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This work concerns boundary value problems for a class of
nonlinear equations modeled on the physical equations for a
capillary free surface in a gravitational field. The results
consist principally of estimates for the height of a solution
in an exterior domain. Structure conditions reflecting the non-
linearity of the mean curvature operator are imposed on a class
of symmetric variational operators in terms of the Legendre
transform of the variational integrand. Estimates are found
for the boundary height of a rotationally symmetric solution in
the exterior of a ball of radius R. These estimates, which are
valid for any R, are shown to be asymptotically exact as R
tends to zero or infinity. This provides a proof of the asympto-
tic behavior of the boundary height which previously has been
derived by a formal perturbation method. An asymptotic char-
acterization of the solution in a neighborhood of the boundary
is also given. For a general domain estimates are obtained
from a maximum principle due to Finn in which the symmetric
solutions serve as comparison functions.

1. Preliminaries. We begin by formulating the “standard”
capillarity problem on an exterior domain »n dimensional space; the
physical case is » = 2. Let 2 c R* be an exterior domain whose
boundary, ¥, is a compact C' hypersurface. When the generalized
(vertical) cylinder Y X R is immersed in an infinite reservoir of fluid,
the action of capillarity gives rise to a free surface of static equi-
librium in the outside of the cylinder. Let the height of this capillary
free surface, assumed nonparametric over £, be given by the scalar
function u(x), 2 = (x, ---, ©,) € 2. Physical principles assert that the
equilibrium free surface minimizes the functional

1l  Eul=o ggo/TJr Pul — Dda + —;—pg Lwdx s gzudS;

dx is n dimensional measure on 2 and dS is (n — 1) dimensional
measure on Y. The physical constants appearing in (1.1) are: o, the
surface tension; o, the difference of densities across the free surface;
and, g, the gravitational acceleration. The dimensionless constant g
is a characteristic of the materials interfacing at the boundary; g
satisfies |8 =<1 and v =cos'8(0 = v < 7x) is known as the con-
tact angle. The equilibrium condition 6E[u] = 0 yields the Euler
equations

517



518 BRUCE TURKINGTON

(1.2) VFAQ + [Fu )Y Pu} = kuw in Q
1.3) {1+ |Fu»"Pu} =8 on X

where £ = pg/o is the capillarity constant and v is the outer unit
normal on 3. We note that in (1.2)

(1.4) Mu = V{1 + |Fu])"Fu)

is the mean curvature operator. When considering an exterior
domain 2 it is natural to require that

(1.5) limu(x) =0 ;

in fact, it can be shown that this property is possessed by any
solution of equation (1.2) defined in a neighborhood of infinity.

The questions of existence and regularity for solutions of (1.2, 1.3)
under certain restrictions on the exterior domain 2 and the boundary
data g8 have been dealt with by Gerthardt [5, 6].

We consider a class of symmetric variational equations generalizing
the capillarity equations (1.2, 1.8). While the analysis to follow is
carried out using methods appropriate to the general case, the
theorems yield new results when specialized to the case of capillary

free surfaces.
Let F(s) e C*[0, ) and G(u) e C*(— o, ) be given satisfying

(1.6) F,0) =0 and F,(s) >0 for all sef0, «),
L7 GO0 =G,0) =0 and G, (u) >0 for all we(—oco, ).

For convenience we write F(p) when considering F(s) as a function

of p=(py -+, P, 8=|p|
We consider the boundary value problem”

(1.8) O p (ru) = Gu(u) in Q@
ox;
(1.9) v, K, Vu) = p,(x,u) on 2;

namely, the Euler equations for the functional
(1.10) Jlu] = Sg{F(]Vu ) + Gw)de — S;p(x, w)ds .

Here, @(x, u) € C*(3 X R) is prescribed boundary data and may have
to satisfy certain conditions depending on F'(s). Strictly speaking
we must seek solutions u(x) of (1.8,1.9) in the class C*2) N CY2);
however, it is of interest to consider solutions u(x) which are not

! The summation convention is used on repeated indices.
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in C'(@). For u(x) € C*(2) N C°(2) we may replace (1.9) by the condition
(1.9 lim »F,(Vu) = ¢,(x, w)|,—,, for all z el

wory TE 2

provided this limit exists (v is extended continuously to a neigh-
borhood of X).
It is evident from (1.6) that the quasilinear operator

(1.11) Nu =

()
ox;
appearing in (1.8) is elliptic. In §2 we impose structure conditions
on Nu making it the appropriate generalization (for our purposes)
of the mean curvature operator Mu. Under these conditions any
solution of (1.8, 1.9) will satisfy the natural requirement (1.5).

The following variant of a maximum principle due to Concus
and Finn [1, 2] is fundamental to our discussion.

THEOREM 1.1. Suppose @, (x, w) < 0 for all (x, u)eY X R.
Let u(x), v(x) e CA(2) N CY(2) satisfy

0

—F, (Fu) = G,(u) xel
(1.12) "
liminf v I, (Fu) = p.(2, w)l,-., 2, €Y
Towg, e L
9, 7v) = G,(v) reQ
.
(1.18) ot

limsup v.F,,("v) = (@, V)loesy, %€
:vaxo,xe.’,’
and lim, ., u(x) = lim, ., v(x) = 0. Then u(x) = v(®), z € 2.
We say u(x) is a supersolution and v(x) is a subsolution of
vroblem (1.8, 1.9).

Proof. The proof given in Concus and Finn [1, 2] for a bounded
domain 2 and with F(s) = V1 + s* is easily adapted to yield this
theorem.

Throughout the remainder of the paper we shall assume that
the hypothesis

(1.14) P, u) =0 for all (x,u)e X R

is fulfilled by the prescribed boundary data. For ecapillary free
surfaces this means that we may consider cylinders 3 x R composed
of inhomogeneous material provided that the contact angle v(x, )
is nondecreasing in u.

Since much of the analysis to follow will concern rotationally
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symmetric solutions u(r), » = |2|, on the domain B = {x:|2| > R}
(or the limiting case when R — <« and # is a one dimensional solution
on a half-space), we extend the definition of F(s) to se€(— oo, =) in
order to make convenient the application of N to u(r). If F,(s) is
extended as an odd function on (— oo, =) then F(s) becomes an even
C*? function on (—co, o) and, furthermore, we have

(1.15) F, () = Fs(uT)%

when u, takes either sign. When considering rotationally symmetric
solutions we must restrict the boundary data to be of the form

(1.16) P(x, u) = u, L = constant

as in the capillarity problem with constant contact angle. The
boundary value problem (1.8, 1.9) for u(r) on B, is given by the
ordinary differential equations

1

W n—1
7

(1.17)

'0%(7'”‘1173(%7)) =G,u) r>R
’

(1.18) —F(u)=8 r=R.

The following theorem, derived from the preceding maximum
principle, allows rotationally symmetric solutions to be used as com-
parison functions.

THEOREM 1.2. Suppose 2 C B, for some R > 0. Let u(x) be a
solution of (1.8,1.9) in 2 and let v(r) be a solution of (1.17, 1.18)
in Bp with v, <0 and v,, >0 for r>R. If ¢,z ulx) =g for
all xeX, then w = v in £2.

Proof. By Theorem 1.1 it suffices to show that v, F, (Fu)
v.F,(Fv) on 3. Let & =w,/|Fv|. For zel, v,F,(Fv) < &F,(Fv)
F(Vrv)) = —F,(v,(z])). Using (1.6) and »,, > 0 we obtain

—F,(w(z]) < —F,(v.(R)),

>

hence v, F, (Fv) < —F,(v(R)) = B £ p.(x, u(®)) = v, F,,(Fu) as required.
As is evident from the proof, the theorem also holds when
v, >0 and »,, < 0. For a given domain £ the preceding theorem
holds, of course, for any ball contained in the complement of 2.
This theorem, allowing the comparison of two capillary free
surfaces defined on two different domains, is due to Finn [4]. As
is pointed out in [4], the result is false for two arbitrary domains,
one containing the other. A complementary result to Theorem 1.2
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is the following corollary of Theorem 1.1: If 2D B, for some R > 0
and u(x) is a solution of (1.8,1.9) in 2 and w(r) is a solution of (1.17)
in B, with w,(R) = —c, then v < w in B,.

In view of the above results we focus our attention on height
estimates for rotationally symmetric solutions on B;. In §2 we find
structure conditions on the operator Nu which are necessary and
sufficient for the existence of solutions w=u(r; R, B) of (1.17, 1.18) for
all appropriate 5. The boundary height u(R; R, 8) is characterized
asymptotically as R—0 and as R — o in §3. The results of §3
are applied in §4 to give asymptotic estimates on the solution wu(r;
R, 5) in a neighborhood of the boundary as R — 0.

2. Structure conditions. By structure conditions on the operator
Nu defined by (1.11) we mean conditions on the behavior of F'(s) as
s — co; these we impose in terms of the Legendre transform of F'(s).

The Legendre transform (o, @(0)) of (s, F(s)) is defined to be

2.1) c=F,0 =—s0 +F.

We note that @ may be considered as a function of the new inde-
pendent variable ¢ because of the Legendre condition (1.6). Clearly,
o is an odd C! function of s and @ is an even C* function of 0. The

transformation possesses the involutive property:
(2.2) D, = —s.

Our requirement is that both ¢ and @ be bounded as s — «; in
fact, it is not hard to show that the boundedness of @ implies the

boundedness of o.
Since o is strictly increasing in s, lim,..o exists. Multiplying
equations (1.8, 1.9) by a positive constant we may assume that

(2.3) limo=1.

§—00

This normalization constrains the boundary data in (1.9) since
7 1/2
(Pum, W] = (SF, 0} = F(ruh 1.

Henceforth we assume that the boundary data is preseribed so that
2.4) lo, (e, w)] =1 for all (x,u)eX¥ X R.

In particular, in (1.18) we have |3] =< 1. Also, since @ is strictly
decreasing in o, lim,_, @ exists. As equations (1.8, 1.9) are unchanged
when @ and F are replaced by @ + C and F + C we may assume,
after an appropriate choice of C, the normalized requirement
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(2.5) lim@ =0.

G—1
The two (normalized) structure conditions (2.8, 2.5) on the operator
Nu will be assumed throughout. For the capillarity problem, where
Nu is the mean curvature operator, F(s) =1 1 + s* and hence

(2.6) o =v1-0";

s

0=—
V'1+s

clearly (2.8, 2.5) are satisfied in this case.

The rotationally symmetric solutions on Bj are supplied by the
following theorem.

THEOREM 2.1. There exists a unique solution uw = u(r; R, 8) of
(1.17,1.18) for every 0 < R< o and 0= =1l For 02p8<],
u € C(R, «) N C'[R, «); for 8 =1, ueC(R, ) NC[R, ). If8 =0,
then uw = 0; 1f 0<RZL1, then u>0, u,<0, %, >0, lim, ., u=1lim,._ u,=0.

This result is a direct generalization of the work of the work
of Johnson and Perko [9] for two dimensional capillary free surfaces.
Uniqueness is immediate from the maximum principle, Theorem 1.1.
A detailed proof of existence is contained in Perko [10]; under
conditions (1.6, 1.7), our structure conditions are equivalent to the
hypotheses of the latter paper.

In the above theorem it suffices to consider 0 < 8 < 1 since for
—1 £ 8 £ 0 we may take the solution u(r) = —#(r) where %(r) solves
(1.17,1.18) with G,(u) replaced by —G,(—1%) and 8 replaced by —g.

The operator Nu when applied to = u(r; R, 8) may be expressed
in a form fundamental to the subsequent analysis. From (2.2) it
follows that

d - d
Ti—'rTF (u,) = ur%F (u,)
@.7) - —@(Fs(u,»dim(u»
u
__4a
= —Low,u).

Therefore we have

(2.8) Nu = —LoFw) + 2=Lrw,) .
au 7
We remark that the structure conditions imposed on ¢ and @

are, in fact, necessary for the existAence of a solution w = u(r; R, 1)
with u e C¥R, ) N C[R, ). Let Re(R, ) be fixed. Integrating
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(1.17) in » and then, using (2.8), in u we obtain respectively

R%T@MR»—R%%xmm»:§3%6mwmmr

A~ () A

OF 0, (R) = 0 (u,(B) + | - L= )du = Gu(R) ~ GuR))
Since sup,.xmu(*) = u(R) < = and [u,,(ﬁf)l < oo, it follows that
| F(u(R)|, |2(F(u,(R))| < e=. But u,(R) = —co since 8 =1; hence
o = F, and O(F,) are bounded as s — co.

The one-dimensional solutions w(z,) on the half-space H, =
{xr e R": z, > 0} can be considered as the limiting form of the solutions
u(r; R, B) as R— co. To simplify notation we write x = x,. The
equations for u(x) are

(2.9) 4R u,) = Guu) >0
dx

(2.10) ~Fu,)=p8 x=0.

THEOREM 2.2. There exists a unique solution u = u(x; o, B) of
(2.9, 2.10) for every 0 < s < 1. For 0 < 8 <1, uecC¥0, )N C0, );
for 3 =1, ueC*0, )N CY0, c). If B=0,thenu=0;10<B=1,
then u > 0, u, <0, u,, >0, lim, .. % = lim, .., u, = 0.

Proof. We may assume 8 # 0. Let u., be determined by the
relation

(2.11) G(Ue,p) = 0(0) — O(—5) .
An explicit formula for the inverse of the solution is given by

Woo, B du’

w FoA07(@0) — G)’ 0<u = sers

@.12) aw) = S

where @' is the positive braneh. To derive this formula we observe
that by (2.7) (with » replaced by z) equation (2.9) admits the first
integral

O(F (u,)) + Glu) =@0), =>0.

The stated properties of the solutiou are now easily verified.

3. Boundary height estimates. In this section we find estimates
for the boundary height u(R; R, 8) of the solutions of Theorem 2.1.
These results allow us to characterize w(R; R, B) asymptotically as
R->0 and as R— <. The estimation is achieved by comparing
certain expressions in the solution u(») of the given equation Nu =
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G, with corresponding expressions in 2(r) where z(») is the solution
of the homogeneous equation Nz = 0.
Let z = 2(r; R, B) be the solution of

3.1) Nz=0 »r>R
(3.2) 2=0,—-F(:,)=8 r=R.

An integration yields the solution explicitly:
3.3) 205 R, ) = | Fo(=a(RIp)dp

The solution satisfies 2 < 0,2,<0,2,, >0 on » >R for 0 < B3=<1.
When 5 =1 the integrand of (3.3) becomes singular at » = R; its
integrability can be verified using conditions (2.3, 2.5). We let
r(z; R, B) denote the inverse function of z(r; R, 8).

THEOREM 3.1. Let u = u(r; R, B) be the solution of Theorem 2.1
with 0 < 8= 1 and let up;, = w(R; R, B8). Then there holds for all
O0<R< oo

(3.4) T(R; B) < tp,p < U,y = GTH(P(0) — O(—P3))

where T(R; B) is a positive, increasing, C' function of R defined
implicitly by

3.5) S(T/R) = G(T)
with
(3.6) SW»:(n-—DBELWf@;LBr%k.

Proof. Using (2.8) we express equation (1.17) in the form

L) = 26w,
r du

3.7) — 3 p(F ) + 2
du

from which we conclude

Fs(ur)du = G(uRyﬁ) .

“Rip —1
0

(3.8) mm—m—m+g

Since the integral appearing in (8.8) is negative we immediately
obtain the upper bound in (8.4). To find the lower bound we must
estimate this integral. Integrating (3.1) in z we are lead to

(3.9) 20) — 0(-9) + | L LFe)dz =0

0
z(00; R, 8)
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where

— o 1’(,::2
2(eo; R, = .
( 8 {ﬁmte n>2.

We now claim the following:

0

L 1Fs(z,)dz .

—up,5 T

(3.10) —S:”’ﬂ" — 1 Fw)du < ~§

»r

It is convenient to set y(r) = 2(#) + uz;. Since Ny < Nu on (R, o)
and also y(R) = w(R), F(y,(R)) = F,(u,(R)) it follows that for » > R

(3.11) F.(y,(r) < Fy(u,())
(3.12) y(r) < u(r) .

L.et # = 7(r) be defined by y(#) = u(r). By (3.12), clearly # < r.
Since y,, >0 and F,, > 0 we have F,(y,(#)) < F,(y.()). Thus,

~ 2L F ) < 2L )

From this the claim (3.10) is now evident. Combining (3.8), (3.9)
and (3.10) we have the basic inequality

s
(3.13) —Sﬁ’@lmwm<G%m.

z(c0; R, 8) r

In order to bring (8.13) to a more transparent form we define

-7
AR, T) = —S Lo L (2)dz
z(co, R, r

(3.14) .
= (0 — DR |

z(c0s R,

, r(z; R, B)~"dz .
)

We note that since z(wr; MR, B) = M2(r; R, B8) for A > 0, a change of
variable in integration in (8.14) yields AR, \T) = A(R, T). Thus,
AR, T) = S(T/R) where

(3.15) Sw) = A1, w), w>0.
Inequality (3.13) now becomes
(3.16) S(tr,s/R) < G(urg,s) -

Sinee S, < 0 and G, > 0, T(R; 8) given by (3.5) is a well-defined C*
function of R with the stated properties of the theorem. This

completes the proof.
We now establish the asymptotic behavior of u,; as R — 0 and

as R — oo.
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THEOREM 3.2. The boundary height u,, as given in Theorem
3.1 is characterized asymptotically by

__é_.R log_g n =2
(317) URr,s ~ Fss(O) R
C,:R n>2 as R—>0,

(3.18) Ug,p ~ Uep = GTH(PO0) — O(—B) as R— o,
where @ = (G, (0)/F. (O}, C, , = SmFgl(,e'r'”“)dr .

Proof. First we consider the case R — 0. Using (3.4) we find
the asymptotic estimates for wuy, from below by determining T(R; 3)
asymptotically as B — 0. Equations (3.5, 3.6) imply that 7-— 0 and
n =2

T/R——’lz(w;l,ﬁ)lz‘jc n>2 as R—o0
.8 .

For » > 2 it follows that
(3.19) urps = (1 — e(R))C, B (n>2)

for 0 < e(R) = o(1) as R — 0.

For n = 2 we must estimate S(w) from below for large w. In
the following analysis we write simply z(r) and »(z) for z(r; 1, B)
and 7(z; 1, 8), respectively. Take @ >0 and consider 0 > —w >
—w > 2. We first estimate

—am z | Frsiode

L]
(8.20) 2 e 5%
— Bo(w) log r

F.(0) — r@w)

where 0 < 8(w) < 1 and 6(ww) —1 as @ — . Hence,

(3.21) 72) < (@) exp{ gﬁ(g (—z)} .

Thus,

Sw) = g S’Z(z)%dz

- —\-2 —2F,,(0) _
(3.22) =R S_m'r(w) exp {W( z)} dz
—_ Bze(w) _2Fss(0)
= o | 36(i5) v}
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Recalling (1.7) we have
(3.23) 0< Gu) < —;—r(ﬁ)Gw(O)uZ for 0<u<i

where 7(#) = 1 and z(#) — 1 as #© — 0.
If we take o(w, #) > 0 so that R <d(w, %) implies both T/R > o
and 7 < @ we obtain from (3.22), (3.23) and (8.5)

BC(w, @) —F.(0 . T
(3.24) Tz exp{ i R}
where C(w, ) = [60(W)/F,(0)G,,(0)c(@#)]*. We rewrite (3.24) in the
form

T . 0@, (BC@, @) 1
(3.25) FE log | e 1

Then for any positive function V(R) we have

T : 86(i) BC(w, @) 1
(3.26) Lz mm( v, 5 1og{ e RV}).

The best choice for V(R) in the asymptotic estimates must be such
that as R —0

_B0®) | (BC@, @) 1
- V~ T o °¢ { (D) RV}
) _ B ;. a

= 7.0) logR + o(V)

provided V— « as R — 0. On this basis we choose

_ p(w) ; .a
(3.28) V(R) = F0) logR .

For any ¢ > 0, there exists i(¢) sufficiently large and #(¢) sufficiently
small and d(¢) > 0 such that for R < d(¢) the relations (3.26), (3.27),
(3.28) yield

T~ q_ B__log 2
(3.29) f7 = ( €) F.0) ogR .

Thus we have the asymptotic estimate from below

(3.30) Uns = (1 — &(R)) FiO) R log}% (n = 2)

for 0 < e(R) = o(1) as R —0.
We now derive asymptotic estimates from above for u,, as
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R — 0. These estimates stem from the observation that since Nz <
Nu on r > R and F,(z(R)) = F,(u.(R)) hold for z ==z(r; R, B8) and
u = u(r; R, B8) we have

(3.31) F(z.(R)) < F.(u,(R))
(3.32) urs < |2(R; R, B)| + u(R; R, )

for any R > R. We show by an appropriate choice of R that
u(ﬁ; R, B) = o(uy;) as R— 0, and hence obtain an asymptotic esti-
mate for w,, from the behavior of |z(R; R, 8)| which is known
explicitly.

The estimation of u(R; R, B) is achieved by linearizing the
equation (1.17) on (I?, o) (for large }?/R) and majorizing the solution
u(r) by a supersolution v(r) on (1?, co) which is itself a solution of
the linearized equation. Suppose v(r) € C*[R, o) satisfies v > 0, v, <0,
v,,>0, lim, ., v=lim,_., v,=0; let v,=8Up, (%,0) V(7"), V,=SUD, ¢ (i,c)| V(7).
Then on (R, «) there holds

(3.33) Nv < Fo,(v,)v,, = (1 + &(v)F,,(0)v,,
(3.34) G.(v) = (1 — &(v,)G..(0)v

where 0 < ¢,(v,) = 0(1) as v,— 0 and 0 < ¢,(v,) = o(1) as v, —» 0. Thus,
the supersolution condition

(8.35) Nv<G,v) r>R

is satisfied if the linear differential inequality

1— &)  Gul0) 5
.36 < . R
(3.36) U= T ey Fu0) T

holds. For 0 < ¢ < 1/2 we define
A, = [1 — )G (0)/F(0)] 5

clearly A.—a as ¢ — 0. For any ¢ > 0 we can find d(¢) > 0 so that
if v, 4+ v, <dE) then 1 —e < (1 — 6®,))/A + ¢,(v)) and hence the
function

(3.37) v(r) = Be 4

satisfies (3.36) for any constant B. We now propose to choose B so
that the boundary condition

(3.38) —F(u,(R)) < —F,(v,(R))
holds. By (8.81) it suffices to take B such that lz,(ﬁf)[ = |v,(f2)[. But
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ot = mumity < 2(8) g (5]

where 7(R/R) >1 and 7(R/R) — 1 as R/R ~» oo, Therefore the
appropriate choice of B is

B = AJ?(%) g <R;>nqeﬁf"s .

Now we have

as R/R— < (A. is bounded independent of ¢). Thus there exists
M(e) > 0 such that if R/R > M(e) then the condition v, + v, < 6(c)
is satisfied for v(r) given by (8.37). Consequently, v(r) satisfies (3.35)
and (3.38) and hence Theorem 1.1 implies u(r) < v(r) for » = R. In
particular we have the desired estimate

i ofB) A (Y

for any ¢ > 0 provided E/R > M(e). Recalling the properties of A.
and »(R/R) we can express this simply as

s R s () (B)

where 0 < {(R/R) = o(1) as R/R — .

It remains to estimate |2(R; R, 8)| as R/R — . Writing 7 =
R/R we recall that |z(R; R, B)| = Ri2(7; 1, B)|. We have directly
from (3.3) that

+ (7))
(3.40) l2(7; L, B)| = SS(O

C’n,ﬁ n > 2

log? n=2

where 0 < {(#) = o(1) as # — oo,
For n = 2 we combine (3.39) and (3.40) to get

urs = RI2(B/R; 1, B)| + w(R; R, )
<1+Q<R>> FB(O) {Rlog§+a§}

Taking R = a we have
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(3.41) Ups = (1 + &(R)) FB(O) R 1og1%

where 0 < ¢(R) = o(1) as B — 0.
For n > 2 we may take R = - and obtain immediately

(342) Ugr,p = Cn,pR .

Inequalities (3.30), (3.41) for » =2 and (3.19), (3.42) for n > 2
establish the asymptotic statement (3.17).

Finally we must prove (3.18). Since T(R; 8) is bounded above
by %, G(T) = S(T/R) — S(0) and thus T(R; B) — G~'(S(0)) as R — oo.
But

0 n—1
s = | F(z)dz = 0(0) — 0(—g)
2 (c031,8) r
by (3.9). Thus, T(R; B) — %.,s as R — . This establishes (3.18)
and completes the proof of the theorem.
We conclude this section by specializing the results to the case
of two dimensional capillary free surfaces.

THEOREM 3.3. Let u = u(r; R, B) be the solution of

1 d rU, _
7717<1/1+u3>“'m r> R
—17—1%_—7282008"/ r=R

for 0 £ v < 72. Then there holds for 0 < R < o
T(R; B) < Uz < aV/ 2(1 — sin7)
where T(R; B) is defined tmplicitly by

R cfsv = log {(1 _cossiz & %t—yil} ;

a=1/V'k. Also, uss is characterized asymptotically by
Ugps ~cosYRloga/R as R—0

Ugs~aV 21 —siny) as R—> oo .

Proof. All of the these results are immediate from Theorems
3.1 and 3.2 with the exception of the implicit relation for T(R; g).
To derive the latter we note that

2(r; 1, cos v) = cos v{cosh~'(secv) — cosh™'(r sec )}
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and hence

S(w) = cos v S;wr(z; 1, cos v)’dz

= 1 — tanh(w sec v + cosh™(sec 7)) .

Thus, the defining relation (3.5) for T(R; cos ) becomes

1-— tanh(

-+ cosh~(sec 7)) = i<£>2 .

R cos 2\a

From this the implicit relation in the statement of the theorem
follows easily.

In the physical case the asymptotic formula for u,, as R —0
has been derived formally by Derjaguin [3] using the method of
matching asymptotic expansions; the above theorem provides a
rigorous justification of this result. The lower bound T(R; ), valid
for all 0 < R < <« and asymptotically exact as B tends to zero or
infinity, seems to be new even in the physical case. The upper bound
is the same as that of Johnson and Perko [9].

4. Behavior near the boundary. The following lemma gives
a majorant and minorant for the solution u(r; R, 8) on an interval
(R, R) and an estimate for the error over that interval as R — 0.
In the subsequent theorem we formulate in dimensionless quantities
certain asymptotic estimates for u(s»; R, 8) in a neighborhood of the
boundary.

LEmMMA 4.1, Let w =u(r; R, B) be as in Theorem 2.1 and let
z =2z(r; R, B) be given by (3.3), 0 < 8= 1. The functions

(4.1) w=w(r; R, B) =u(R; R, B) + 2(r; R, B)
42) v=o(; R, B) =wuk;R,B) —R; R, B) +20; R, ),
where R =a if n =2, R = o if n > 2, satisfy
(4.3) w(r; B, B) < u(r; B, B) < v(r; R, )
on R<r<R. Furthermore, as B — 0
sup {v(r; R, 8) — u(r; B, B)} = sup {u(r; R, B) — w(r; R, B))

(4_4) re(R R) re(R,R)

= o(u(R; R, B)) .

Proof. Since Nu >0 while Nw =Nv =0 on R<r< R and
w,(R) = v(R) = u(R), w(R) = u(R), "(R) = w(R), inequality (4.8) is
evident. Also,
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sup {v(r) — u(r)} = v(R) — u(R)

= u(R) + |2(R)| — w(R)
= uw(R) — w(R)
= sup {u(r) — w(r)} .

re (R, R)
We need only show that

0 < u(B; R, §) + |#(R; R, @)| — w(B; B, B) = o(u(R; R, )
as B — 0. But this follows from the proof of Theorem 3.2 —in
particular, from (3.39), (3.40), (3.19) and (3.30).

THEOREM 4.2. For 0< 6 <1, let 1 < N(R) < oo be defined by
u(n(R)R; R, B) =0u(R; R, B). Then for any >0 there exists o(e) >0
such that if R < 6(e) then

(4.5) (%)”H < M(R) < (%)‘LH n =2
(4.6) 0,50 + &) < Ng(R) < 05,600 — &) m > 2

where 0,,(t) 18 a decreasing, continuous function on 0 <t < 1 with
lim, ., 0,,5(t) = oo, lim,_; 0,,5(t) = 1.

Proof. Let M(R) and A/(R) be defined by w(\(R)R; R, B) =
v\ (R)R; R, B) = 0u(R; R, B). Then M(R) < M(R) < M/ (R) by (4.3).
Also from Lemma 4.1 we conclude
[zM(R)R; R, B)| = (1 — Ou(R; R, B)

[z (R)E; R, B)| = (1 — 0 + e)u(R; R, B)

where 0 < ¢ =0(1) as R—0. Forn =2, u(R; R, 8)/R — and hence
M(R), Mf(R) — = as R — 0. We recall that

(4.7)

R; R, B) = R|2(0; 1, B)| ~ R—B __1 o,
|2(0 B) |2(0; 1, B)| F.0) ogo as o
Now invoking Theorem 3.2 we conclude from (4.7) that

log M(R) = (1 — 6 — ¢) log 1%

log\M/(R)< (1 — 6 + ¢) log %

where, again, 0 < ¢ = o(1). This proves (4.5). For n > 2 we construct
0..5(t) by solving the equation
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12(0,,6(); 1, )| = @ — D)]2(eo; 1, 8)[ = 1 — 1)Cop .

Clearly p,,s(t) is well-defined for 0 < ¢ < 1 and possesses the properties
stated in the theorem. Now (4.7) and Theorem 3.2 imply

[ZMG(R); L, B) | = (X — 0 — e)C, s = [2(04,5(0 + €); 1, B)|
2OV (R); L, ) = X — 0 +8)C, 5 — [2(0..600 — €); 1, B)]
from which (4.6) follows.
We note that the asymptotic characterization of )\,(R) given in

the above theorem depends crucially upon the asymptotic exactness
of the boundary height estimates of Theorem 3.2.

5. Extensions to other equations. The results of the preceding
sections may be extended to a more general class of variational
equations. Let A(p)eC*R" and Bz, u)eC*2 x R). We consider
the boundary value problem

(5.1) 5"_Api<7u) — Bz, u) wc®
@,
(5.2) A, (Tu) = P, u)  xEX

where @(x, u) is prescribed data as before. These equations arise
from a variational functional with an integrand separated in the
(x, ) and p variables; namely,

(5.3) Ju] = S {A(Pw) + B, w)de — Lgv(m, wds .

2

We assume
(5.4) A,(00=0 and B,(z,0) =0 for all ze®,

go that u = 0 is a solution of (5.1). Thus it is natural to require
the condition at infinity (1.5). We also assume the convexity conditions

(5.5) A, (055 >0 forall peR", 0+ ¢ecR",
(5.6) B, (x,u) >0 for all (z,uw)el X R.

Under these conditions a maximum principle analogous to Theorem
1.1 holds for solutions of (5.1, 5.2).

We must, in addition to (5.5), impose a structure condition on
the equation (5.1) similar to the conditions of §2 for symmetric
variational equations. Let F'(s) be given satisfying the conditions
of §2. We require that

(57) Fpipj(p)gzéj é Apipj(p)Siéj —S_ ﬂFpipj(p)EiEj
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for all pe R, £c R", where pt =1 is a constant independent of p
and &. In the special case when F(s) =11 4+ s* the equation (5.1)
is said to be of mean curvature type.

For the symmetric variational problem (1.8, 1.9) a rotationally
symmetric solution in B, is a solution of the ordinary differential
equations (1.17, 1.18). We now propose to find analogous ordinary
differential equations whose solutions yield rotationally symmetric
sub- and super-solutions of problem (5.1, 5.2).

Let veCYR, <) and consider v as a function of 2 = (x,, ---, x,)
by v(z) = »(¢), r = |x|. Then

,U’i s 'Urﬁll
r
5.9) Vusy = 02+ Lo, 5, — 28]
VyVz; , 1 VoVa;
= Uyp /‘)3 2 + 7,01' {611 - :)?- J} *
Also, with s = |p|,
(5.9) Fp® = Fu) 2P 4 L)l — B3} |
S S S

From this it follows that

Frp@iés = Fue)ZE + Lr o) {ep - 28]
(5.10) .
= F,(s)|&" + ;—Fs(s) |&” |2

where & and &" are the projections of £ in the directions parallel and
perpendicular to p, respectively.

Applying the operator on the left hand side of (5.1) to v we get,
using (5.8),

DA, 70) = Ay (PO,

(5.11) e

= B(Fo),, + [T(0) — EFv)lo,
where
(6.12) E(p) = A,,,(0)p:p;/s*, T(p) = A,,,(D) .

Taking & = p in (5.10) it is evident that (5.7) implies
(5.13) F.(s) < E(p) < pF.(s), s=|p].
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We can estimate T(p) — E(p) as follows. Let &%, -.. &" be an
orthonormal basis for R* with £&¥ = p/s. Then

T(p) = 3 Aoy (@S
= B(p) + 3, Ay 0P
By (5.7) and (5.10), for k¥ =2, ---, », we have
LF(6) S Ay < pIFG)
Consequently
619 2=Dre) = 1) - Be) = B=DERG), 5= ).
In addition to (5.6) let us impose

(5.15) B,(x,u) < G,(u) for all (x,u)e X R

for some given G(u) as in §2. Suppose now that we seek a sub-solution
v(r) of (5.6,5.2) on B, with the properties v, < 0, v,, > 0 for » > R.
By the above discussion

= E(v)w,, + [T(7v) — E(Vv)]—l—'vr

P
> F. ), + ™= - = Detp )
= r%@ﬂﬂ(vr»

where a = (n — 1)¢t. Hence, if v(r) is a solution of

(5.16) No = r—adi(ran(v,)) —G.w) r>R

r

then v satisfies the sub-solution condition

2 4,(7v) = B,w,v) on B,
0x;

We must now deal with the boundary condition. Since

Vz; Vay

v, |Pv]’

X.
})i:-—-__l’:—
r

we have

2 We retain the summation convention on indices ¢ and j.
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v, A, Vv) = ];;flApi(Vv) on 8B, .

Recalling (5.4) we see that
Lot @) = 224 4, (i

= [pI| Bepat

< vlp|| Futs)dt
= —pF(s), if s=—|p].
With p =F/» and s = v, this yields

(5.17) v,4,(Pv) < —pF,(v,) on 0B,.

Suppose there exists a constant 0 < 8 < 1/ such that o, (2, u) = (g
for all (z, u)eX X R. Now if »(r) satisfies

(5.18) —Fw,)=8 r=R
then v satisfies the sub-solution boundary condition
v,4,(v) < @, (r,v) on 8B;.

In conclusion, a solution of (5.16, 5.18) is a sub-solution of (5.1, 5.2).
Super-solutions are dealt with in an analogous manner. We state
these results in the following theorem.

THEOREM 5.1. Suppose that (5.7) holds where F(s) is given
satisfying (2.8, 2.5) and that

(i) pGP(w) < B,(x, u) < GP(w) for all (v, u)e B, X R,

(i1) 8, £ Pu(x, w) £ B, for all (v, u)edB; X R,
where G (u) are given satisfying (1.7) and B, are constants with
0< 1By, B: = 1. Let v¥(r)k =1, 2) be solutions of (cf. 5.16)

N, o" =GP@*®) r>R

_Fs('vi‘k) = Bk r=R

Eim v® =0,
with a, = (n — ), a, = (n — L)/g.  Suppose also that v¥ < 0 and
v® >0 on r > R. Then v* and v® are sub- and super-solNutions,
respectively, of the boundary value problem (5.1,5.2) on B, and
henc~e for the solution w(x) of the problem there holds v = u £ v™®
on Bg.
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A corresponding theorem holds when B* < 0, in which case
¥ >0 and v¥% < 0. So we can treat the case when @,(x, u) is of
elther sign or when it changes sign.

Theorem 2.1 extends immediately to yield the existence of a
unique solution v = v(r; R, B, a) of (5.16, 5.18) for any 0 < R < oo,
0=<8=1,0< a< «; the properties stated in Theorem 2.1 continue
to hold for v(r; R, 3, a).

The asymptotic estimates of Theorem 3.2 admit the following
generalization to v;;, = v(R; R, 8, a).

THEOREM 5.2. For e(R) = o(1) as R — 0, there holds

B |— R 3 26(1, r R *
(1 — e(R)=E ,s(0> la= a)a] = Vrpe = (L + e(R)) F.0) LA — a)a:l

Jor 0<a<l,

Vepn = 1 + e(R))F—@R log

Vppa = (L + e(R)Cs R for 1<a< oo,

where C;, = SmFs‘l(,B'i"“)dr, a = [G,.(0)/F,(0)]7"2  Also, vgp,. ~
G (@(0) — &(—p)) as R— = for 0 < a< os.

The details of proof appear in Turkington [11].
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APPENDIX. The construction of sub- and super-solutions carried
out in Theorem 5.1 follows the work of Jenkins [7], [8] concerning
a generalization of the class of equations of minimal surface type.
In this appendix we use the techniques discussed in §5 to give
theorems which contain some of the results of Jenkins.

We consider a general homogeneous quasi-linear elliptic equation

(A. 1) Qu = a;(x, Vu)u,.; =0
on a domain (specified later) in R". We assume that a,;(x, p)c
C(R*x R™) and a,;(x, p) = a;(x, p) forall¢, j =1, ---, n. The require-

ment on Qu which is basic to our considerations is the structure
condition:

(A 2) Fpipj(p)fisj é aij(x! p)sifj é #(IpI)FPirj(p>§iEj
for all ze R*, pc R*, £ R*, where f(s) € C[0, o) with p(s) =1. As
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in §5, F(s) is an even C? function satisfying (1.6), (2.8), (2.5). We
note that (A. 2) is more general than its counterpart in §5 since
¢(s) may be unbounded as s — . We intend to find growth conditions
on u(s) as s — o which allow the construction of rotationally sym-
metric super-solutions of (A. 1) on Bj.

We seek a function v(r) e C¥(R, o), r = |x|, such that

(A. 3) Q=0 |z >R,

(A. 4) v,<0,v,>0 »r>R,

(A. 5) limv,(r) = —oo .
r—R

Since any such v(r) is determined only up to an additive constant
we require that v(R,) = 0 for some fixed R, > E.

THEOREM A.l. A function v = v(r; R, R,) satisfying (A. 3, A. 4,
A. 5) exists provided

(A. 6) SwFﬁ(s)y(s)ds < o
Furthermore, lim,_, v(r; R, R,) 1s finite provided

(A7) stFss(s)y(s)ds < oo

Proof. Following the reasoning of Theorem 5.1 we have that
if v(r) satisfies (A. 4) then

Ve, Ve Vs;
Qv = ax, Vv)v’;;:””ﬂ.v” + {a”(x, Vo) — a,;(x, Vv)———’;;:)”}-—}n v,
r T

(A. 8

< (0)Fw)v,, + U 0)

(where we extend x(s) as an even function on (—co, ) for conve-
nience). Hence, the super-solution condition (A. 3) is implied by

(A. 9) mmammws—ﬂfﬁﬂm>R<w<w.

Introducing s(r) = v,(r), we have s < 0, s, > 0 and so we may consider
the inverse function 7(s). In terms of the latter, (A.9) becomes

HOFSS) 7
(A.10) = DF() " <8<0.

Evidently, the required funection v(r) is given by
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(A.11) v(r; R, R) = SR o (") dr
where
(A.12) 0x(s) = R exp {— S;@g@{ﬁ%ds'} .

Recalling that F(s) ~ —1 as s —» — we see that the convergence
of the above integral is equivalent to hypothesis (A. 6). Clearly,
0x(s) is a strictly increasing C* function on —c < s < 0. Also, (A. 5)
is satisfied since pp(—c) = R. TFinally, to verify the finiteness of
v(R; R, R,) we compute

v(R; B, R,

fl

Ro
~{"ortrar
R
(A.13) - —Ss_(i")sigﬁ ds

_ (7" s0()(8) F,s(8) "
| s <

by hypothesis (A. 7), since pz(s) ~ R and F(s) ~ —1 as s — —co.

The construction of a sub-solution can be carried out in an
analogous manner.

When p£ =1 in the above theorem, Qu = (9/dx,)F,,(Fu). In this
case, we have v(r; R, R,) = z(r; R, 1) + |2(R,; R, 1)| and conditions
(2.8) and (2.5), respectively, imposed on the Legendre transform

of F(s).

When F(s) =W(s) = V'1 + &°, Theorem A.1 yields a result of

Jenkins [7] (where n = 2). In this paper the author defines

1+ pda,, + 2p.:00,, + (1 + pda
2E x, —_ ( 1 11 1MW 2 22
( p) V1 + p% -+ pg l/a/nazz —al

E*(s) = sup E(x, p) .

z€ R4, |pl=s

It follows by Lemma 2 of [7] that

2E = Va,Ja, + Vaa,

where

, o(x, p) = sup (%, PIEL; .

o, (x, p) = inf M
’ 20 Wi (D)5

§#0 Wpipj(p)EiSj

By replacing Qu by an equivalent operator we may assume «, = 1.
Thus, in (A. 2) we now may take
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((s) sup ayx, p) .

zeRZ,[p|=s

Recalling W, (s) ~ s~® as s — o« we see that the conditions (A. 6) and
(A. 7)are equivalent the following conditions given in[7], respectively:

Sw_Eisgs_)zds < oo, SW.E_*gs.de < oo,
1 1 S
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