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In this paper, topological techniques are used to estab-
lish existence results for some boundary value problems arising
in diffusion theory. Questions of uniqueness are also treated.
Our topological arguments are based on the topological trans-
versality theorem rather than the Leray-Schauder theory. An
important feature of our approach is that some of the results
obtained cannot be deduced by a direct application of the
latter theory. Further applications of topological transversal-
ity to differential equations will be given in forthcoming parts
of the paper.

0. Introduction. In this paper, we treat questions of existence
and uniqueness for the solutions to certain systems of differential
equations each of which models a steady state, one dimensional
diffusion process. Conservation of mass considerations lead to the
following system of differential equations for the unknow concen-
tration C = C(x) of the diffusing substance and the velocity v=uv(x)
of the diffusing medium (see [1]):

—(D(z, C@))C'(x)) + (v(@)C(@)) = flz, Cx), C'®)),0 =2 =1,
—D(0, C(0)C'(0) + v»,C(0) = L, CA) = ¢, ,

V(@) = —J(x, C(x)),

2(0) = v, .

(&)

Here D(x, C) is the diffusion coefficient which we suppose to be
continuously differentiable and to satisfy,

(1) 0 <e= D(x, C) on [0,1] x [0, ).

Also, ¢, v,, L are given constants with ¢, L = 0, and the source
term f(x, C, C') is continuous and satisfies,

{0 = f@, C,CY= A+ B(CI*+ |C'|"),
on [Oy 1} X [01 °°) X (_—007 OO) ’

where 4, B=0, 0 = a <1. Also,

(2)

Al =ggg;flh(x)l
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for any h in C[0, 1]. Finally, we assume that J(z, C) is continuous
and satisfies:

for each z in [0, 1], J(, C) is nonincreasing for C in [0, «)
(3) and, |J(x, C)| = 4, + B,|C[*
on [0, 1] X [0, =) for some B =0 and a + 3<1.

It is clear on physical grounds that (&#) should have a positive
solution. We shall prove: If the diffusion process satisfies (1), (2)
and (3), then (<?) has at least one positive solution. Furthermore,
if f is independent of C’ and f; < 0, the system (Z°) has a unique
solution.

A specialization of problem (&) was treated in [6]; namely,
the case D constant, v, = L = 0, and f = f(x) independent of C and
C’. Part of our existence argument follows the approach in [6].
Uniqueness for the special case of (&?) noted above is also esta-
blished in [6]; the analysis there uses an abstract uniqueness theorem
based on the Schauder fixed point theorem. Our uniqueness analysis
is different.

Our existence argument uses topological transversality (Perti-
nent results are summarized in §1.) For this purpose, we establish
a priori bounds on all possible solutions (C,v) to (&°) and to a
related one parameter family of problems (&7) introduced in §2.
The sublinear growth restri¢tions on f and J are crucial for this—
see the example in § 5. On the other hand, the remaining assump-
tions on D(x, C), f(x, C, C'), and J(x, C) are dictated by the physi-
cal situation.

In §6, we consider a variant of problem (&”) and establish
existence results under much weaker growth rate restrictions on f
and J. On the other hand, f and J are assumed to satisfy certain
inequalities whose physical significance is only partially eclear.
However, there are reasonable choices for f and J which do satisfy
these restrictions; for instance, see [7].

We will use the following notation. For each w e C'[0, 1] define,
Hull, = max (|[ul], ||#'[]), where ||u|| = max {{u(z)[: 0 <2 <1}. Also,
K* will denote the cone of nonnegative functions in C'[0, 1] and K}
the functions in K*' with ||u]|, £ R.

1. Topological preliminaries. We begin with a brief review
of the topological results to be used throughout this paper. For
further details see [2] and [3]. Let C be a convex subset of a
Banach space E, X a metric space, and F: X — C a continuous map.
We say that F' is compact if F(X) is contained in a compact subset
of C. Flis completely continuous if it maps bounded subsets in X
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into compact subsets of C. A homotopy {H,: X — C}y<.<, is said to
be compact provided the map H: X x [0,1] — C given by H(zx, t) =
H,(x) for (x,¢) in X x [0, 1] is compact.

Let UcC be open in C. A compact map F: U— C is called
admissible if it is fixed point free on the boundary, oU, of U. The
set of all such maps will be denoted by .2%5,(U, C).

DEFINITION 1.1. A map F in .275,(U, C) is inessential if there
is a fixed point free compact map G: U —C such that G|oU=F|oU.
A map F is .2%;,(U, C) which is not inessential is called essential.

T_I_{EOREM 1.2. Let p be an arbitrary point in U _and F be in
45:(U, C) be the constant map F(x) =p for © in U. Then F is
essential.

Theorem 1.2 is an elementary consequence of the Schauder fixed
point theorem.

DEFINITION 1.8. Two maps F' and G in .%5,(U, C) are called
homotopic (F ~ G) if there is a compact homotopy H,: U— C for
which F' = H,, G = H,, and H, is admissible for each ¢ in [0, 1].

The following simple characterization of inessential maps is
important.

LEMMA 1.4. A map F in 573 (U, C) is inessential if and only
if it is homotopic to a fixed point free map.

Proof. If F is inessential and G is a fixed point free map such
that F|oU = G|oU, then a compact homotopy joining F and G is
given by H,(x) = tF(z) + (1 — t)G(x).

Suppose H,: U — C is a fixed point free map and that H,: U—C
is an admissible homotopy joining H, to F. We will show that
each H, (and in particular H, = F') is an inessential map. To this
end, consider the map H: U x [0, 1] — C and define a set Bc U by
the condition B = {x € U: H(x, t) = & for some ¢ in [0, 1]}. Assuming
without loss of generality that B is nonempty, note that B is closed
and disjoint from aU. Take an Urysohn function \: U — [0, 1] with
Ma) =1 for a€oU and A\b)=0 for be B and put H*(x) = H(x, Mx)t)
for (x, t)e U x [0,1]. It is now easily seen that {H*: U — C}y, is
a fixed point free compact homotopy such that H*|oU = H,|dU for
each te[0,1]. Consequently, each H, is inessential and the proof
is complete.

As a consequence of Lemma 1.4 we have,
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THEOREM 1.5. Let F and G be in .5%3,(U, C) be homotopic
maps, F' ~ G. Then one of these maps is essential 1ff the other is.

2. Existence. Integration of the first equation in (&) yields,

— D@, C)C’" + v(@)C — L = S f(z, C(2), C'(x))dr .

If
_ [ v(z)dz
m(®) = S D@, C)
we obtain,
1 (2) ' __Lem(a:) _ e'm(ac) z ,
(€0) = F s~ gy, (@ C@), Cends

A further integration from z to 1 yields,
Clx) = ce™™™

(4) n S-D%{L + S:f(r, C(v), C'(z))df}dt .

We define an operator T: K'— K* by
(TC)(@) = ce™ ™

1 em(t)—m(x) St , }
SA—— C(z), C'(z))dz tdt .
+ B sl + e e, o
Evidently, T maps K' into its interior if ¢, + L > 0 so any fixed
points are strictly positive. Assume momentarily that ¢, + L > 0.

A priori bounds in K*' on positive fixed points C of 7T are
obtained: First, for ¢t =z,

t—o() .
= D(z, C(2))

- S:W%@)T{_v" + So J(z, C(z))df}dz

= max {-u+ [ 0aef | 5o

m(t) — m(x) =

So, by (1),
m(t) — m(x) < Gt — x)

for a fixed constant G. Since m(@) = 0, use of this result in (4)
together with (1) and (2) yields,
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(5) ICll = G + G(ICII* + [1C7]])

for constants G, and G, independent of C in K. Below G, G, ---
also denote constants independent of C in K'. Since,

ey @C@) 1 - ,
C'w = e~ b C(x)){L + | 76 co, Cends}
we find,
(6) el < _H.@LSH_C_H_ + -‘;—{Ga + GliCl* + [IC"I1D)

for positive constants G,, G,. Now,
v@| = 0l + | 106, CENldr < G, + G| CIP

for positive constants G,, G; by (3). So,
(7) vl = G5 + GelICII* .
Use of (5) and (7) in (6) yields,

(8) ICII = Gr + Gi(IICII* + [IC"|*) + GulICI?
+ GullClI** + G, lIC[I*]|CII?

for positive constants G,, G;, -+, Gy,. If p,¢>1 and 1/p +1/g =1,
we have,

(9) et el < et + Lycpp .
p q

Fix p such that

1

1
=5 <p<lla

which is possible because o + 8 < 1. Let 1/¢g=1-— 1/p. Then one
easily checks that 8¢ <1 and consequently in view of (8) and (9)
there is a constant v, 0 <~v <1, such that

10) HC'll = G + Gu(ICIT + {IC7]]7) .

It follows easily from (5) and (10) that there is an R > 0 such
that

1) T(C) = C implies ||C]l, < R .

Now consider the family of problems
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("(D(m; C)C'Y + (Ww(x)C) = nf(x, Cx), C'(x)) ,
(F) D(0, C(O)C'(0) + Mv,C(0) = AL, CQA) = re, ,
B V(@) = ~ (s, C@) ,

? v(0) = M, ,

for 0 <)\ < 1. Since this family of problems arises from (<#) by
replacing v by M, f by Af, v, by M, L by AL and ¢, by \e,, one
sees at once that solutions to (&%) satisfy (4) with m replaced by
v, Lo by ML, ¢, by Ac, and f by Af. After these replacements are
made, the right side of (4) defines an operator,

T, Kt— K*,
for which,
(12) T,(C) = C implies ||C||, < R,

with the same constant R which appears in (11).

We now regard T,: K;— K'. This map is fixed point free on
llzll, = R and T(x, ») = Twx: K} X [0, 1] - K' is a compact homotopy.
(It is easy to check that || 7:(C)"”|| is bounded independent of A for
C in a bounded set in K@) Since 7T, is the zero map, which is
essential, the Topological Transversality Theorem 1.5 implies that
T, = T is essential. Consequently, 7 has a fixed point, i.e., (&)
has a solution.

This proves the following theorem when ¢, + L > 0.

THEOREM 2.1. Assume (1), (2), and (3) hold. Then the system
(ZP) has at least one monnegative solution, which is strictly positive

if ¢, + L >0.

As a corollary of the proof, we note the following result essen-
tially obtained in [6] for a specialization of (7).

THEOREM 2.2. Assume that (1) holds, that f is independent of
C and C’ (i.e., (2) holds with a = 0), and that J(x, C) is nonincreas-
ing in C for each x. Then (P) has at least ome solution.

Proof. The bound (5) above reduces to ||C]| < G,. For such
C, we easily find that

[v(@)] < |v] + max |J(x, C)]
[0 11x[0 @]

and hence that (7) holds with 8= 0. Then ||C’|| < G follows for
some G’ <. The proof is concluded as above.
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To remove the additional restriction on ¢, L = 0 that ¢, + L>0
made above, we reason as follows. If C, is a solution to (&) with
¢, =1/n and L = 0, say, then using the estimates above it follows
easily that ||C,|l, £ M <o for a fixed constant M. A compactness
argument now yields a solution to (&) when ¢, = L = 0. Thus,
Theorem 2.1 is established.

3. Uniqueness. The following uniqueness result holds for (&7).
The notation used in §2 is maintained. Recall that any solutions
to (Z#) must be nonnegative.

THEOREM 3.1. Assume that (1) holds, that f= flx, C) is inde-
pendent of C’y, and that both f(x, C) and J(x, C) are continuously
differentiable and nonincreasing with respect to C. Then () has
at most one solution.

Proof. Suppose that (C,, v»,) for ¢ =1, 2 are two solution pairs
to (&”). Then,

D@, C)C! + v.C, = S £, CeNdt + L .
Thus,
DG, C)C! + D, C)C! + 0,0, — v,C, = S[ £, C) — (¢, C)]dt
or
— Dz, C)[C, — CJ — [D@, C) — Diw, CYIC! + v.C, — Cy)
" + 00— 0, = [ 4o, (ONCO — ol at,

where p(t) is a bounded function determined by the mean-value
theorem. Also,

14) D(z, C\(x)) — D(z, Cy(x)) = Doz, ¢(@)[Ci(x) — Cy@)] ,

and,

Hl

o) - vw) = = | [, ) — I, Cnl e
(15) °

= {7t wic® - Caonat,

where ¢(x) and +(¢) are bounded functions determined by the mean-
value theorem.

Define,
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A(x) = Cy(zx) — Cyx) .
Then (13), (14), and (15) give,

—D(@, C)4' — Dul@, $@)Ci4 + 0.4 = C.| Jolt, p(6)A(t) dt

+ | fett, o(enace) at

or,
(16) 4+ k@4 = k@)| pO40) dt + @) | a0
where

an he) = Ci@Do@, (=) — v(@)

D(z, C\(x))
is bounded,

— _ G
) = D(z, C(x)) =0
because C,(x) = 0,

p(x) = —J(x, ¥(2)) = 0,

1
= e

and,
q(@) = —folz, p(x)) = 0 .

We will show that (16) together with 4(1) = 0 implies that
4 =0 which proves uniqueness. Observe first that (14) and (17)
show that h(x) is continuous on any interval on which 4+#0. Suppose
4(0) = 0. Then we may assume 4(0) > 0 and since 4(1) = 0,

@, = inf { € [0, 1]: 4(x) < 0} ,
is defined. Clearly, 0 <, <1, 4(z,) =0, and 4> 0 on [0, z,). Let,
(&) = exp (S:h(t) dt) >0.
Then,
(u@dy = 1) k@) | p®1a@ dt + o) {(a®a@ dt ],

and integration from x to xz, gives,
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— @) = | "uo) | k@ | pwaw) du
l(t)S:q(u)A(u) du] dt=o0.

So 4(z) <0 on [0, x,), a contradiction. Thus, 4(0) = 0 must hold.
Since 4(0) = 0, (16) yields,

| d(z)| = IS:A'(t) dt | < S:M'(t)l at
= (1001 1401 at + | 50| 50 | 4(0) | do at
+ {1 {a@) 4010 at.

Interchange the order of integration in the last two integrals, and
use the boundedness of h, k, p, and ¢ to obtain,

(18) |4)] = B 14w dt
for a fixed constant B < oo.
A standard induction argument using (18) shows that,
[4@)| < [|4]| B z"[n! ,

for n =1,2, --- and « in [0, 1]. Thus, 4(x) = 0, and uniqueness is
established.

4. Related results. Consider (&) when f(z, C, C') satisfies,
19) 0= f(x, C,C")=< A+ BIC|,

on [0,1] X [0, o) X (—e, =) for some constants 4, B=0. Thus,
we allow linear rather than sublinear growth in C. We assume
that the difussion coefficient satisfies (1) and that,

(20) J(x, C) is continuous on [0, 1] X [0, ) and noninecreasing in C.

Let,
@1) M = max {—vo + S'J(f, O)dz} ,
ze[0,1] 0
and
inf D(x,C) if M= 0,
92 -
(22) # 1supD(w,C) it M<O0.

Then m(t) — m(x) < M(t — z)/¢t from the formulas preceding (5).
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Use of this inequality in (4) and some routine calculations lead to
[[Cl| £ G, + G,||C||, where G, is a positive constant and,

G, = max BS1 Mt dt
zef0 1} z I
or
23 G, =B (1 B\ 4 VB
(23) sM< ,M>e +sM2'
If G, <1, then,
(24) ICll =G/l -Gy,

is an apriori bound for fixed points of 7' defined as in §2. Arguing
as in the proof of Theorem 2.2, it follows that,

(25) 'l = G' <.

Likewise, if T;: K— K (with 7T, defined as in §2), then (24) and
(25) are also a priori bounds for fixed points of T; for 0 < A £ 1.
Thus, we conclude, as in §2, that 7 must have a fixed point.

THEOREM 4.1. Assume (19) and (20) hold and that,

26 [,CB 1 . __f’_e_ M/p ;ﬁB 1 .
(26) eM< M>e tear S

Then () has at least one nonnegative solution.
We further specialize to the case when D = D(x) is independent

of C and J(z, C(x)) = J(x) is independent of C. In this situation,
the estimates above show that,

(TC)(x) = ce™™™

g Sl%(‘)‘{L + X:f(f, C(z), C'(z))dz } at ,

satisfies,
| T(C) — T(C)| = G.l|C, — Gl ,

with G, given by (238). Use of Banach’s fixed point theorem gives,

THEOREM 4.2. Assume that D and J are both independent of
C and that (19) and (26) hold. Then (Z°) has a unique nmonnega-
tive solution.

Remark. In (26) if M<0 and p=sup D(x, C)= + «, we interpret
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the left side to be B/2¢, its limiting value as pt-— oco.

5. Comments on existence and uniqueness. The uniqueness
result established in §3 is sharp in the sense that uniqueness need
not hold if f depends on C’ or if f; < 0 fails. To see this consider,

—C" 4+ C"=2)\C,
~C'"(0) + C(0) =0, CQ) =¢,,
( v(x) =0

v0) =1,

(@7)

where A\ is a parameter. (Thus, D=1, v,=1, J =0 in (&?).) If
¢, = 0 the resulting eigenvalue problem from C has only positive
eigenvolues. Let A =\, be the first eigenvalue of this eigenvalue
problem and let y, be a corresponding eigenfunction. Then (27)
with ¢, = 0 has all multiples of %, as solutions. Note here that
f(x, C) = \C satisfies f; > 0.

On the other hand, if A <0 (27) has at most one solution
regardless of the choice of ¢,. Finally, Theorem 4.2 applies with
B=X, M= —1, and ¢ = ¢t = 1 to guarantee that (27) has a unique
solution for

0= N<2/(e—2).

To obtain nonuniqueness when f depends on C’ set f(z, C, C')=
MC — G, v, = 0, and specify the other parameters as above. Then
(&) is,

—C"=\C-C",
—-C'0O)+Clo)=0, Cl)=0,
vx) =0,

and nonuniqueness holds as above.

Consideration of the eigenvalue problem above shows that in
general a priori bounds cannot be obtained for solutions to (&%)
when f(z, C, C’) grows linearly in C and C’, as opposed to the
sublinear growth imposed in §1. Thus, with the hypotheses of
Theorem 2.1 general topological existence theorems requiring a
priori bounds cannot be used to establish existence for a problem
whose source’s growth in C and C’ is greater than sublinear. Such
methods do apply in certain cases as indicated in § 4.

On the other hand, existence of solutions can be established for
sources f(z, C, C’) which exhibit highly nonlinear growth in C and
up to quadradic growth in C’ provided f(z, C, C’) has certain addi-
tional properties. Some results of this kind are given in the next
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section. Related results may be found in [7] for the case of
Dirichlet boundary conditions when f = f(x, C) is independent of
C’ and f(z, C) and J(x, C) are assumed suitably smooth.

6. Further existence results. Consider the following variant
of (&):
—D@)C'@)) + (v(@)C(®)) = f(x, Cx), C'(2)), 0=z =1,
aC(0) — BC'(0) = L,, aC1) + dC'Q1) = L, ,
v'(x) = —J(, C®)) ,
v(0) = v, .

(")

Here «, 8,a,b, L,, L, = 0, a, a > 0, and v, are given constants. We
assume D(x) >0, f(x, C,C’), and J(z, C) are continuous on [0, 1],
[0, 1] X [0, o) X (—oo, o), and [0, 1] X [0, «), respectively. Assume
also that,

(i) There is a constant M =0 such that, f(z, C, 0)+Cd(z, C)=
0 for C = M;

(ii)’ There are nonnegative functions A(x, C) and B(z, C),
which are bounded on bounded sets, for which,

| f(x, C, C")| = A(x, C)C" + B(z, C) ,
for (z, C, C’) in [0, 1] X [0, ) X (— o0, );
iy 7, 0,0) =0 on [0, 1].

THEOREM 6.1. Assume that (i)', (i)', (iii)’ hold. Then (&) has
at least one monnegative solution. This solution is strictly positive
if Ly L, > 0 and strict inequality holds in the conditions (i)’ and
(iii)’.

The proof will be given in several lemmas. If (C, v) solves
(&), then a short calculation shows that C solves,

C" =g(, C, C)

(28) aC(0) — BC'(0) = Lo, aC(1) + bC'(1) = L,
where
9z, C, C")
f(@, G, C) + (D'@) — v, + | Jt, C(&) 4t)C" + CI(z, C)
D(x) )

Conversely, if C solves (28) and v is defined as in (&’), then (C, v)
solves (:&7').



APPLICATIONS OF TOPOLOGICAL TRANSVERSALITY 65

We will derive a priori bounds for the family of problems,

C" =x(,C,C",
aC(O) - BC’(O) = Loy aC(1> + bC,<1) = L1 ’

for \ in [0, 1] and C(z) = 0.

We extend the definitions of f and J to include C <0 and
preserve (i), (ii)’, and (iii)’ by setting f(z, C, C") = f(z, |C|, C') and
J(x, C) = J(x, |C|) for C < 0. Also assume for the moment that
Ffx, C,0) + Cl(z, C) <0 in (i), that f(x,0,0) > 0 in (iii)’, and that
Lo, L, > 0.

(28);

LEMMA 6.2. If C(x) = 0 solves (28), then
0 < C(x) < max (L,/a, L,Ja, M) = M, .

Proof. If A =0, the result is easily checked (see (29) below).
If C(x) achieves its maximum at =0, then C’(0) < 0 and so C(0) <
L,Ja from the boundary data. Likewise, if C(x) achieves its maxi-
mum at ¢ =1, then C1) < L,/a. If x, is an interior maximum,
then,

0 .Z C"(xo) = g(x: C(xo)y 0)
_— f(x()y C(xo); 0) + C(xO)J(xO; C(x0)>
D(x,)

which implies that C(z,) < M by (i)’. Consequently, C(x) < M,. If
C(z,) = 0 for some z, in (0, 1), then C has a minimum at z, and so,

0 < C"() = gy, 0, 0) = —%xﬂ)i) <0

by the strengthened form of (i), a contradiction. Thus, C(x)>0 on
(0,1). This fact and the boundary data imply that C(0) and C(1)
are positive.

LEMMA 6.3. If Clx) = 0 is a solution of (28);, then
|C'(x)| < max (2M,, e*+"(2A M, + B)"*) = M,

where A, = sup Az, C) and B,=sup B\(x, C) over [0, 1] x [—M,, M.
Here Az, C) and Bz, C) are functions which bound |g(z, C, C")|
just as | f(x, C, C")| is bounded in (ii)’. [Simce (ii)’ holds it is clear
that such fumctions exist.]

Proof. Since 0 < C(x) £ M,, the mean-value theorem implies
that |C’(x)| cannot be constantly greater than 2M,. So —2M, <
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C'(x,) < 2M, for some z, in [0,1]. Now the reasoning used in [3,
Lemma 3.1] yields the bound for |C’(x)| stated above.
Use of (6.2) and (6.8) in (28); establishes,

LeMMA 6.4. There is o constant M, such that,
IC"(x)| = M, ,
for any solution C(x) = 0 to (28);.

Define C% to be the convex subset of functions in C* which
satisfy the boundary conditions <Z in (28). Define M =1 + max
(M,, M,, M),

U={yeC%0 <y <M, |y, |9, < M},
L:C?* —C? and F:C'— C by
Ly@) = y"(x), (Fw)®) = gz, w®), w'(x)) ,

respectively. Then L is invertible with continuous inverse,
1
L@ = |G, DF D) &t + (@) ,

where G(z,t) is the Green’s function for L together with the
homogeneous boundary conditions corresponding to (28) and

(29) i) = &Ly — aLo)z + (8L, + al, + bly)
(a8 + aa + ba)

?

is the solution to Ly = 0 satisfying the inhomogeneous boundary
conditions <. If j:C% — C' is the completely continuous embedd-
ing, then H: U x [0, 1] — C% defined by H(u, ») = AL*Fj + (1 — W)
is a compact homotopy. If Hwu = u, then ML™'Fu + (1 — A\)l = u s0
AFu = Lu because Ll = 0. By definition of M, H, is fixed point
free on oU. By topological transversality, H, will be essential if
H, =1 is essential. Since [(0), (1) > 0 it follows that I(x) > 0 so !
is an interior point of U in C2. By Theorem 1.2 of §1, H, is
essential. So H, has a fixed point, that is, (28) has a solution C in
U. By (6.2), y(x) > 0. This proves that last part of (6.1).

Finally, we relax the conditions that striet inequality hold in
(i) and (iii) and that L, L, > 0. By replacing f by f+ 1/n, J by
J—1/n, L, by L, + 1/n, and L, by L, + 1/n, we obtain for each
n=1,2, --- a problem of the form (28) which has a solution C,(x)=
0. The arguments used to prove (6.2) and (6.3) produce a constant
M’ independent of n so that |C,|, < M'. A standard compactness
argument yields a solution C to (28). Clearly, C = 0. This com-
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pletes the proof of (6.1).
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