and the positive x,-axis pointing towards Q'(T,). There is a neigh-
borhood, U, of the origin in (x,, ---, 2,) space such that on the
domain G = UN{w, =0} both 2(T) and 2'(T,) may be represented
nonparametrically by C2functions u(z) and v(z) both satisfying the
same prescribed mean-curvature equation, (2.5), on G. By construec-
tion we have %(0) =v(0), w(®)=<wv() for zeG, and ou/ox, =
ov/ox, = 0 at x = O. By Application 2 it follows that u(z) = »(x) on
G and so 2(T) = Q'(T)).

Possibility 3. The argument is similar to Possibility 2. Choose
a Euclidean coordinate system (z, ---, «,, ) centered at P so that
u = 0 is the tangent space to £ at P, with w = 2, = 0 the tangent
space to 02 at P lying in X, so that the positive x,-axis is directed
towards 2, and the positive u-axis heads into X.

Since the angle of contact, a, is constant along 02 it follows
that the hyperplane w = 0 is the common tangent space to 2(T.)
and Q2'(T,) at P. Since 2 is of eclass C* with boundary, it follows
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that in a neighborhood of P, Q(T,) and Q'(T,) are represented non-
parametrically by C*-functions u(x) and »(x) respectively where wu(x)
and v(x) are defined on domains G,, G,C R* where 0G; is a C*surface
in R* containing the origin with the z,-axis normal to 4G, at = O
and pointing into G,. From our construction we have G,DG, if
Osa<z/2, G,=G, ={x, >0} if a ==n/2, and G, CG, if a>x/2.
We let G = G, N G, and use Application 2 again. On G, u(x) and
v(x) are solutions to the same prescribed mean-curvature equation,
(2.5), with w(0) = v(0), u(x) < v(x) for xeG, and ou/ox, = ov/ox, = 0
at @ = O. By Application 2 we conclude that u(z) = v(z) and hence
2T, = Q(T).

Possibility 4. Choose a Euclidean coordinate system (x,, -- -, x,, %)
with the origin at P, so that w = 0 is the tangent space to Q at P
with the positive wu-axis directed into X, so that z, = 0 is the re-
flecting plane, T,, with the positive x,-axis pointing towards (7)),
and so that z, = u = 0 is the tangent space to 02 at P in ¥ with
the positive z,-axis directed towards 2.

Relative to this coordinate system the surface, 2, in a neigh-
bornood of P, is represented nonparametrically by a function w(x)
of class C* on a domain G — R* where Oc oG and 6G is the graph
of a C*function, x, = ¢(x,, ---, ,.,) satisfying ¢(0) =0, $,(0) =0
for j=1,---,n —1, and G lies above the graph of g¢(x). (7)) is
represented by this function, u(z), on G = G N {x, >0} while the
reflected surface, Q'(T,), is represented by the function v(x) on G,
where v(x,, @, -+, 2,) = u(—x, ¥, ++-, x,) for 2, =0 and G; is the re-
flection of G- about x, = 9. Observe that Gy <Gy if 0 £ a < 7/2,
G =G if a =72, and G} cGf if /2 < a < 7.

If we let G+ = Gy NGy, then u(x) and »(x) are both CXG*) solu-
tions to the same precribed mean-curvature equation (2.5). Fur-
thermore, u(0) = »(0), u(x) < v(x) for xeG", and ou/ds = ov/ds = 0
at @, = O in any nontangential direction entering G*.

We now show that o*u/os® = 0*/os® at x, = O in any nontang-
ential direction entering G*. It suffices to show that u,;(0) = v,;(0)
for 1 <1, § <n. From the definition of v(x) it follows at once that
u, (@) = v,,(0) for 2=, j<mn or if i =37 =1. Since u(®@, x, ---,
x,) < w(—w, ., -+, %,) When x, =0, it follows that «,(0, «,, ---, x,) <0
and so u,(0) = vlj(é) =0 for j=2,---,n —1. Since z,=0 for
reG we must argue differently for u,,(0).

However, 2 intersects the hyperplane, Y, at a constant angle,
«. The unit normal to 2 is given by N = (Fu, —1)/W and the unit
normal to ¥ may be written ¢ = (0, ---, 0, b, a) where a* + b* = 1.
It follows that cosa = (bu, — a)/W. Substitute z, = ¢(x, -+, .-,
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into this equation and differentiate with respect to x,. We find
0 = b[u.(0) + u,.(0)$,(0)]. Since ¢,(0)=0 we conclude that u,,(0)=0
if 50. However, if b = 0 then @ =0 or a = 7. In this case we
have w,(x, -+, %,y 92, -+ -, ,-)) = 0. Again differentiate this ex-
pression with respect to x,, set = O and we find that u,,(0) =
2,,(0) = 0 in this case also.

We have verified all the conditions of Application 3. We con-
clude that u(x) = v(x) for x € G and hence T, = 2'(T).

Proof of Theorem 1.2. Let T,c R"*' be a vertical hyperplane
which is exterior X and parallel to 7 . As in the proof of Theorem
1.1 we consider the possibility of moving T, through the one-para-
meter of hyperplanes, 7T, parallel to T, into X. For Q¢ T, we de-
fine the functions a(®) and b(Q) as previously if @ is off of 2. Let
ReT,N 2 and suppose the normal half line, #(Q), intersects 2. If
Z(Q) first meets 02 at a point, P, off of II then, since 02 is repre-
sented by a graph at P,, the normal, m(P,), to 02 in Y is not par-
allel to T, and so #(Q) will meet £ a second time at a point, P,.
We set a(@) = d(Q, P) and Q) = d(@, P,). If -(Q) first meets 2
at a point P, on II then we set Q) = a(Q) = d(Q, P;). As before,
it follows that both a(Q) and 5(Q) are lower semi-continuous func-
tions which implies that [a(Q) + b(Q)]/2 takes on a positive minimum.

Let T, be the corresponding hyperplane. If T, is not T, then
it follows that either Possibility 1 or 2 occurs at a point P2 and
P¢ 3. By the appropriate touching principle, Application 1 or 2,
we conclude that (T, = Q'(T,), an impossibility unless T, = T.
Therefore T, = T4.

The same conclusion must hold if we had initially chosen T, to
lie on the other side of T',. The only way for this to be true is if
X itself is symmetric about T, and such that any nonempty inter-
seetion of X with a normal line through 7T, is a segment whose
center lies on T';.
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