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The natural logarithm of z can be written as an infinite
product involving iterated square roots of z. A Vieta product
is defined to be a more general infinite product involving z
raised to arbitrary fractional powers. Restricted to the unit
circle, Vieta products generalize infinite cosine products stud-
ied by Salem and others in connection with PV-numbers.
Vieta products are shown to have conformal mapping, monoto-
nicity, and growth properties very similar to those of the
natural logarithm. By using certain properties of Eulerian
polynomials, the exponents of z in a Vieta product are shown
to be unique in a strong sense.

1. Introduction. Let z(n) = 2" As a simple corollary to his
results [2] on logarithmic means, B. C. Carlson obtained

— (e — 1) T1 2
(1.1) Inz = (x 1)”131 T o™
for x > 0. This representation immediately implies that Inx grows
more slowly than any power of x, and also that

(1.2) Ing?' = —-lnz, Ing*=2lnx.

Our aim is to give an extensive, though far from exhaustive,
exposition of the properties of infinite products of the form

d 2
(L.3) @) =G~ DI ="
where z is a complex variable and a = {«,} is a sequence of strictly
decreasing positive numbers such that

(1.4) i‘, a, =1.

Our main results are that (i) such products have conformal mapping,
growth, and monotonicity properties very similar to those of the
natural logarithm, especially when the «, decrease geometrically,
and that (ii) the function C,(2) uniquely determines the sequence
{a,}. The latter follows from Theorem 38, a somewhat stronger
assertion.

Throughout, we shall point out various open questions.

Henceforth let A be the collection of all positive, strictly
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210 KENNETH B. STOLARSKY

decreasing functions defined on the positive integers whose elements
o = «, = a(n) satisfy (1.4). We call the function C,(z) of (1.83) the
Vieta product of a. It is easily seen that C, converges for all a € A4,
and that

(1.5) Cu(z™) = —Cul2) .

Let the fractional powers in (1.3) have their principal values. Then
C.(z) is holomorphic in the slit plane (that is, the complex plane
with the closure of the negative real axis deleted).

In some sense (1.1) is four centuries old, since Vieta’s formula

(1.6) TI cos (6/2") = (sin 6)/6
n=1
can be rewritten as

. . o 2
1.7 0= (" — 1 ,
(.7 W= =1 D G

and @ can be replaced by —iIlnz. M. Kac [9] relates (1.6) to expan-
sions of real numbers in base 2 and uses it as the starting point of
his well-known introduction to statistical independence. Infinite
cosine products of the form

(1.8) ﬁ cos a0

have been intensively studied in connection with Pisot-Vijayaraghavan
numbers [12]. In fact, the product on the left of (1.6) plays an
exceptional role in Theorem 2, p. 40 of [22]. For more about these
products and their relation to certain digital problems, see [13].

From the point of view of [12] it is of interest to consider C.(z)
as defined on the “spiral staircase” Riemann surface that is the
natural domain of Inz. Since

(1.9) f_j cos (a,0/2) = [2 sin (6/2)]C5 () ,

some of the problems discussed in [12] concerning Fourier-Stieltjes
transforms of singular functions are related to the asymptotic be-
havior of C,(z) as z continuously winds about the branch point z,=0.

We prove in §2 an identity generalizing (1.1). In §3 we show
that under certain restrictions (including a, < 1/2) the C,.(2) yield
one-to-one conformal mappings of the slit plane onto a narrow strip.
Thus they provide us with mappings qualitatively very similar to
the mapping determined by Inz; see Theorem 1. The proof uses
certain monotonicity properties of the Vieta products. In §4 we
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examine (see especially Corollary 4.1 of Theorem 2) how C.(x) grows
for x real, x — -+ oo,

It seems natural to ask whether there is an a # ¢ for which
C,. is the product of Inz with a rational function. This is ruled out
by Theorem 3 of §5, a uniqueness theorem for Vieta products. Such
uniqueness theorems are very well known for power and Dirichlet
series, and are established for a different kind of infinite product
by J. F. Ritt [11]; see also [6]. The proof we present uses the
Eulerian polynomials. KEspecially curious is the analytic function
G (o) that the proof attaches to C,(z); it is a sort of exponential
generating function for certain “jumps” associated with C,(z). We
leave open the problem of when Vieta products exist for “approxi-
mately logarithmic” functions.

2. Elementary considerations. We first establish an identity
with a parameter s from which (1.1) and (1.6) follow by setting
s = 2. Then we examine the Taylor expansions of Vieta products
about 1.

Let
Viz,s) =(z*—1 8 . 2
( ’ S) (Z )1’1\"2‘!— .. _’_zs,l 1+z1/3+ e +z(s—1)/s
21 % S ...
1) 142"
. > os(z "t — 1
= (Z - 1) n:E[O z(a'_.n_H — 1)

where s = 2 is an integer. For s = 2 this reduces to twice the right
side of (1.1). It is easy to establish convergence, so V(x) > 0 for
x > 1. Clearly V(z) grows more slowly than any power of z, and

(2.2) V™ = —V(x), V(z®*) = sV(x) .

ProposITION 2.1.
2.3) Vi) =slnz.
We first establish the following.

LEMMA. Let U be a connected meighborhood of the strictly posi-
tive real axis. Let 0 < » <1 and let f(z) be holomorphic on U. If
f) =0 and

(2.4) f@") = rf(w)
for all x > 0, then
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(2.5) f@ = f'Wnz, zeU.

Proof. For z fixed and n large, (2.4) and Taylor’s theorem with
remainder yield

r"f(2) = flexp (r" In 2)]
(2.6) = f[1 + " Inz + O@*")]
= f'Wlr"Inz + 0] + (1/2)f"(&)0(™)
where .5 < & < 2. Formula (2.5) follows for z real upon dividing
both sides of (2.6) by »* and letting n — . The result follows by
analytic continuation.
To prove the proposition, take » = s~ to see that (2.5) is valid

for f= V. To determine V’(1l), note that by (2.1) and (2.5) we
have

InV—-—Inlnz =In[(z° — 1)/In «]

2.7 - )
2.7 + Z In[s/(1 + 28T L g s n-H)] )

As x — 1 the right hand side approaches Ins, since every term of
the infinite sum approaches 0. This proves (2.3).

Upon replacing 2z by ¢, formula (2.3) reduces to the trigono-
metric identity

2.8) S—“lséj—g/-z_) il {(sm 280 ) /<s sin %)}

This in turn reduces to Vieta’s (1.6) when s = 2.
Proposition 2.1 is in fact valid for any product

) PO P _PA)
(2.9) Vi@ = Q@54 Ple) Pl

provided P, @ = Q, are “nice” functions satisfying Q1) = 0, Q' (1) = s,
and

(2.10) Q2") = sQz)P(z")/P1) .

However, I know only the case Q(z) = z° — 1.
We now examine C,(z), where

(2.11) a, = (k — k™

and k& = 2 is an integer.

ProrosiTiON 2.2, Let x > 1. If there is a constant q such that

(2.12) Cuz) =qInzx + ollnzx),
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then k = 2.

Proof. Upon applying (2.12) to the identity

(2.13) Cu(z") = 2(z* — D(@** + 1)z — 1)'C.(x)
we obtain
(2.14) k+ol)=2

as £ — oo, 80 k = 2,

In general, however, C = C,(z) does strongly resemble a
logarithm in small neighborhoods of 1. Clearly C(1) =0, and
C'(1) = 1 follows from (1.3) upon dividing both sides by z — 1 and
letting z — 1.

Set

2.15 S=8@ =73 %"
(2.15) (@) = 5,

Logarithmic differentiation of (1.3) followed by subtraction of C’'(1)
yields

©@.16)  [C'Gz) — C'(1)] = [_C%):_‘lﬂl — 0(1)] — C(2)S(2) .

Upon expanding both bracketed terms into Taylor series we obtain

— S (m) — m—1 1 —_ __1 _
2.17) CS = 3, C"(W)e — 1) [__m! (m—l)!]
By (2.17) and the Leibniz formula,
—k
2.18 — 2 (1) = (CS)Y* (1
( ) anE] (1) = (CS)*®)

-
- ( .)C(f’(l)S‘M(l) . k=1,
PR

Since S®(1) = 1/2, equation (2.18) with %k = 1 yields
(2.19) C®1) = —1

so every C,(2) agrees with Inz up to second derivatives at z = 1.
The higher order derivatives have a more complicated appearance;
for example

C¥(1) = 3/4)38 — X a3)
(2.20)  C¥(1) = (=3/2)(6 — 32 @)
Co(1) = (5/16)(105 — 86 >, ) + 3(X Ay’ + 23 ) .
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3. Vieta products as conformal maps. We begin by desecrib-
ing some very well-known properties of the logarithm, and then
examine the extent to which they can be extended to arbitrary
Vieta products. The funection w = Inz, where 2 = x + 7y and w =
u + v, gives a conformal map from the z plane to the w plane.
The region R in the z plane exterior to the unit circle U and bound-
ed by U and the upper and lower lips L, L, of the ray « < —1
maps in a one-to-one manner onto the strip ¢ of width 27 in the
right half of the w plane, bounded by the segment I of the v axis
given by —7w < v <z, and the lines M, and M, given by v = 7 and
v = —x respectively. The boundaries I, M,, M, correspond to U,
L,, L, respectively. This mapping “squeezes out angular variation”;
in R the argument varies from —x to =, while (for |z| large) its
image is contained in

(3.1) —&

I
IA

arg w

&
<

for any ¢ > 0. At the same time R is “contracted inwards uniform-
ly”; a point 2 units from the origin is taken to a point about log
units from the origin, regardless of its argument. Since

(3.2) Inz'= —Inz,

the interior of the unit circle is mapped similarly onto the reflection
of ¢ in the v-axis.

Easiest to extend is the “uniform inwards contraction property”,
that asserts in particular that the gross behavior of the modulus
of C,(z) is determined by the modulus of z.

PROPOSITION. Let » > 0 be real, and —7w < 0 < xw. Set

(3.3) q = qu(z, 0) = Co(7)/Co(re™) .

Then

3.4 K“'_lH’ral'{"eXp(ioaﬁ)i < < i7—‘li
( ) f"‘"“ewH"’“l + 1[ ‘1(1[*— ],'.__ewi

where K 1s an absolute constant.

Proof. The upper bound is trivial. For the lower bound, note
that

—1 5 1+ r*=exp (ifa,,)
3.5 - 1 m
( ) q ew/), - 17;!-—:‘[1 1 + /p"m

and that the square of the absolute value of each term in the
product is
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1 — 271 + 7*=)~*(1 — cos a0)

(3.6) =1— (1 — cosa,h)2
= cos’ (a,0/2) .

Since

3.7 cosf =1 — %2

we have the left inequality of (3.4) with
(3.8) 1 A — as6%8)
m=2

in place of K. Now 3 a? is at most 1 and «, is at most 1/2 for
m = 2, so the infinite product (3.8) is bounded below by an absolute
constant. This completes the proof.

Now set z = 7¢” where » >0 and —7 < 8 < x, and let

(3.9) o(r,0) =1—2rcosf +r*, o, 0) =1+ 2r*=cosba, + 7 .

By putting each term of the product C.(z) into polar form, we find
that

(3.10) Cu(2) = 0(2) exp [iga(2)]
where
(8.11) 0a(2) = o(r, O)* 11 25(n, 7, )"
n=1
and
3.12 W(2) = tan—' "SI0 S ppp  riesinfa,
(8:12)  g(e) = tan T & N T e s va,

here the inverse tangent is defined for 0 < 6 < = by

arctan u u =0
(A) tan™'u =
T +arctanu u <0

and for —7 <6 <0 by

arctan u u=0

(B) - tanlu = {
—7 + arctanuy u >0

where arctan u denotes the prinecipal value of the inverse tangent.
From (3.11) and (3.12) we obtain

olnp _ 9p _ r(r — cosf) & a, 7 (r*» + cos fa,,)

3.13
@18 T =5 50 & e, 0)

and
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(3.14) dlnp - _,ra_¢ _r sin 8 > a,r* sin b,
00 or o(r,0) <=1 &, 71, 6)
We now study arg C,(z). From (8.13) and 3, «, = 1 we obtain
06,(2) _rcosf —1 & oa,(re cos fa, + 1)
3.15 = = .
( ) o0 o(r, 6) - ngl o(n, r, 6)

If » = 1 this derivative is zero; in fact, by (1.9) the unit circle maps
onto a segment of the imaginary axis containing the origin. Now
the infinite sum on the right of (3.15) equals

3.16 SO & o, (1 — r*»)(1 — cos fa,,)
o0 & F17 & X + r*)i(n, 7, 6)

and since cos fa, = 0 for n = 2, we have

(3.17) _aq;a;z) = 00 + 06—) + O 3, ayr=) .

Since > a, converges and 7% -0 as 9 — oo, it is clear that the
above derivative is o(1). Hence the Vieta product mapping will
“squeeze out angular variation” in general. It is, however, not im-
mediately clear when the analogues of M, and M, (the images of
the upper and lower lips of # < —1) will have bounded imaginary
parts. We establish this in the case

(3.18) a, = c,e "

where ¢, is positive and ¢, is at least In 2.

LeMMA. If ac A where o, is of the form (3.18), then there are
constants h,, h, such that

(3.19) )t < 3 e < hyn )

Proof. 1t is easily established by elementary calculus that the
numbers b, = a,»7 % increase to a maximum value as n approaches
(3.20) c;llnlnr + 0OQ)

and then decrease. Thus we find that the maximum value exceeds
a constant multiple of (In»)~'. We also see from this behavior that
the sum is at most

(3.21) | cie-est exp [—(In r)ee~1dt + O(n )

¢ Sm exp |—(n#)culdu + Oln»)?,
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and the result follows.
From (3.17), (4.9), and —7w < 8 < & we have

(3.22) 6.(2) = O(ln )™, 0a(2) = O[(In 7)*»2/e2]
so finally
(3.23) Im C,(z) = O[(In r)l-cetin2Ves] |

We shall use (3.13) and (3.14) to obtain more knowledge of the
behavior of C.(2) as r and 6 are varied individually. Results
italicized below are of key importance in establishing Theorem 1.

However, we shall first discuss logarithmic coneavity on the real
axis. In the course of doing this we shall discover (see (3.31)) that
C,(r) is strictly increasing for » > 1, and hence for » > 0 by (1.5).
Note that the funection

(3.24) g=q(»)=Inlnr,
defined for » > 1, satisfies

(3.25) " +7r'¢ = —(rInr)2<0.
In our case, (3.13) and (8.14) yield

0"In o 0 lnp 0lnp
3.26 . . 0
( ) ort + 06* T or
and
0% ,0°¢ 00
3.27 2 +9222 4 922 =0,
8.27) e o or
Since
(3.28) ln o _ r[2r*cos 20 — (1 + 7°) cos 7
) 06° 6(r, 6)?
X i air | 2r* + (1 + 7r*») cos fa,]
#=1 a(n, 7, 0)°

we see that at § = 0 the above derivative, for » > 1, is

3.99 r(r + 1) e iy S>0.

( ) (r — 1) * ngf A + ren)?

Set

(3.30) Q(r) = ln p(r) = In C,(7) , r>1.

We have, by (3.26) and (3.29), the inequality
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(331) (TQI)I — Q/r + q,—JQ/ <0.

Thus 7Q’ is decreasing, so if Q'(+) is ever nonpositive, it must remain
nonpositive. This would imply that Q(2) is bounded above. But this
contradicts (4.25). Hence Q(r) is strictly increasing for » > 1, and
from (3.31) we see that Q”(») is negative for » > 1. Thus o(r) is
logarithmically concave. An open problem is to determine for what
« we have actual concavity.

We now show that for

(3.32) a, < 1/2

the function C,(z) has other monotonicity properties in common with
Inz. By (3.14) the quantity In p is strictly increasing as 0 increases
from 0 to @ and strictly decreasing as 6 decreases from 0 to —w.
Now consider Inp for » > 1 and 6 <6 < 7. Since

o d < r+a A 1— 9
.33 — = <0
(3.58) da \1* + 2ar + 1) (* + 2ar + 1)

we have from (3.13) and 0 < fa, < 7/2 that

v

o In (0 P o /)a‘lffn
3.34 77 e
(3.34) or 1+ 1+ pian
d a, 1

—~ >0
Eivrm Tiv

since the last sum in (3.34) is a weighted average of terms at least
as large as (1 + 7»)7%, at least one of which strictly exceeds that
quantity. Thus Inp is strictly increasing along every ray in the
upper half plane that emanates from the origin. Since C,(z) is real
for z = 2 > 0, we easily see that it has a strictly positive imaginary
part when the same is true for ze R and that C,(z) assumes con-
jugate values at conjugate points. Thus Inp is strictly increasing
along every ray through the origin. It mow follows from (3.13) and
(8.14) that the argument of C.(z) 1s strictly itnereasing in 6, and
strictly decreasing in r.

To show that C.(2) is one-to-one when (3.32) is valid, it clearly
suffices to show this for z in the upper half plane H. Let D denote a
bounded simply connected open set in the complex plane. We require
two lemmas, the first of which follows from the principle of the
argument.

LEMMA. Let f(z) be a nonconstant holomorphic function on D,
and J a positively oriented Jordan curve contained im D. If f(z) is
not one-to-ome on the interior of J, then there is a point 2z, in D such
that the winding number of f(J) with respect to f(z,) exceeds one.
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LEMMA. Let j(t), where 0 =t <1 and j(0) = j(1), describe a
positively oriented piecewise smooth closed curve im the opem right
half plane K. Say there 1s a point p, in K such that the winding
number of J with respect to v, exceeds 1. Then there does not exist
a t, with 0 < t, < 1 such that arg j(t) is nondecreasing for 0 < ¢ < ¢,
and 15()| is nonincreasing for t, <t < 1.

Proof. Choose 0 <t <1 so that as J is traversed, (i) arg [7(¢) — p,]
has a net increase of 2zm (where m = 1 is integral) as ¢ increases
from 0 to ¢, and (ii) the same holds for ¢ increasing from ¢ to 1.
Trivially ¢, is not interior to both intervals [0, ¢,] and [¢, 1]. Now
either arg j(t) or | j(¢)| will exhibit monotone behavior in the interval
to which ¢, is not interior. But this is an obvious impossibility.

THEOREM 1. If (3.32) holds, the function C.(z) is one-to-one on
the slit complex plane.

Proof. It suffices to show this for {z{ > 1. Fix a small ¢ > 0.
Let J* be the positively oriented Jordan curve that starts at —e™! +
7¢ and moves parallel to the x axis until it touches the unit circle,
then goes clockwise around the part of the unit circle lying in H
until it reaches 1, then moves along the x axis to (¢~* + &¢¥)'?, where-
upon it proceeds counterclockwise in a circle about 0 of this radius
until it returns to its starting point. For ¢ sufficiently small this
curve will enclose any preassigned point z in H such that [z]| > 1.
Clearly the image of J* by C.(z) is a curve that passes through the
origin. By the monotonicity properties italicized above we see that
from the origin it moves along the w axis to some point u,, and then
along a curve joining %, to some point %, + ¢», in such a way that
its argument is nondecreasing. From u, + v, it moves to a point H
on the imaginary axis in such a way that its modulus is always
decreasing. Once on the imaginary axis, it goes straight down to
the origin. If C,(2) were not one-to-one, this image, by the first
lemma, would wind at least twice about some point. But this is
ruled out by the second lemma, and the proof is completed.

Let K, (z) denote the inverse of C,(z); thus

(3.35) E.(2) = ¢ .
An open question here is to determine those a € A for which FE,(z)

can be extended to an entire funection.

4. Growth of Vieta products. The main result here is
Theorem 2, an estimate on the size of a Vieta product. Note there
is no claim that the “main terms” exceed the error terms. A slight
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modification of the argument will produce lower bounds; the Proposi-
tion following Theorem 2 asserts that every Vieta product tends to
infinity along the real axis.

Let A* be the set of all « ¢ A that are restrictions of a twice
continuously differentiable funection «a(t) defined for all £ > 0 such
that

(4.1) a'(t) < 0
and
(4.2) a’'(t) >0

for ¢t > 0. It is convenient to introduce the function

(4.3) Sz, @, M) = In [;”2_' MlCa(ac)J :

We can now state a general result on the growth of Vieta products.

THEOREM 2. Let x =1 and ae A*. If M is a positive integer
such that

(4.4) 0<o<aM)lnz <1

then

(4.5) S, a, M) =1/2Inz 3, a(m) + O[E(x, M, 9)]
where

E(x, M, 6) =In*x Z;, a’(m) + O(1)
+ O[(la’'(M) |6 Inx)™'] .

(4.6)

We shall apply this to the special cases

4.7) a(t) = c,e°?
and
(4.8) at) = et

where ¢, ¢, are positive constants, and b is a constant exceeding 1.
Clearly each « belongs to A* for the appropriate normalizing constant
¢,. Carlson’s product (1.1) corresponds to (4.7) in the special case
¢,=1and ¢, =1In2.

COROLLARY 4.1. Let x be a large real number. For the a of
(4.7) there are positive constants d,, d, such that
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49  dno)™ =@ —1 I —>— < d(na)™.
m=1 1 + x“m

Proof. Choose M to be the greatest integer in ¢;'Inlnz. Then
every term on the right of (4.5) and (4.6) is bounded, and the result
follows.

COROLLARY 4.2. Let x be a large real number. For the a of
(4.8) there is a positive comstant ¢, = c,(b) such that

(4.10) C.(z) < exp [c(In 2)?] .

Proof. Choose M to be the greatest integer in (Inx)“®. Then
=" is bounded, and every other individual term on the right of
(4.5) and (4.6) has order of magnitude

(4.11) (Inx)**,

so the upper bound of (4.10) follows.
In each case, the idea was to let M be the greatest integer in

(4.12) a='(1/In z)

where a~' is the function inverse to «.
To prove Theorem 2, write

(4.13) S, a, M) = —S(x, a, M) + Sy(z, a, M)
where

4.14) S, = TE,M In(1 + ™)

and 7

S, = =3 In|l — 1/2( — a~=™)]

(4.15) = 1/2 Z (1 _ e—amlnz) + 0 Z [e—amlnz . 1]2
m>M i
=1/2Inz 3, a(m) + 0 3, a¥(m)In*z .

Here we have made use of the fact that there are absolute constants
h., hy, > 0 such that

(4.16) In(1 + u) — u| < b’
for

(4.17) ~12<u=0
and

(4.18) max {(e=* — 1 + ¢, (=t — 1)} < hyt?
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for 0 < t. Next,
(4.19) S, =8+ S,
where

(4.20) 0>8;,= ZH {In(1 4+ z=*m) — g=*m} = (e7° — 1) 3, x~%m

m=M

and

(4.21) Si= 3 o7 = | adt + Ow) .

ms=M 1

Here the right side of (4.20) was obtained by majorizing the series
for the logarithm by a geometric series. To estimate the integral
on the right of (4.21) we observe that there is a continuously
differentiable function g(u) such that

(4.22) g(a@®) = —a'(t) .

By making the change of variable uw = a(¢), the integral becomes

(4.23) rm exp[—(n 9c)u]ﬂ .
@) g(u)

By the intermediate value theorem the integral equals

[—et0 — g—w] z—atn
<

dM)Inz T |a(M)|lnx

(4.24) —

where 1 < M, £ M; the upper bound of (4.24) follows from (4.1)
and (4.2). The estimate (4.24) also applies to the sum on the right
of (4.20) with x* in place of x. The theorem now follows from
(4.15), (4.20), (4.21), and (4.24).

PROPOSITION. For € A we have

(4.25) Co(x)—> 0 as & — oo,

Proof. Set M =0. By

(4.26) —In(1l —u) >u
and (4.15) we have
(4.27) S, = . 53*1 — 27*™) = ,5(1 — e *)N(u, x)

where the asterisk indicates the summation is limited to
(4.28) u/(In z) < a(m) , 2<m,

and N(u, x) is the number of m for which (4.28) is valid. For any
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fixed » > 0 it is clear from (1.4) that
(4.29) N(u, 2) — o0 as x—— o,

and (4.25) follows.

5. Uniqueness. Let L = L, be the differential operator

d
5.1 L =2z=.
(6.1) =
Let T = T, be the operator that replaces z by 2z for example
T,sinz = sin 2*. It is straightforward to show that
(5.2) Lif(z¥) = a’TLf(7) , s=123, ---

for all infinitely differentiable functions f(z).
Set 4,(z) =z, and for n = 1 let

4@ _ [ Ad)
&3 i e ik

The polynomials A,(z) =2, A2) =2+ 2, AR =2+ 4*+2° ---
are called the Eulerian polynomials. They may also be defined by

(5.4) A, = A() = 2z — 1)"H,(z)
where
(5.5) AL,

e — 2z 2=0 n!

For surveys of their properties see {1, 3, 7, 8]. They satisfy the
reciprocal property

(5.6) 2"A, (27 = A?)
and the recurrence

(5.7) A,y = (n + Dzd, + 2(1 — z)O%A,, .

From (5.7) we see that
(5.8) A4,1) = n!

and (by establishing recurrence relations for the individual coefficients
of the A,) that the coefficients of the polynomial A, are nonnega-
tive; see [1]. Somewhat deeper is the fact that for ¥ = 1 we have

(5.9) Ap(—1) =0, Ay, (-1 = (-D"'T,

where
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(5.10) Ty = (—1)*(2k)"' By (2* — 1)2%
and

11 2(2k)!
(5.11) By = (-1 220 cem)

where {(s) is the Riemann zeta function; see [7], p. 2 and pp. 84-90,
and [10], pp. 16-20. The elucidation of the asymptotic behavior of
the Eulerian polynomials has been carried out by Evans [4]. He
proves and applies the identity

(5.12) A,2) = nl (z — 1)m+ :i (nz + 2wim)—""

valid for all complex z = 0 (the point 2 = 1 is a removable singularity;
note (5.8)).

We can now establish a uniqueness result for Vieta products.
In what follows U shall denote an open set containing the unit
cirele, and 2z* shall denote the principal value of the fractional
power.

THEOREM 3. Let o, 3 A and let r(z) be a function meromor-
phic on U. If

- 2 = 2
5.13 =
(5.13) i =@
then r(z) =1 and
(5.14) A = B, m=128 ---.

Proof. Logarithmic differentiation on U yields

o0 amzam _ ) Bmzﬂm
(5.15) m2=,1 T4 2 Q) + mgl 14
where

(5.16) Q) = —2r'(@)/r(®) .

Sinee > a,, and 3 8,, converge, both sums in (5.15) are holomorphic
in the plane with the closure E of the negative real axis deleted.
Moreover, since both sums are bounded in any dise, the funection
r(x) can have neither zeros nor poles in U, and Q(x) is holomorphic
in the plane with E — U deleted.

Apply the operator L° to both sides of (5.15). By uniform con-
vergence, (5.2), and (5.83) we obtain
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M

asAs(__za)(l + z:x)—s-l

1

3
1l

(5.17) o
= —L'Q@) + 3 B A=) + 2)

where a = a,y, B = Ban.

We now compute the jump in the values of the functions on
the left and right of (5.17) as the negative real axis is crossed
counterclockwise on the unit circle. With the aid of (5.6) we find
that each coefficient of a® on the left contributes

As(_eimx)(l + eina)—s——l — As(___e—irm)(l + e—ixa)—a—l
(5‘18) — As(__eixa)[(l + eirm)-s——1 - (__eimx)as—l(l + e—-izot)-—s—-l]
— As(__eimx)[l + (_1)3](1 + eimr)«-s~1 .
Set
(5.19) U=u, = —e~

so u— —1 as m — . Since L*Q(z) is continuous on U, we obtain,
upon equating the jumps,

(5.20) F(a) = F(B)
where

14 (=1 atA(u)
)= 29—

=3 % [1+4 (-1yleH®w) ;
m=t 1l —u

(6.21)

recall (5.4). Clearly the series converges for each s. We wish to
multiply both sides of (5.21) by ¢!/s! and sum over all s =1,
Observe that

(5.22) [A(w)] < s!

by (5.8) and the remark following it. Hence for any bounded region
in the t-plane and a suitably large integer m, the resulting double
sum has the form
(5.23) 53+

8 m<mg s mzmg
where the second sum is majorized by a constant multiple of the
convergent series

(5.24) o= S Saltf = 3 alt]

mzZmg 321 mzml — ’tl ’
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Here o converges throughout the region since ¢ is bounded and
a = a, is very small for m = m,. This shows that the summations
over s and m may be done in either order, and it follows from (5.5)
and (5.20) that

(5.25) Gla) = G(B)
where

o u [1—u 1—u
(5.26) G (a) = mZzl 1 — u,Le‘” — % + e~ — 2} '

The series for G.,(@) is analytic as a function of ¢ except for simple
poles at the zeros of KE\(¢) and E,(t) where

(5.27) E(t) = e* + &, E,(t) = e~ + ei™ ,
The pole of G,(@) closest to but above the real axis is
(5.28) w(—1 + a(l)™);

from the corresponding statement for G,(3) we deduce that a(l) =
BA). By subtracting off the m =1 terms from G,(a), G,(B) and
repeating the argument we find that a(2) = 8(2), and so forth. This
proves the theorem.

We leave open the problem of the linear independence of three
or more Vieta products over the field of functions meromorphic on
U, and also the inhomogeneous problem for two products.
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