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Several properties of archimedean lattice-ordered fields
which are algebraic over their o-subfield will be shown to be
equivalent. Among these properties are the following: Two
geometric descriptions of the positive cone. A sufficient condi-
tion for an intermediate field of the lattice-ordered field and
its o-subfield to be lattice-ordered. A description of the addi-
tive structure of the lattice-ordered field. Two statements on
the extendibility of lattice orders to total orders. A statement
on the extendibility of a given lattice order to a lattice order
on a real closure.

Introduction. It has been shown in [4], Kap. 2 that each
archimedean I-field (=lattice-ordered field) K with positive cone Py
has a largest subfield L, which admits a total order P, with P,- P, &
Py. L is called the o-subfield of K. In this paper archimedean [-fields
that are algebraic over their o-subfield will be investigated. In §1
several geometric and structural properties of [-fields are considered.
§2 contains a discussion of the extendibility of lattice orders to total
orders. Finally, in §3 it is shown how Wilson’s construction of
lattice orders on the real field in [5] can be used to construect lattice
orders on extension fields of I-fields.

All the proofs in this paper are based on the following repre-
sentation of [-fields by continuous functions: By Holder’s theorem
the archimedean totally ordered o-subfield L of the I-field K is iso-
morphic to a unique subfield of the reals. Identify L with this
subfield. Since K is algebraic over L, the set Ky of embeddings
of K over L into C can be topologized via infinite Galois theory to
become a Boolean space. Let C(Ey) be the Banach algebra of con-
tinuous functions of E. into C with the norm given by N(f) =
max(| f(a)]; « € Ex). Define ¢x(x) = ((®))acr, for all x€ K. Then ¢,
embeds K into C(E.) by infinite Galois theory.

After defining e,: C(Ex) — C to be the evaluation map at ac Ex
and S to be the closure of the subset S of a topological space, the
main results of this paper can be summarized in the following

MAIN THEOREM. For the archimedean l-field K which is algebraic
over its o-subfield L, these are equivalent:

(1) There 1s an acEy with a(K)< R such that ¢x(Px) N
ez(0) = 0,
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(2) There is an a € B, with a(K) S R such that ¢x(Pr) N e;'(1) <
N (1), i.e., ex) = N@) for all x ¢ d(Py).

(8) Ngy: Pe-—> R is a semiring homomorphism.

(4) Nog: P — R is a semigroup homomorphism wrt addition.

(5) For all ©e Py = P\{0}, L(x) is a convex l-subfield of K.

(6) K s equal to its own basis subgroup.

(7) 6x(Py) is a partial order, and the quotient order Q(P,) of
Py is a total order.

(8) 6x(Py) is a partial order, and P, is uniquely extendible to
a total order.

(9) There exists a real closure R of K such that the lattice order
P, of K can be extended to a lattice order P, of R with W,-) a
partial order.

(Note that ¢,(Py) is always a pre-order on the algebra C(Ey).)

The geometric property (2) of the positive cone has been con-
sidered by Wilson in [6] (see also [4], Satz 5.1). Conditions (1), (3),
and (4) are evidently closely related to (2). (5)-(8) were investigated
in [4] for finite field extensions L & K. (9) has been inspired by
Wilson’s construction of a nontrivial lattice order on the reals (I5]).
Since (2) and (5)-(8) have been shown to hold for finite extensions
L € K, the theorem essentially states that those conditions which
are true for finite extensions turn out to be equivalent for algebraic
extensions.

Quite naturally, the question arises whether (1)-(9) do not, in
fact, hold for arbitrary algebraic extensions. I have been unable
to determine the answer to this problem.

The terminology concerning Il-groups is that of [2].

1. Geometric and structural properties. This section is devoted
entirely to the proof of the equivalence of conditions (1)-(6) of the
Main Theorem. The proof will be arranged to reflect the obvious
close relationship of the members of each of the pairs (1) and (2), (3)
and (4), (5) and (6).

Proof of (1)—(2). (1)->(2): Suppose that (1) holds for «a e E,.
Then it can be readily verified that e.(¢:(Px))=R". Now assume (by
way of contradiction) that (2) does not hold for «a, i.e., there is some
B e Ex, 8+a, and some a € ¢,(Py) such that 0 =<e.(a) <|es(a)| = N(a).
Since @ is not contained in the closed set C = {x e C(Ey); N(x) =
le.(x)|}, there exists a neighborhood U of a with UNC = ¢. Therefore
there is some b€ ¢(Py) with b¢ C. By finiteness of b(Ey), there is
a partition By = E,U --- U E, such that b is constant on each E..
Obviously, b/N(b) lies in the unit ball of the finite dimensional subspace
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Cb) = {f e C(Ey); f is constant on all E;} of C(Ey). The sequence
(b/N(b))*, n € N has a convergent subsequence with limit d e g (Px)
by compactness of the unit ball in C(b). From |e (b/N(b))| <1 and
|es(b/N(b))| = 1 it follows that e,(d) = 0 and |e;(d)| = 1. In particular,
d # 0. But then e,(d) = 0 contradicts (1).

(2)—(1): Suppose that (2) holds for aecE;. Then e, x) =
N(zx) for all x eg¢,(Px). Hence, e, (x) = 0 implies x = 0, i.e., (1) holds
for a.

The following corollaries follow immediately from the proof of

(1) —(2).

COROLLARY 1. Properties (1) and (2) hold for exactly the same
a € FBy.

COROLLARY 2. (1) and (2) hold for at most one a € Ey.

Proof. If (2) holds for a, 8 € Ex, then a(x) = Nog(x) = B(x) for
all x e Px. Now K = Py, — Py implies a = 3.

Proof of (1), (2) — (8) —(4). (2)—(4): Suppose that (2) holds
for a € Ex. Then Ng¢x(x) = a(x) for all x € P;. Clearly, the restriction
of a to Py is a semigroup homomorphism wrt addition.

(4) — (3): It must only be shown that the restrietion of Ng, to
P,\{0} is a multiplicative homomorphism. Pick z, y € P,\{0}. There is
some « € Ey such that N (x+y)=|a(x+vy)|. Since Ngy is an additive
homomorphism, an elementary computation shows that Ngx(z) =
la(x)], Nox(y)=|a(y)]. But then it follows immediately that Ng (zy) =
|a(zy)| = |a(x)] la(y)| = Nog(x)Néx(y).

(8) — (2): Define a map a: K—C by i Nog(xt) — Nog(z).
Since P, generates K and since Ng, is a semiring homomorphism,
« is a field homomorphism into the reals. Obviously, a|L is the
identity. Thus a € Ex, and a = e,px. Therefore e,y = @ = Ngx on
Py, or equivalently, ¢, and N agree on ¢x(Px). By continuity they
also agree on ¢.(Py), i.e., (2) holds for a.

For the next step in the proof of the Main Toeorem it is useful
to recall the following fact from [4] (part (i), proof of Satz 5.3):

LEMMA 1. If the archimedean l-field K which is algebraic over
its o-subfield has property (2), then the l-ideal I(x) gemerated by
x € P\{0} is contained in L(x).

Proof of (1)-(4) — (5) — (6). (2) — (5): For all xe P;\{0} and all
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a € Px\{0} N L(x), I(a) & L(z) by Lemma 1. Since L(x) has a strong
order unit, this implies that L(x) is an Il-ideal of K, hence a convex
[-subfield.

(5) — (6): Since any disjoint subset of K is linearly independent
over L (J4], Lemma 3.1), it follows from (5) that K has property
(F) of [1]. Now K is equal to its basis subgroup by Theorem 7.3
of [1], since K is archimedean.

(6) — (5): For any x e P;\{0}, the partially ordered field L(z) & K
has a strong order unit w. Thus, L(x) is contained in the l-ideal
I(u) generated by u. Since K is its own basis subgroup by hypo-
thesis and since the maximal o-subgroups of K are one-dimensional
over L ([4], Satz 2.3), I(u) is of finite dimension over L. Moreover,
an easy computation shows that I(u) is multiplicatively closed. Thus,
I(w) is a convex [l-subfield of K which is of finite dimension over
its o-subfield. By [4], Satz 5.3, L(x) is a convex [l-subfield of I(u),
hence also of K.

(5)->(3): For any xe P[0}, L(z) is an [-field which is finite
over its o-subfield L. By [6] (see also [4], Satz 5.1), L(x) has property
(2), hence also property (3). Clearly, this implies that Ngy: Py =
U:crporie — B is a semiring homomorphism.

2. Extendibility of lattice orders to total orders. In the next
step of the Main Theorem, conditions (7) and (8) will be dealt with.
The implications (1)-(6) — (7) and (1)-(6) — (8) are contained in the
following corollaries, which are immediate consequences of the con-
siderations in the preceding section.

COROLLARY 3. If the l-field K has properties (1)-(6), then ¢x(Px)
15 a partial order.

Proof. Let ac Ey be the unique element for which (1) holds.
From —ggx(Pgr) € e;'(R-) and ¢x(Px) < e,'(R*) it follows that
—6x(Pg) N 9.(Pr) S €:%(0) N 6x(Px) = 0, whence the pre-order ¢.(Py)
is a partial order.

COROLLARY 4. If the l-field K has properties (1)-(6), then the
quotient order Q(Pyg) of Py is a total order.

Proof. By [4], Satz 4.14, for all x e P;\{0} the quotient order
Q(P,.,) on the convex l-subfield L(x) of K is total. Thus, Q(Py) =
U.icrpn@(Priw) is a total order for K.

COROLLARY 5. If the l-field K has properties (1)-(6), then the
lattice order of K is uniquely extendible to a total order.
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Clearly, Corollary 5 follows from the totality of the quotient
order without any assumptions on the validity of properties (1)-(6).
Next it will be shown that the converse of this is also true, i.e.,
the quotient order is total if the lattice order has a unique extension
to a total order. In fact, the following result is even stronger than
that.

THEOREM 1. For the archimedean l-field K which is algebraic
over tts o-subfield, the quotient order Q(Px) 1s an intersection of
total orders.

Proof. Clearly, Q(Py) induces the natural total order on the
o-subfield L, i.e., the unique total order which makes K a partially
ordered L-vector space. With this total order L is archimedean, or
(AS) in the terminology of [3]. Since K is an algebraic extension
field of L and since K = Q(Px) — Q(Pg) is clearly primitive ([3], p.
919), Theorem 3.1 of [3] shows that K is an (AS)-field. Now, by
Theorem 3.2 of [3], Q(Px) is an intersection of total orders on K.

COROLLARY 6. The lattice order of the l-field K can be extended
to a total order.

This immediate corollary of Theorem 1 is exactly Satz 4.10 of
[4]. Thus, an alternative proof (which is much shorter than the
original one) of this important theorem has been found. The next
corollary essentially states that (7) and (8) are equivalent:

COROLLARY 7. The lattice order of K is umiquely extendible to
a total order iff the quotient order is a total order.

To establish the equivalence of (1)-(8) of the Main Theorem, it
only remains to be shown that (1)-(6) follow from (7) and (8). This
proof requires the following two rather technical lemmas.

LemMMA 2. Suppose that K is an archimedean l-field which is

algebraic over its o-subfield. If ¢x(Px) is a partial order, then for
all a e Pg\{0} there is some a € Ey such that ala) = Npxz(a).

Proof. Pick a€ Py, a #0. Then ¢x(a)(Ex) is finite. Thereby E;
is partitioned into finitely many subsets E,, i €I, on each of which
ox(a) is constant. C(a) = {x € C(Ex); x is constant on E, ¢cl} is a
finite dimensional subalgebra of C(Ey), which is canonically isomorphic
to C* by @: C(a) — C": x +— (x(E)));c;- Since ¢x(L(a))SC(a) by infinite
Galois theory, the restriction « of @g, to L(a) is well-defined and
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embeds L(a) into C*. Let z;: C' — C be the canonical projections, and
write ;, = Ty,

Define b, = y(a)/Ngx(a). Then every i€l is in exactly one of
the following subsets of I:

I ={iel, (b)) =1},

I, ={iel, m,(b) = 1 is a root of unity},

L ={iel; |nb)| =1, n,(b,) is no root of unity},
I ={iel; |m(b)| <1}.

In this notation, the claim of the lemma is that I, is nonempty.

Obviously, I, UL, U I, # ¢ by the definition of N. One can easily
define a sequence in (P, ,) with components 1 on I, U L, limit 1 on
I,, and limit 0 on I, The limit d, of this sequence is in (P, .) by
closure.

Next it will be shown that I, U I, == ¢. Clearly, this is true if
I, = ¢. Therefore suppose that I, #+ ¢. Now consider b, = b,d,. The
support of b, is contained in J, = I, UL, U I,. Again, define a sequence
in (P, with components 1 on I, U I, limit —1 on a nonempty
subset J; € I, and limit 1 on L\J]. Again by closure, the limit d,
of this sequence is contained in (P,,). Also, b, = (b, + bd,)/2¢
4(Pr). The support of b, is contained in J, = J\J; £ J,. By itera-
tion, there is a smallest » € NV such that the support of b, = (b,_, +
b._,d,)/2 is contained in I, U I,. Now assume (by way of contradiction)
that I, UI, = ¢. But then 0=10,=05,_,/2 +b,_.d,/2 is a nontrivial
representation of 0 in «(P,,). This is a contradiction, since (P, )
is a partial order, being the isomorphic image of ¢x(P; ) S ¢x(Px).

The final step of this proof is to show that I, == ¢. This is
obviously true if I,=¢. If I, ¢, let k€ N be a common multiple
of the exponents of all the roots of unity involved. Define ¢ =
>, b, Then the components of ¢ are & on I, 0 elsewhere. If I,
were empty, 0 =c¢ = 3%, b! would again be a nontrivial represen-
tation of 0 in the partial order (P, ): contradiction. Thus, I,#¢
as claimed.

LEMMA 3. Suppose that ¢(Py) is a partial order for the archi-
medean l-field K which is algebraic over its o-subfield L. Then
L(a) = L(a + a*), and {acFy; lale + a*)] = Nog(a + a’)} = {a € Ey;
ala + a) = Nggla + a’)} = {a e By; ala) = ¢x(a)}.

Proof. This is an easy computation.

The next lemma shows how the subfields L(a), a € P.\{0} can be
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embedded order preservingly into the reals. In the proof of (7),
(8) — (1)-(6) these embeddings will be put together to give an em-
bedding of K into the reals.

LEMMA 4. Suppose that ¢.(Py) is a partial order for the archi-
medean l-fielld K which is algebraic over its o-subfield L. Then
a: L(a) — R is order preserving for all a € Pg\{0} and all a such that
a(a) = Ngx(a).

Proof. «a(a) = Ngg(a) clearly shows that o embeds L(a) into R.
So it is only left to show that a is order preserving: Assume (without
loss of generality by Lemma 3) that {aeFEx; a(a) = Nog(a)} =
{a € Eg; |a(a)] = Nog(a)}). Now, suppose (by way of contradiction)
that there is some xz¢€P,, for which a(z) < 0. Note that both
ox(a)(Ey) and ¢x(x)(Ey) are finite and that ¢.(x) is constant on those
subsets of E, on which ¢x(a) is constant. By |a(a)/B(a)| > 1 for all
B € E, with 8(a) # Ngx(a), there is some n € NV such that |a(a)/B(a) " >
| B(x)/a(x)| for all g€ Ey, B(a) # No(a). From this it follows that
{ae Ey; |alax)] = Nog(ax)} = {a e Ey; a(a) = Nox(a)}. But then
{a e Ey; a(a™x) = Ngg(a"r)} = ¢ by a(a*x) = ala)"a(r) = Nox(a)"a(x) <
0. This contradicts Lemma 2.

Proof of (1)-(8) — (7) — (8). (8)— (2): (By Corollaries 3,4, 5,7
this completes the proof.) Py is uniquely extendible to a total order
by hypothesis. Thus, by Holder’s theorem, there is a unique order
preserving a € E,. Assume (by way of contradiction) that (2) does
not hold for this «, i.e., there is some a € Py such that Ngx(a) > ala).
Then «a ¢ {8 € Fx; B(a) = Ngx(a)}. Again, one can assume without loss
of generality (by Lemma 3) that {8 € Ex; B(a) = Nox(a)} = {3 € Ex;
|B(a)] = N¢g(a)}. By Lemma 2, this is a nonempty, compact subset
of E,. Now define for all be P,\{0}, E(b) = {8 € Eyx; B(a) = Ngxla),
B: L(a, b) — R preserves the order}. For be P;\{0} pick ce Px such
that L(a, b) = L(c) (this is possible by part (i) of the proof of Satz
4.10 in [4]). As in the proof of Lemma 4, one sees that there is
some n e N with L(c) = L(a"c) and ¢ = {8 € Ex; B(a"c) = Nox(a™c)} &
{8 e Ey; Ba) = Nog(a)}. Now it follows from Lemma 4 that {5 e Ey;
Bla"c) = Ngg(a™c)} < E®). In particular, E(b) # ¢.

So far, it has been shown that each E(b) is a nonempty, closed
subset of {B¢ Ex; B(a) = Nog(a)}. Now, if b, ---, b, € PL\{0}, then
there is some ¢ € P, such that L(a, b, ---, b,) = L(a, ¢) ([4], Satz 4.10,
part (i) of the proof). Therefore E(c) = (i, E(b,), and the intersec-
tion is nonempty. But then also MN;cp,. o £(b) # ¢ by compactness of
{Be Eyx; Bla) = No.(a)}. This gives a contradiction to the uniqueness
of a, since any v € MNye,, .o E(b) is another order preserving embedding
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of K into R.

For a certain class of flelds, in particular for the reals, the
following stronger version of the equivalence of (1)-(8) holds:

COROLLARY 8. If the total order of the o-subfield admits only
a unique extension to a total order of the l-field K, then (1)-(6) are
equivalent to: ¢.(Px) is a partial order. Moreover, the quotient
order 1s always total.

3. Extendibility of lattice orders to over-fields. The direction
(9) — (1)-(8) of the last remaining equivalence has already been
established by Corollary 8. The other direction of this equivalence
is a corollary of the next result, which will be stated after a few
notations have been introduced: For the [-field K the quotient order
is an intersection of total orders by Theorem 1. Identify this set
of total orders with the subset T, & E. of order preserving em-
beddings of K into the reals. By infinite Galois theory, T is a
compact subspace of E,. If K< M is an algebraic field extension,
let T, € E, be those embeddings of M into the reals which extend
some ae€Ty. Let o: T, — Tx be the restriction of the canonical
surjection K, — Fy.

THEOREM 2. Suppope that the l-field K is archimedean and
algebraic over its o-subfield L. Let K< M be an algebraic field
extension. Then the following are equivalent:

(a) There exists a basis B for M over K such that Pg(B) =
{Shes ub; ay € Py, oy = 0 for almost all b} is a lattice order on the
Jfield M.

(b) @ is surjective, and has a continuous section o: Ty — T,.

REMARK. Condition (a) evidently means that Wilson’s construction
of a nontrivial lattice order on the reals in [5] is applicable to obtain
a lattice order on M. Therefore Wilson’s results will be used exten-
sively in the proof of (b) — (a).

Proof. (a) — (b): For each total order T on K extending P,
T(B) = {3z ab; ay =0 for almost all b, a, € T} is a lattice order
on the field M. The quotient order of (M, T(B)) is total, since (6)
obviously holds for (M, T(B)). This shows that 7T is extendible to
a total order on M, i.e., @ is surjective. This argument even shows
a bit more: Let T & T, be the order preserving embeddings of
(M, Px(B)) into R, @' the restriction of @ to T%. Then ¢’ is surjec-
tive. But ¢’ is also injective. For, let a, 8 € T be such that a|K =
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B|K. If T is the total order on K corresponding to «a|K = B|K.
then T(B) is contained in each of the total orders of M corresponding
to a and 8. But since the quotient order of T(B) is total, the total
orders corresponding to a and 8 must be equal, hence @ = 8. Thus
@' is a continuous bijection of compact spaces, hence a homeomor-
phism. Define ¢ = @',

(b) — (a): Define N = {(N, By); K < N < M intermediate field, By
basis of N over K such that P.(By) is a lattice order on N, the
quotient order of Px(By) is the intersection of the restrictions of
the elements of o(T%)}. If N is partially ordered by (N, By) < (L, B.)
if N< L, By € B;, then there exists a maximal (N, By) € N. Assume
(by way of contradiction) that N = M. Pick ac M\N, and define
L = N(a).

By identifying T, and o¢(T%) and by infinite Galois theory, K, N,
and L can be represented as subfields of the real Banach algebra
R(Ty) = Cr(Tx). Note that each of these subfields contains the
rationals and separates points, so that they are dense in R(Ty) by
the Stone-WeierstraB theorem. Sinece the quotient order of P (By)
is the intersection of the total orders of N belonging to the elements
of o(Ty), x € N is positive in the quotient order iff its image ()€
R(Ty) is positive (wrt the pointwise order).

Now the decisive step in this proof is to find a primitive element
b for the field extension N € L such that b’s minimal polynomial is
X" +b,, X'+ -+ +b, with the b, < 0 in the quotient order of
Pg(By) and such that ++(b) > 0. This is almost exactly Step 1 of the
proof of the Main Lemma in [5]. The essential difference is that
in this case the inequalities b, < 0, b > 0 have to be established not
only one total order at a time, but for all the total orders of o(Tyx)
simultaneously.

For ¢, se N let T(t, s) be the composition of the following (par-
tially defined) transformations of R(Ty):

r——uzxft; s——o—3s; x——1lr; x——2—1/n.

I X"+a, (t s)X" + --- + a,(t, s) is the minimal polynomial
for T(t, s)(a) over N, a mapping 7: N* X N* i R(Tx)*** is defined by
7(t, 8) = (T(t, s)a), a,(t, 8), --+, a,_.(t,8)). 7 is continuous wrt the
topology induced by R(T:) on N¥*.

Using [5], proof of the Main Lemma, Step 1, for each «a ¢ Tk.
rationals ¢, s, can be found such that a(7(t., s.(a)) > 0 and
a(a;(tes 82)) < 0. The sets Tx(a) = {BeTx; BT, s.)(a)) > 0,
B(ata, 82)) < 0} = {B € Tk; B(T(Ls, 8.)(a)) =0, B(ats, s.)) = 0} are clopen
subsets of Tx by continuity of . Since T, is compact, this leads
to a finite partition C, .-+, C, of T into clopen subsets such that
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each C; is contained in some Ty (a). For each j=1, ---, m, choose
a; such that C; S Tx(a;). Now define t',s'e R(Tx) by: t'(a) =t
and s'(a) = s,; for ¢€C;, j =1, ---, m. By denseness of N S R(Ty),
and by continuity of the evaluation maps R(Tx) — R at the points
of T%, there exist neighborhoods U of ¢/, V of s’ in R(T%) such that
for all te N*NU and all se N* NV the desired inequalities hold:
a(T(t, s)(a)) > 0, ala(t, s)) < 0 for all a€ Tx. Thus, b = T(t, s)a) is
the desired primitive element of L over N. Next, an application of
[5], proof of the Main Theorem, Step 2 leads to a primitive element
¢ for L over N such that ¢, ---, ¢,_, < 0 in the lattice order of N,
where X" + ¢, X"+ ... + ¢, is the minimal polynomial of ¢ over
N, and such that a(¢) > 0 for all «e T¢x. Define B, = By-{1,¢, ---,
¢"*}. This is clearly a basis of L over K. By construction of this
basis, Px(B,) = Px(By)({1,c¢, -+, ¢*"}) is a lattice order on L. Finally,
each total order belonging to some element of o(Tx) extends Px(B,).
By the proof of (a)— (b), these are all the total orders extending
P.(B;). Therefore it follows from Theorem 1 that the quotient order
of Py (B,) is the intersection of the total orders belonging to the
elements of o(T%). Altogether, this shows that (L, B,) € N, contra-
dicting the maximality of N.

Proof of (1)-(8) — (9). The only remaining part of the proof is
the implication (1)-(8) — (9). Because of (8), |Tx| = 1. Also, for
any real closure R of K with the quotient order of P, there is
only one total order on R extending the quotient order. Thus, (b)
of Theorem 2 clearly holds. By (a) of Theorem 2, there is a basis
B for R over K such that P.(B) is a lattice order for R. Since R
with this lattice order is equal to its own basis subgroup, ¢,(Py) is
a partial order.
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