Vol. 89, No. 1, 1980

Recent Issues
Vol. 332: 1  2
Vol. 331: 1  2
Vol. 330: 1  2
Vol. 329: 1  2
Vol. 328: 1  2
Vol. 327: 1  2
Vol. 326: 1  2
Vol. 325: 1  2
Online Archive
Volume:
Issue:
     
The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Officers
 
Subscriptions
 
ISSN 1945-5844 (electronic)
ISSN 0030-8730 (print)
 
Special Issues
Author index
To appear
 
Other MSP journals
Square-free and cube-free colorings of the ordinals

Jean Ann Larson, Richard Joseph Laver and George Frank McNulty

Vol. 89 (1980), No. 1, 137–141
Abstract

We prove: Theorem 1. The class of all ordinals has a square-free 3-coloring and a cube-free 2-coloring. Theorem  2 Every k-th power-free n-coloring of α can be extended to a maximal k-th power-free n-coloring of β, for some β × α ω, where k,n ω.

Mathematical Subject Classification 2000
Primary: 03E10
Secondary: 04A10
Milestones
Received: 7 February 1978
Published: 1 July 1980
Authors
Jean Ann Larson
Richard Joseph Laver
George Frank McNulty