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Let G be a finite group of automorphisms of a ring R
(with 1), and suppose the order of G is not a zero diviser in
R. We denote by R° the subring of R consisting of elements
fixed pointwise by each member of G. We consider, for a class
of rings, the questions whether R viewed as a right (or left)
Rf-module is finitely generated, and how the type classifica-
tion of R and R relate when R is self-injective regular.

Even in the case of a commutative noetherian ring R, R need
not be finitely generated over R¢ as shown by Chuang and Lee
[1]. However, if R is a finite product of simple rings, more gener-
ally if R is biregular, then the finite generation does hold. The
proof utilizes the skew group ring RG and an elementary result
from Morita theory; as a consequence, we obtain a short, easy
proof of the theorem of Farkas and Snider [3; Theorem 1], for R
semisimple artinian.

For self-injective rings R, the finite generation need not hold:
nevertheless the techniques involved in the biregular case can be
used to show that the type classifications are preserved. In other-
words, R and R¢ are simultaneously of types Iy, L., II;, II,, or III.
This completes work of the second author [14].

If R is self-injective regular, then R is injective as an R°-
module, and we show that R is projective if and only if it is finitely
generated. This is done by showing that any nonsingular injective
module over a self-injective regular ring that is also projective,
must be finitely generated, or else the ring has an artinian ring
direct summand.

This work was almost entirely done during both authors’ stay
at the Summer Research Institute of the Canadian Mathematical
Congress, at the University of Waterloo in the summer of 1978.
The second author would particularly like to thank V. Dlab and
J. Lawrence for their hospitality.

I. Biregular rings. A convenient tool for dealing with group
actions, is the skew group ring. Let G be a group, with an action
as automorphisms on R. Form the free left R-module with basis
G, R.G, equipped with multiplication extended R-linearly from

1 In an earlier version, this paper was written in French, under the title,
‘‘Actions de Groupes’.
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rg = g1’ for » in R, g in G .

See for example [7].

THEOREM 1. Let R be a finite product of simple rings, and
suppose G is a finite group acting as automorphisms of R, with
the order of G inwvertible in R. Then R,G, the skew group ring,
1s also a finite product of simple rings.

REMARK. The proof below is due to the referee of the earlier
version of this paper, viz, footnote 1. Other proofs were inde-
pendently given by D. Passman, J. Fisher, and the authors.

Proof. Let A be a finite product of simple rings. The bimodule
(two-sided ideal) structure of A is reflected in its semisimplicity as
a left A @, A’*>-module, with the action (Cla; ® b;)(a) = Sa,ab;.

Setting A =R, X --- X R, = R, with the R, all simple, RG as
an R X R°’-module, is a direct sum of the simple R & R°"-modules,
R,9, g varying over G, so RiG is semisimple as an R & R°’-module.

It suffices to show that every two-sided ideal I of RG is a
retract of RyG, as a bimodule, equivalently as an RG X (R,G)’-
bimodule.

Since RsG is R X R°*-semisimple, and I is a submodule, there
is an R Q R°-linear (i.e., an R-bimodule homomorphism) retraction
v: RG — I. Define the two-sided analogue of the usual averaging
process,

ViRG——1

by setting

1
gv(g~'xhh .
e YR LU )

One routinely checks that V is an R G-bimodule homomorphism,
fixing I pointwise.

Vix) =

For A any ring, Z(A) will denote its center.

COROLLARY 2. Let R be a biregular self-injective ring, and G
a finite group acting as automorphisms, with the order of G inver-
tible in R. Then RG is also biregular and self-injective.

REMARKS. “Self-injective” means right-injective unless other-
wise specified. The corresponding result with self-injectivity deleted
from the hypothesis and conclusion is false.
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Proof. It is well-known that R G is self-injective (and regular),
so by [13, Proposition 1.6], it suffices to show that every prime
ideal of R G is maximal.

Let P be a prime ideal of R G, and observe that (Z(P))*/(PN
(Z(R))?) embeds naturally in the center of R G/P, so must be a
field. Since Z(R) is a commutative biregular ring and Z(R)/(PN
Z(R)) is finitely generated over that field, (PN (Z(R))*)Z(R) is a
finite intersection of maximal ideals of Z(R). Since this ideal is
contained in Z(R) N P, the latter is also such an intersection. From
the biregularity of R, we deduce that (Z(R) N P)R is a finite inter-
section of prime, hence maximal, ideals of R. As this ideal is
contained in R N P, the latter is also a finite intersection.

Clearly, RN P is a G-invariant ideal of R, and we may thus
form the skew group ring (RB/(R N P)),G; there is a natural mapping
of rings from this onto (R,G)/P. By Theorem 1, the former is a finite
product of simple rings, so the latter being prime, must be simple.

The following lemma is a standard result from Morita theory,
and is a special case of [2; I, 4.1.3].

LEMMA 3. Let A be a ring, and let P be a finitely generated
p?;ojective A-module that is a generator for Mod-A. Set B=End,P.
Then Py is a finitely generated projective module.

THEOREM 4. Let R be a ring, and G a finite group of auto-
morphisms of R, with the order of G invertible in R. If either
(1) or (2) below hold,

(1) R is a finite product of simple rings

(2) R is a biregular, self-injective ring
then R is a finitely genmerated projective R*-module.

Proof. As in [4], consider the R,G-R° bimodule, R. As a left
R,G-module, R is projective and isomorphic to the principal left
ideal R,Ge, where ¢ = |G|3.9. Since R,G is biregular (by the
first two results), there exists a central idempotent F such that
the ideal @ = F-R,G is the left annihilator of R,Ge, hence of the
left module R. So R is an (R,G/Q)-R° bimodule in a natural way;
it is faithful, projective, and finitely generated over R,G/Q.

Any finitely generated faithful projective module P over a
biregular ring S is a generator: There exists an integer » so that
P=eS"* (for some ¢ = ¢* in M,S); since M,S is biregular, M,SeM,S
is generated by a central idempotent E, but P will not be faithful
if E is not the identity; hence M,SeM,S = M,S, so eS"~ P is a
generator.
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Thus R as a left R,G/Q-module is a generator, so if E =
End; ¢R, R; is finitely generated projective. However, there is an
isomorphism of E with R® so that the action of E on R is trans-
lated to the usual action of P on B. Thus R is finitely generated
projective as an R°-module.

COROLLARY 5 [9]. If R is a finite product of simple rings,
and G 1s a finite group of automorphisms of R with the order of
G invertible in R, then R® is also a finite product of simple rings.

Proof. As is implicit in the proof of Theorem 4, R =~ ¢R,Ge
(same ¢), and Theorem 1 applies.

The theorem of Farkas and Snider [3; Theorem 1] asserts that
R is a finitely generated R°-module if R is semisimple artinian (and
the usual condition on the order of G). This is of course a special
case of Theorem 4, but is easier to prove as it only requires prov-
ing Theorem 1 for the special case, R semisimple artinian (which is
just Maschke’s theorem).

II. Self-injective regular rings. We may now complete the
results of Renault [14] on the relation between the type classifica-
tions of R and R when R is self-injective. Specifically, we show
that R is type II (respectively type II.) if and only if R? is, and
since the corresponding result is known for type I, (and type L),
it also holds for type III. For a review of the type classification
for self-injective regular rings, see [5; §7].2

PROPOSITION 6. Let R be a regular self-injective ring, dnd G
a finite group of automorphisms of R, with the order of G inver-
tible im R. Then
(1) R is of type I1 (respectively 11;)
if and only if
(2) R% is of type II (respectively type I1,).

Proof. According to [14; Corollary 10], (1) implies (2). So it
suffices to show (2) implies (1).

Let ¢ be any finite idempotent in RY then (eRe)® = eR, and
we shall show ¢ is finite as an idempotent in E.

Let M be a maximal two-sided ideal of S = eRe, and set P =
NM*. Now S/P is a finite prduct of simple rings, so by Theorem
4, S/P is finitely generated as a module over (S/P)% which equals

2 A comprehensive treatment ocecurs in the very recently published von Neumann
Regular Rings, by K. R. Goodearl, published by Pitman (1979).
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S°/(Pn S°), and being projective as well, S/P embeds in a corner
of a matrix ring over S¢/(PN S%. Since quotients, matrix rings,
and corners of directly finite self-injective rings are also directly
finite, S/P is directly finite. Since S/M is one of the simple ring
direct summands of S/P, S/M is also thus directly finite.

So for all maximal two-sided ideals M of S, S/M is directly
finite; it is easily checked that for self-injective rings, this implies
S is directly finite (outline of proof: if not, there is a central
idempotent E such that T = ES satisfies, T T = T as T-modules;
this property is inherited by all homomorphic images of 7). Thus
the idempotent ¢ is finite in R.

If R were of type II;, we may set e = 1, so that R = S is of
finite type, and it is easy to check that R having no artinian
images implies the same for R; thus R is of type II;. If R is merely
of type II, there exists a faithful finite idempotent e in R, and to
show R is of type II, it suffices to show that e is faithful in R.

If not, the right (and left) annihilator of ReR is ER for some
central idempotent E. Since ReR is G-invariant, so is ER; since
E° must also be central, it follows that E’ = E, so E belongs to
R¢. As e is a faithful idempotent in R% E = 0.

We can also show that for self-injective rings R, R® is biregular
if and only if R is. We first require a slight extension of [13;
Proposition 1.6].

PROPOSITION 7. A self-injective regular ring all of whose
primitive images are simple, is biregular.

Proof. Let M be a maximal ideal of the center, Z(R) of R.
The quotient ring T = R/MR has its two-sided ideals totally ordered
[12; Prop. 2.9]. Let N be a two-sided ideal of R properly contain-
ing MR; since T is regular, there is a maximal right ideal @ of R
containing MR but not N. Inside @ is a primitive ideal containing
MR, but not N; as @ must be maximal and the ideals of T are
totally ordered, this is a contradiction. Hence, no such N exists,
so MR is a maximal two-sided ideal. Thus all maximal ideals of
R are of the form MR, so R is biregular [13; Prop. 1.1].

THEOREM 8. Let R be regular and self-injective. Suppose G
is a finite group of automorphisms of R, and the order of G is
invertible in R. Then

(1) R s biregular

if and only if
(2) R 1s biregular.
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Proof. Since R’ =~ eR,Ge (as in the proofs of Theorem 4 and
Corollary 5), (1) implies (2).

Assume (2) holds. Let P be a primitive ideal; by the preceding
result, it suffices to show P is maximal. Form @ = N P? and the
quotient ring T = R/Q. As @ is G-invariant, we may form T.G,
which is also, in a natural may, an image of R,G.

Since R,G is self-injective and regular, it satisfies general com-
parability: [5; Theorem 3.3].?

(*) For all idempotents e, f there exists a central idempotent
FE such that the right ideal generated by eE is subisomorphic to
that generated by fE, and the right ideal generated by f(1 — E)
is subisomorphic to that generated by e(1 — E).

Since subisomorphisms between idempotent-generated principal right
ideals are equationally determined in a regular ring, (*) is inherited
by all homomorphic images of R,G; in particular T.G satisfies (*).

Now consider the center of 7T.G: routine computations (as in
[7; 1.6 proof (1), (2)] — observe that since T.G is regular, nonzero
divisors are invertible), show that the center is contained in a
finitely generated module over the center of 7. However, T is a
finite product of prime regular rings (7 is a subdirect product of
finitely many prime rings, but satisfies (*)), so Z(T) is a finite
product of fields; it easily follows that Z(T,G) is artinian. As T.G
is a regular ring satisfying (*), it follows that T.G is also a finite
product of prime rings.

As T° =~ eT,Ge, T? is a finite product of prime rings. Since T°¢
is a homomorphic image of a biregular ring (R®), T¢ is thus a finite
product of simple rings.

Thus T¢ is a finite product of simple rings and 7T is a finite
product of prime rings; by [4; 4.3], R/Q = T is a finite product of
simple rings, whence R/P is simple.

We note that in the course of the above proof, we have shown:

COROLLARY 9. If R is a finite product of prime regular self-
injective rings and G 1is a finite group of automorphisms with the
order of G imvertible im R, then both R°, R,G are finite products
of prime regular self-injective rings.

The main idea involved in the proofs of Corollary 2 and Theorem
8 is that prime ideals are maximal in R,G if they are so in R.
Now that the results of [11; 1.4] are available, shorter proofs can
be given.

The following result, interesting in itself, is useful for deter-
mining the connection between the projectivity and the finite gener-
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ation of R as an RY-module, which we shall now be exploring.

THEOREM 10. Let R be a right self-injective regular ring, and
I a nonsingular injective right module. At least one of the follow-
ing hold:

(a) I 1s finitely gemerated;

(b) There exists a strictly descending infinite sequence of central
idempotents F, > F, > --- such that

&P F.R is subisomorphic to I ;

(e¢) There exists a nonzero central idempotent K such that B,
copies of the module ER is subisomorphic to I.

REMARK. We adopt the notation nM or (M) to indicate a
direct sum of % copies of M, when M is a module and % a positive
integer or ¥W,.

Proof. We repeatedly use general comparability, that is, for
J a nonsingular injective over R, there exists a central idempotent
E with JE < ER and (1 — E)R < J(1 — E) (all as right modules)
[5; Theorem 3.3]°.

Assume neither (a) nor (¢) hold. There is a central idempotent
E of R with IE, S ER and (1 - E)R < I1— E). As (a) fails,
E, does not equal 1, and from the negation of (c), there exists a
positive integer =, such that =»[(1 — E)R] < Il — E), but (n, +
DA — E)R] £ Il — E)R. Since all the modules dealt with are
injective, all these subisomorphisms split, so there exists an injective
submodule K, with I(1 — E) ~ K, ® » |1 — E)R].

Set F, =1~ K, and view K, as a module over F,R. There
exists a central idempotent E, < F', such that K F, < E,R and (F,—
E)R < K(F — E,). Now F,R is not subisomorphic to K,, so K, is
not zero. On the other hand, there exists, by the negation of (¢)
a positive integer n, with n,(F, — E)R < K(F, — E,) but no larger
number of copies can be embedded in K(F, — F,). Write K,(F, —
E) =~ n,(F — E,)R@D K, for some K,. Set F, = F, — E,; this process
can obviously be continued inductively, and we obtain @ n, F.R < I,
and the F, are strictly descending. This verifies (b).

THEOREM 11. Let R be a right self-injective regular ring, and
I a projective imjective right R-module. Then there is a decom-
position
I=J8 K

where J is finitely generated, K = Socle (K ), and there is a central
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wdempotent E with KE = K, and ER 1is artinian.
(For this proof only, we distinguish between the internal direct
sum (D), and the external direct sum (1L).)

Proof. We repeatedly employ the following idea: If {¢,R}is an
infinite collection of nonzero principal right ideals, and 1 e¢R < R,
then il e,R cannot be injective. For, the image of leR is an
internal direct sum @ f,R & R; being injective, it must be a direct
summand of R, and hence would be principal; but this is impossible
since the generator would have to appear in a finite direct summand.

Since I is projective, it (and all of its submodules) is nonsingular.
Let K, be the injective hull of the socle of I; there is a direct
summand .J, so that J, @ K, = I, and of course Socle (J,) = {0}. We
proceed to show that J, must be finitely generated.

Being projective (and P being regular), J, is isomorphic to a
direct sum of principal right ideals of R, say J = 1 ¢;R, where
e; = ¢ belong to R. Either 10(b) or 10{(c) holds, and we show either
leads to a contradiction, unless the index set is finite.

If 10(c) holds, we may find inside the index set infinitely many
disjoint finite subsets {S;} such that ER < 1l,.5; ¢, for some idem-
potent E, for all 5. By passing to a direct summand of J,, and
multiplying by the central idempotent E, we may assume E =1,
and U S; is the entire index set, so that for all 7,

R < 1leR.
ieSj
Since J, is a faithful ER-module and Socle (J,) = {0}, ER has zero
socle, and in particular, is not artinian. So we may find an infinite
orthogonal set of idempotents {f,;} in R, in bijection with the set of
S;’s.  For each j, there is an ¢ in S; and a nonzero idempotent g¢;
in ¢,R with g;R < f;R. There thus exists an idempotent &; in f;R
with g;R = h,R. As 1l g;R is a direct summand of J,, a contradic-
tion arises unless J, is finitely generated.

Now suppose 10(b) holds. We may find infinitely many finite
disjoint subsets {S;} of the index set, and an infinite sequence of
descending central idempotents {F,;} such that for all j, F;R <
Wies; e R Then (F; — F;+)R < l,e5; 65 set E; = F; — F;y,, note
that the K, are orthogonal, and 1 E,R is isomorphic to a direct
summand of J,, so is injective, and again the first paragraph applies
to yield a contradiction. Hence J, must be finitely generated.

Write K, = 1l ;o hR, h, = hie R. Then for each 4, Socle (h,R)
is essential in h,R. Let S be a set of representatives of isomorphism
classes of minimal right ideals of R that appear in Socle (X,). Sup-
pose there is an infinite subset T, of T, an infinite subset S, of S,
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and a bijection f: T, — S, so that for ¢ in T, f(¢)=g.R < h,R. Then
from the minimality of each of the ¢g,R (and their mutual non-
isomorphism), lg,R =P g,R S R; but lg,R is isomorphic to a
direect summand of K, (each ¢.R is a direct summand of h.R), and
again a contradiction occurs.

In particular, we deduce that for at most finitely many ¢ in T
can h,R contain infinitely many elements of S. By absorbing these
into the finitely generated J,, we may assume all of the h,R contain
only finitely many members of S. Knowing this, we deduce from
the previous paragraph that S must be finite, say S = {9.R, 9.R, ---,
g.R}. Then if E( ) denotes injective hull, K, = E(@" N,g.R) = 1
E(N.g.R), N, finite or infinite cardinals. Whichever of the E(N.g,R)
are finitely generated can be absorbed into the finitely generated
part, and we are reduced to the situation, K ~ 1l E(N,9,R), where
each of the FE(N,g,R) is not finitely generated, and the g,R are
mutually nonisomorphic.

Let F; be the central cover of g,R. Then K(N,9,R) is a pro-
jective injective module over T, = F,R. Since ¢g,R is a faithful
irreducible T,-module, T, is primitive, and so 10(b) cannot apply to
E(N,g;R); as E(N,g9;R) is not a finitely generated R-module, it cannot
be finitely generated as a T,-module; thus 10(c) must apply. If T,
contained an infinite orthogonal set of idempotents, we could apply
the process applied to J, to reach a contradictoin — thus 7', must be
artinian, and so F = 3\ E, generates an artinian corner of R. Since
ER is artinian, K is completely reducible as an FER; hence as an
R-module.

Now jif R is regular self-injective, and G is a finite group of
automorphisms of R with the usual order condition, then R is
injective as a right R%module. If R were projective as well,
modulo artinian direct summands (which can be dealt with sepa-
rately), it would have to be finitely generated. On the other hand,
if R were finitely generated as an R%-module, the argument of the
following lemma shows R must also be projective.

LEMMA 12. Suppose A is a right self~injective regular ring,
and P 1s o faithful finitely generated projective left A-module. Set
B = End, P, and suppose Py is finitely generated. Then P s a
projective generator for A-Mod.

Proof. It is routine to check that P, is nonsingular, and also
that B is itself right self-injective, so being finitely generated, P;
must be projective ([5; Theorem I. 16]). There thus exists a split
onto map of right B-modules,
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’l’LBB-—-—>PB.

Applying the contravariant functor, Hom (—, ,P;), we obtain a split
embedding, n(,P) <« ,End (Py).

Now the natural map 4 — End (P3), a — @, @(p) = ap, has kernel
the annihilator of ,P, and so is an embedding. Thus ,A embeds in
n(,P). Since ,P, ,A are projective modules over a regular ring, ,A4
is a direct summand of n(,P), and so ,P is a generator.

Lorenz and Passman have given examples of type I, self-injec-
tive regular rings with G of order 2 (and 1/2 belongs to R) such
that R is not finitely generated over R°. We now present comple-
mentary examples, with R prime (and necessarily not simple, by
Theorem 4).

ExAMPLE. R prime regular self-injective, not simple, G = {1, g}
a group of automorphisms of order 2, with R neither finitely gener-
ated nor projective over RS.

Take any prime, nonsimple self-injective regular ring with 2
invertible (examples of type I, and III exist in profusion; examples
of type II. also exist, but require some subtlety to construect). Let
M be the (unique, proper) maximal two-sided ideal of R, and pick
a nonzero idempotent e in M.

Let ¢ be the inner automorphism defined as conjugation by
1 — 2¢; so ¢* is the identity, and R = eRe x (1 — e)R(L —e¢). If R
were RS-finitely generated on the right, multiplication by e yields
that Re is finitely generated as a right eRe-module. Now Re is a
faithful projective left R-module, so by Lemma 12, ,Re would have
to be a generator, and of course this implies ReR = R; but ReR is
contained in M, a contradiction.

If R were RP-projective, it would have to be finitely generated
by Theorem 11.

The automorphism in the example was inner. Not surprisingly,
when G consists of outer automorphisms, and R is prime regular
self-injective, R is finitely generated over R®. Here, ‘outer’ means
not conjugation by an invertible element (the usual definition, as
opposed to the ersatz definitions).

THEOREM 14. Let R be a prime regular self-injective ring, and
suppose G is a finite group of outer automorphisms of R, with
the order of G invertible in R. Then R 1is finitely generated and
projective as a right RS-module, and R is a prime regular right
self-injective ring.
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Proof. We observe that R,G is self-injective, regular, and
computing the center as in [7; 1.6 proof of (2)] (noting that in a
prime ring 7R = Rr = {0} implies » is not a zero-divisor, and non-
zero divisors in regular rings are invertible), we find the center is
a field, Z(R)°. Since R,G satisfies central comparability, it must be
prime (also a special case of [15; 2.6 (ii)]); as R¢ is isomorphic to
a corner of R,G, R® is also prime (and regular, self-injective).

Now let M be the unique maximal two-sided ideal of R. Since
M is the only maximal two-sided ideal, it must be G-invariant, and
thus MR,G is a two-sided ideal of R,G. The natural isomorphism,
R.G/MR,G = (RIM),G carries a prime ring (the ideals of R,G are
totally ordered, so all images are prime) to a finite product of
simple rings (Theorem 1), so both are simple.

The idempotent ¢ = |G|™'3, ¢ has nonzero image in the simple
ring R,G/MR,G, and as MR,G must be the unique maximal ideal of
R.G, it follows that R,GeR,G = R,G. Thus R,G is Morita equivalent
to R? via the bimodule R,Ge, and after translating R.,Ge to R, we
can apply Lemma 3, as in the proof of Theorem 4.

We would like to thank Martin Lorenz and Don Passman for
pointing out a blunder in the earlier version of this paper.
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