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By a submersion we shall understand a C” surjection f:
X — Y between paracompact C” manifolds with dim X > dim Y,
subject to the condition that the differential of / have max-
imal rank at all points. This implies that the fiber f, over
any point yeY will be a smooth regularly imbedded submani-
fold of X. Differentiable fiber bundles constitute a special
class of submersions, characterized by the existence of local
product structures, and in this particular case all fibers f, are
homeomorphic to a standerd fiber . The central result in
the homelogy theory of fiber bundles asserts the existence of
a convergent spectral sequence whose £~ term is the bigraded
group associated to some filtration of H.(X; G)!, and for which

E.~ H,(Y; H(F; ()

in case the bundle is orientable over G. In the present paper
this result is generalized to arbitrary submersions. The E®*
terms now come to be identified with certain groups H, .(f; G)
representing a homology functor from the category of sub-
mersions to the category of bigraded groups, which reduce of
course to H,(Y; H,(F, G)) in the classical case.

The functor in question has been previously studied by Sekino
[4], who has shown that in its relativised form it satisfies axioms
of the Eilenberg-Steenrod type, for which a categoricity theorem
can be established. In §1 we will give a direct constructive defini-
tion of the homology groups H, .(f; G). The construction of the spec-
tral sequence and identification of its E* terms take place in §§2 and
3, followed by a final section setting forth a few applications of the
theory. We also note that §4 should be entirely comprehensible
following §1.

A few remarks on the subject of applications may be in order.
The usefulness of a spectral sequence clearly depends on the ease
with which the homology (or cohomology) groups representing its £*
terms can be evaluated or estimated in various geometric situations.
For the spectral sequence under consideration we have found that
these calculations can generally be effected with particular ease and
directness, and so far as the study of submersions is concerned, this
approach may well offer advantages over the sheaf-theoretic cohomol-
ogy approach represented by the spectral sequence of Leray. Our

! Throughout this paper G will denote an arbitrary coefficient group and Hy the
singular homology functor.
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construction capitalizes on two fundamental facts: firstly, that every
compact subset of a fiber can be enclosed in tubular a neighborhood,
a property which generalizes the local product structures character-
istic of fiber bundles, and which itself may be regarded as charac-
terizing the class of submersions.” Secondly, we make stong use of
the fact that homology commutes with direct limits. These premises,
together with the circumstance that our base spaces are triangulable,
enable one to construct a homology theory and corresponding spectral
sequence constituting a particulary direct geometrical approach to the
problem at hand, which is to study the relations between the topol-
ogical structures of the total space, base space and fibers. To give
at least one example of such a relation at this point, we will cite
the following result established in §4.

THEOREM. Let f:X—Y be a submersion between orientable
manifolds of dimensions n and m, respectively, having conmected
JSibers; and let U denote the subspace of Y corresponding to compact
fibers. The Betti number of X and U are then subject to the rela-
tion R, (X;G) = R,._(U; G).

In particular, when Y is the real line this theorem asserts that
R, (X;G) is bounded below by the number of components in U,
which might be a hitherto unnoticed result concerning real-valued
functions with nowhere vanishing gradient. It should also be pointed
out that our theorem pertains strictly to the theory of submersions,
inasmuch as it obviously fails for more general maps (the map
f: R*— R defined by the formula f(x, ¥) = 2* + y* would provide an
easy counter-example).

1. Homology of submersions. Our construction hinges on the
concept of a simplicial bundle over a simplicial complex K, which we
define to be a function that assigns to each simplex ¢ € K a commu-
tative triangle

lo| x F,—2

— K,
N\ /
71'0\ / Do

lo|

where E,, F, are topological spaces, |o| is the closed space of o, 9,
a homeomorphism and 7, the natural projection, this data being subject
to the following descending face condition: for every face 7 < ¢ and
xelr|,

2 From this point of view one could dispense with the assumpation of differenti-
ability.
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; (x) C pi(x) .

This insures that the projections p, induce a projection p: E — |K|,
where E denotes the topological sum of the spaces E,. A simplicial
bundle is said to approximate a submersion f: X —Y with respect
to a compact subspace C — X provided CCc EcC X, f(C)C |K|CY
and p = f|E (the restriction of f to E). The essential connection
between simplicial bundles and submersions may now be expressed
in terms of the following basic approximation theorem.

THEOREM 1.1. Let f: X — Y be a submersion and C a compact
subspace of X. Let M be a simplicial complex such that’ Y = |M]|.
Then there exists a simplicial bundle over some barycentric subdivi-
sion K of a subcomplex of M which approximates f with respect to
C, and whose total space E is compact.

The proof is substantially identical* with the proof of Lemma 2
in Smith [6] and proceeds by an elementary inductive argument
involving tubular neighborhood constructions. Essentially the ap-
proximation theorem permits us to view a submersion as the direct
limit of an approximating system of simplicial bundles, an idea that
has been formulated in category-theoretic terms by Sekino [4] and
constitues the basis of his theory. For our present purpose it will
suffice to associate with any given submersion a sequence of simpli-
cial bundles satisfying the conditions of the following theorem, con-
ditions which insure that the given sequence is cofinal in the full
approximating system and consequently adequate for the computation
of direct limits.

THEOREM 1.2. Given a submersion f:X —Y, there exists a
sequence {p: E — |K|} of simplicial bundles such that

(1) for every compact subspace C C X there exists a positive
integer a such that p: JH — | K| approximates f with respect to C;

(2) for a < B, B < sE and there exists a nonnegative integer
n such that K C ;K (where "K denotes the nth barycentric subdivi-
sion of K).

3 Qur differentiable manifolds are triangulable, and we will suppress the triangu-
lating homeomorphism by assuming the corresponding identifications.

¢ The only difference being that in [6] we were concerned with simplicial bundles
“dual” to the bundled here envisaged, i.e., bundles for which our descending face condition
was replaced by a corresponding ascending face condition. While simplicial bundles of
the descending type are adapted to homology theory, bundles of the ascending types
are adapted to cohomology and obstruction theories. The only change required to adapt
the proof in [6] to the present case is to reverse the direction of the induction procedure
so as to go from high to low dimensions. See also Endicott [2], pp. 39-43.
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To prove this on the basis of our first approximation theorem,
one need only choose a covering of X in the form of a nested sequence
{C,} of a compact subsets and proceed by induction. Thus we suppose
that for all a <+ we have simplicial bundles »,: . & — | K| satisfying
condition (1) and (2), with the additional stipulation that each K is
a barycentric subdivion of a subcomplex belonging to a given tri-
angulation L of Y. Let m be a nonnegative integer such that
»K,c L. Applying 1.1 with C=C,,U,E and M = "L yields a
simplicial bundle on the (v + 1)-level which preserves our inductive
hypothesis, and this completes the proof.

At this point the fundamental idea underlying our construction
of the homology groups H,.f; G) can be explained. Given a simpli-
cial bundle p: E — | K|, coefficient group G and integer ¢, we will
define a corresponding chain complex C.(K; H(F;G)) in which the
homology groups {H.(F,;G), c e K} function as a local coefficient
system. Given a submersion f: X — Y, we will choose an approxi-
mating sequence of simplicial bundles in accordance with 1.2, and
this gives rise to a corresponding sequence of chain complexes
C.(.K; H(.F; @), together with chain projections ¢/ defined for a < g,
constituting a direct system of chain complexes. The homology groups
in question may now be defined by setting

(H,,(f; @) = Hlim C.(K; HF5 G)) 5

or equivalently, as the direct limit of the direct system
{HCi(K; HF; @))), ¢} -

It follows from the previously noted cofinality of our approximating
sequence {,p: ., — |, K|} that the groups H, .f;G) can be identified
with the functorial homology groups investigated by Sekino, a fact
which we need not presuppose, however, and which will play no role
in the applications presented in §4.

We proceed now to define the chain complex associated with a
simplicial bundle p: E— |K|. For s = 0 we let

(1.3) C(K; H(F; @) = ® Hlol, l6]) ® H(F,; @)

where K denotes the set of s-simplexes in K and || the boundary
of |o|. To obtain boundary operators, we note that the inclusion
maps’

Jo: (lol, la]) c (| K*|, | K*7*))

induce a direct sum representation

5 K® denotes the s-skeleton of K.
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{ja*}: 93) Hs(!gly ]O.-D ~ Hs(Ks, Ks-‘l) ’

and we let
q,: Hs(Ksy Ks_l) — Hs(IGL ‘O..D

denote the corresponding projections. For every te K“V we can
define 2 homomorphism

e H(lol, |6]) — H,_,(I7], |7])
by setting & = q.0d,° j,., Where
0, H(K*, K*™) — H,_(K*', K*7)

denotes the connecting homomorphism for the triple (K*, K*-!, K*~%.
A simple direct calculation gives

LEMMA 1.4. Let T and p denote simplexes in K of dimensions
(s — 1) and (s + 1), repectively. Then

> grees =0,

se K(s)

For 7 < 0 and z€|7]| one can define (by virtue of the descending
face condition) an injection ¢:,: F, — F. through the formula
(1.5) 15,:(Y) = w0 P10 Dy(x, Y)

where 7zl:|7| X F,— F. denotes the natural projection. Since the
homotopy class of i, is clearly independent of x, one obtains canoni-
cal homomorphisms

t: Hy(Fo; G) — Hy(F:; G)

henceforth referred to as fiber projections, for which the following
transitivity condition is easily verified {4, p. 39]:

(1.6) 500, =1, for <o <p.
The desired boundary operators

0: C(K; H(F; G)) — C,_(K; H(F; @)
may now be defined for s = 0 through the formula®

.7 @R = 3 &le) Qi)

Te K87
where

6 Since &; = 0 unless r < ¢, the formula makes sense.
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(1.8) a®ceH(al,|6]) & H(F; G),

and it follows by (1.4) and (1.6) that d-0 = 0.

This completes our construction of the homology groups
H/(K; H(F; @) associated with a simplicial bundle. It should be
pointed out, however, that for a simplicial bundle approximating a
submersion f: X — Y, the fiber projections ¢; admit a simple geometric
interpretation. The homeomorphisms @,: o] X F,— E, now consti-
tute tubular neighborhoods in X, and without loss of generality one
may assume that these tubular neighborhoods are associated with a
given “horizontal distribution” on X, i.e., a distribution of m-planes
which is transverse to the fibers. If for each o€ K we identify F,
with p;'(b,), where b, is (say) the barycenter of ¢, then it turns out
that the fiber projection 4: is induced by an injection 4: F', — F, in-
duced by the horizontal liftings of some path in |¢| from b, to b..

It remains now to construct the chain projections ¢: associated
with an approximating sequence (1.2), for which purpose we need to
consider canonical (or “barycentric”) subdivisions of simplicial bundles
[4, p. 42]. Let p: E — | K| be a simplicial bundle. For each s-simplex
w belonging to the nth barycentric subdivision *K of K there exists
a unique o€ K such that |w| cC |o|, and setting "F, = F,, "E, =
v;i(|o})), "0, = 0,||l®| X F, and *p, = p,|"E, one obtains a new sim-
plicial bundle "p: E — |*K |, which is the nth canonical subdivision.
On the chain level one obtains a corresponding chain homomorphism

Sd": C(K; H(F; G)) — C,("K; H("F; @))
through the formula
(1.9) Sd"(a ® ¢) = Sdy(a) K ¢
where again a ® ¢ is given as in (1.8), and
Sdz: Hlal, [6]) — @ H(w|, |®])

is essentially the classical subdivision operator, which may be defined
as follows. Let A = ["K°!|N|o]|, and let : ([c], [6]) < (Jo], A) and
12 (lw|, |@]) < (lo], A) denote inclusions. Then

{12} @ H(lw|, |0]) ~ H(lo|, 4)
constitutes a direct-sum representation [8, p. 474], and one has

(1.10) Sd; = {15} "oty = X B,

Now let {,p: .E — | .K |} denote an approximating sequence as given
by 1.2, and let a < 8. This determines an integer n such that
K C ;K. Moreover, for every o€, ,K® and we ,K® with |w| C |d]|,
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we may identify ,F, and ,F, with ,p,'(x) and ;p;'(x), respectively,
for some x € |w|. Since E C E;, one thus obtains an inclusion induced
injection j: ,F,— ,F,, whose homotopy class is independent of z.
The desired chain projections

#t: C.(.K; H(F; @) — C,(,K; H(F; @)
are defined on the generators a X ¢ by setting

(1.11) gila ®e) = 3.B;u(a) ® jole) ,

and it is obvious that the transitivity conditions for a direct system
are satisfied.

2. The spectral sequence of a simplicial bundle. As previously
affirmed, we shall define a spectral sequence corresponding to a given
submersion f: X —Y whose E?, term may be identified with the
homology group H, .(f; G) constructed in the course of §1. Again our
procedure will involve two basic steps: firstly, we will define a spectral
gsequence associated with a simplicial bundle p: £ — | K|, whose EZ,
term may be identified with the corresponding homology group
H(K; H(F; ®). In §3 we shall once more consider an approximating
sequence of simplicial bundles, which gives rise to a direct system
of spectral sequences, from which we obtain the desired spectral
sequence in the direct limit.

Our first step follows an approach introduced by Chern and Spanier
[1], and subsequently extended by Spanier [8], which considers the
filtration of the total space X induced from the skeletal filtration
resulting from a triangulation of the base space. This filtration of
X induces a filtration” of the singular chain complex S(X; &), which
in turn gives rise to a spectral sequence [8; §§9.1 & 9.2]. Applying
this idea to the case of a simplicial bundle p: £ — |K|, we let E,
denote the empty set for s < 0 and set

E,=UE, for s=0;
ge KS
to obtain the following result, which is a special case of Theorem 2
[8; p. 469].

THEOREM 2.1. There exists a convergent KE' spectral sequence
with
Eslt ~ Hs+t(Es7 Es—l; G) ’
d' corresponding to the connecting homomorphism 0, of the triple

7 This filtration is convergent and bounded below.



286 PATRICK C. ENDICOTT AND J. WOLFGANG SMITH
(B, E,_,, E,_,), and E* isomorphic to the bigraded group associated
to the filtration of H.(E;G) defined by
F.H.(E; G) = Im[H,(E,; G) — H.(E; G)] .
It will be shown that there exist isomorphisms
")[f‘s: CS(K; Ht(F; G)) ~ Hs-l-t(Ea, Ea—l; G)
under which the boundary operators (1.7) correspond precisely to 4,.
This fact, together with 2.1, will give our first main result,
THEOREM 2.2. Given a simplicial bundle p: E— | K| and coeffi-
cient group G, there exists a convergent E*? spectral sequence with
Esz»t ~ 'HS(K; Ht(F; G)) ’
and E= isomorphic to the bigraded group associated with the filtra-
tion of H,.(E;G) described in 2.1.

We begin our construction® of +, with
LEMMA 2.8. For every o € K the homology ¢ross product defines
an tsomorphism
#0: Hs(lo.l) lo.-l) ® Ht(Fa; G) ~ s+t(([0I9 [él) X Fa; G) .
This follows directly from the Kiinneth formula [8; 10, p. 235].

Next, the homeomorphism @, of the simplicial bundle furnishes as
isomorphism

?,: H,((lol, [0]) X Fy; G) ~ Hy(E,, E; G)
where E; = p;(|6|). The third step is given by

LemMMmA 2.4. The inclusion
i (B, E;) < p~'(la], |6))
induces an isomorphism between corresponding homolgy groups.

To prove this, let e denote a closed s-cell in the interior of |o|,
let e denote the interior of ¢, and consider the commutative diagram®

H,(E,, E) - H,(B,, p; o] — &)
i,,'. hs
H( (0], 161) —— B0~ (0], 16] - &)

8 Here one should recall (1.3).
9 For brevity we will suppress G in some diagrams.
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induced by inclusion maps. Since E, and p~'(|¢|) can differ only over
o], and |d]| lies in the interior of (|o| — é), one sees that h, is an
excision induced isomorphism. Moreover, since |6| is obviously a
deformation retract of (Jo|—é), the isomorphism @, guarantees that
E; is likewise a deformation retract of p;'(jo| — é), which implies
that 4, is an isomorphism. But since any deformation retraction

v, p; (o] — &) — E;
extends trivially to a deformation retraction
(2.5) rip (o] —e)— p7(|d])),

it also follows that &, is an isomophism, and this proves our lemma.
The final step in our construction of +, is provided by the fol-
lowing result, which is an exact analogue of Lemma 2 [8; p. 474].

LeEMMA 2.6. The inclusions
i p7 (o], |6]) C (B, E,_)
nduce a direct-sum representation

{iv}: @ Hu(p'(lal, |6]); O~ H(E, E, ; G) .

ge K(8)

Moreover, in view of the deformation retractions (2.5), Spanier’s
proof carries over verbatim to the present case.

Combining the isomorphisms established in the four preceding
steps, we may now define +, by the formula

2.7 Vs = {1, [D D] [D ¢,]

where the direct sums extend over all 0 € K® and ¢, = 7" o 7, denotes
the inclusion (¥, E;) C (H,, E,_,).

It remains to be shown that the isomorphisms +, commute with
the respective boundary operators. Before embarking upon this some-
what delicate calculation, we shall establish the following lemma,
which turns out to be cruecial.

LemMA 2.8. Let 0 K® and T an (s — 1)-face of 0. Let x,€|T|,
and let
o (||, 1)) X F,— (E,, E;)
denote the map induced by @,. There exists a homotopy

H:(z|,|t]) X F, x [— (K., E,_)
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such that
H:t 00 o(l. X 45,) = 1,090,

where 1.:(|7|, |T]) — (7|, |Z]) is the identity and 4i;,:F,— F. the
injection given by (1.5).

To construct H, we first define a map
o (7], |T)) X F,—— (7], [T]) X F.
by setting
o, y) = @, 45..(y)) .
One verifies by a simple direct calculation that
(2.9) D00 =jod;

where
o (I, 7)) < (&, E:)

denotes the inclusion. Composing both sides of (2.9) with ., and
observing that 7.05 is a restriction of ¢,, one obtains

1.o@ 00 = 1,00 .
It will therefore suffice to construct a homotopy
H:(|z|, |¢) x F, x I— (|z|, |¢]) x F.
such that
(2.10) H:p=1 x4,

from which the desired homotopy H can be obtained by setting
H=1i.0.0H. To construct H, we observe that there exists for
each x €|7| an obvious homotopy H,: F', X I — F. such that

H,: 95 = 95,0,

which results from (1.5) by identifying I with the line segment in
|z| from 2 to x, under the canonical affine map. One can then define
H through the formula

H(z, y, t) = (z, H,(y, 1))

which gives (2.10), and establishes our lemma.
The desired commutativity reduces to the formula

(2.11) Per00(a @ ) = 0,p(a X ¢)

which we will now establish by direct calculation. Since ¢ is given
by (1.7), one obtains
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(2.12) Vour-0(a @ €) = 9, 3 &i(a) @ 15(c)

where the sum can be thought of as extending over all ze K¢V,
Applying (2.7), and bearing in mind that f. represents the homology
cross product, one may rewrite (2.12) in the form

(2.13) Por00(@ @ €) = 3Lt Do(el(@) X 15(c)) -

It follows from our definition of the fiber projections (given in §1)
that

o = (15,00)%

for any x,€|7|, which together with a well-known property of the
cross product [8; 11, p. 235] gives

e;(a) X 15(e) = (1. X 95.)«(e5(a) X ¢) .
Substituting this into (2.13) and applying (2.8) gives
(2.14) Pe_00(@®ec) = Z 1.0 Do(el (@) X ¢€) .

Before going further, we must introduce some additional spaces
and maps. We will let |G| denote the union of all closed (s — 2)-faces
in o, and set E; = p;(|6]). This brings into play the new inclusions

i;;: (E:}; Ea) c (Es—u Es—2) ’
i (7], [Z) < (g, 1],

together with the homeomorphism
@;: (|6, |6]) X F, ~ (E;, B,
constituting a restriction of @,. Since
1,0 D5 = 45050 (7° X 15)
one may rewrite (2.14) in the form

(2.15) Pe100(@ @ €) = D o oo (17 X 1p,),(e5(a) X ¢) .

Using [8; 11, p.235] once more, one has
(2.16) (57 X 1p )«(e5(a) X ¢) = ikoei(a) X ¢.

By a tedious but elementary calculation, for which we refer to [2;
pp. 36-37], one verifies that

(2.17) Z i cex(a) = 0%(a)
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where
ok Hylol, |6]) — H,_(|6], 6]

denotes the connecting homomorphism of the triple (Jo|, [d], [G]).
Letting

a;{: Hs‘l-t(Em Eo; G) B Hs+t—1(E(}7 Eﬂ; G)

denote the connecting homomorphism of the triple (#,, E;, E,), one
obtains

(2.18) 0%(a) X ¢ = d¥(a X ¢)

which follows as a special case of [8; 15, p.235], bearing in mind
that the exact sequence of a triple constitutes a special case of the
relative Mayer-Vietoris sequence [8; pp. 180-190]. Combining (2.16),
(2.17), and (2.17), and (2.18) with (2.15) gives

(2.19) Yo 00(@ @ e) = tpo Dy 0 0%(a X ) .

Now let 0%’ denote the connecting homomorphism of the triple
(lel, |al,16]) x F,. By naturality of the connecting homomorphism
one obtains

(2.20) D;.00Y =0y D,.

and for the same reason

(2.21) U0 0y = 0401, .
Substituting (2.20) and (2.21) into (2.19), one obtains
(2.22) Yro100(@@e€) = 0x0t0D,(a X ¢).

Recalling the definition (2.7) of +,, together with the fact that g,
represents the cross product, one sees at last that the right side of
(2.22) reduces to 4, 04,(a @ c), which confirms (2.11) and completes
the proof of Theorem 2.2.

3. The spectral sequence of a submersion. We now turn to the
main task, which is to construct a spectral sequence a spectral sequence
associated with a given submersion f: X —Y. Let {,p:.F— |.K|}
be an approximating sequence of simplicial bundles supplied by (1.2),
and for each «a let {,E”, .,d"} denote the spectral sequence associated
with the corresponding simplicial bundle and given coefficient group
by the construction of §2. Condition (2) in Theorem 1.2 implies
that the inclusion E C ,E (defined for a < p) is filtration preserving,
i.e., that ,E, C;E, for all s, and consequently induces a homomor-
phism 26" between the respective spectral sequences. This system of
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homomorphisms obviously satisfies the requisite transitivity conditions,
and one therefore obtains a direet system of spectral sequences.
Taking the direct limits

E" = lim FE"
dr = lim .d"

gives, for each r = 1, a bigraded group E~, together with a differ-
ential d” of bidegree (—7,r —1). The remaining ingredient of a
spectral sequence, i.e., a system of bigraded group isomorphisms
0" HE"Y ~ E™, can likewise be obtained as a direct limit of the
corresponding isomorphisms 6" H E") ~ E"+'. More precisely, the
fact that f¢" constitutes a homomorphism of spectral sequences implies
commutativity of the diagram

"
H(E) - F
| [z
807

H(GE") — ;E™

so that {,0"} constitutes an isomorphism between the given direct
systems of bigraded groups. Since homology commutes with direct
limits, one obtains the desired isomorphism 6": H(E") ~ E"** by setting

6" = lim 0" .

We have thus constructed a (first quadrant) E*' speectral sequence
{E", d"} associated with the given submersion, and it remains to verify
our claims concerning its E*® and E~ terms.

To begin with the E” term, we must first exhibit an increasing
filtration F,.H,.(X;G) of the graded group H,.(X;G), and must sub-
sequently identify E~ with the bigraded group associated to the given
filtration. Consider the filtrations {F,H,.(.E; G)} of H, (.E;G) defined
in 2.1. The inclusions ,E, C ;E, induce homomorphisms

b, F.H,E; G) — F.H,E; @)
which give rise to a commutative diagram

S P H(E) -5 P H(E) — - —— F H(E) = H,(.E)

— FH,E)-2% F H,(E) — -+ — F,H,GE) = H,E)

where the ,j, are actual inclusions and m = dim Y. This constitutes
a direct system of filtrations, and we define
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F.H.(X;G) = lim F.H,(.E; G
—_
Js = lim g, .
—

Since the direct limit of monomorphisms is a monomorphism, and

since also
lim H,(.E; G) = H(X; G)

one concludes that {F.H.(X;@), j,} is a filtration of H.(X;G). To
achieve the desired identification of E, we note that for every «
there is a short exact sequence

0— F\, H, . (E; G) 3 F H, (E; G) — Bz, — 0.

By functoriality of this sequence [3; 3.1, p. 327] there is a commuta-
tive diargram

0— F,_H,..(E) <3 F.H,, (E) -2 E5— 0

b b b

0— F\_H,.GE) 23 F.H,.E) 2> ,Ex, — 0

for @ < B, giving a direct system of short exact sequences. More-
over, since {E", d"} is a convergent spectral sequence, it is obvious

that
E® =lim E~.
—

One therefore obtains a short exact sequence

0—— F\H, . (X; G) =25 FH,(X; G) o B2, —— 0

in the direct limit, as was to be shown.
It remains to establish an isomorphism

sz,t ~ s,t(f; G)

taking Theorem 2.2 as our starting point. By naturality of the
isomorphism [3; 3.1, p. 327]

Esl,t ~ Hs+t(Esi Es—l; G)

and once again taking into account that homology commutes with
direct limits, it will suffice to establish commutativity of the diagram

C.(K; H(F; ) 25 H,, (B, Evr; @)

%] J=

C.K; HF; @) -2 H,, (B, 1B._; G)
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for a < B, where ¢% is given by (1.11), +, by (2.7) and z% is inclusion
induced. Now this diagram splits into three diagrams, corresponding
to the three factors in terms of which +r, is defined. Taking into
account (1.9), (1.10), and (1.11), the first of these subdiagrams becomes

H(o,16) @ H(F,; 6) L5 H (o], 16]) X Fy; G)
ix®1 l(i X 1)
Hlol, 4) Q H(F; @ 2 H. (o], 4) % (Fy; G)
) ®1 ]{(z‘:: X Dl
O Hwl, |0) @ HF; )25 @ Hul(o], |0]) X F;G)
DAR 5o l@ 1 X 39«
D H(ol, |6)® HGF.6) 5 @ Hl(o], |6) % 1F.; 6)

which commutes by naturality of the homology cross produet. Next
we have the subdiagram

Hool(0],16]) % oF; @) =25 H, o (B, Es @)

(1 X 1)x l
H (0], 4) X o )25 Hoy (B, 07 (A); 6)
{35 X 1)4}
® Hol(o], [0) % Fr &) 208 @ H,\ (B, B G)
DA X 7))« léB h3,

@ Ho(@], |0]) X 1Fu; &) 225 @ Hov (B, 1By )

in which the vertical maps on the right are inclusion induced. The
top two rectangles derive from commutative diagrams on the space
level and consequently commute by functoriality. On the other hand,
since the homeomorphisms ,@, and @, derive from independent tu-
bular heighborhood constructions, the space level diagram correspond-
ing to the bottom rectangle need not commute. But once again we
are saved by the fact that the space level diagram in question is
homotopy commutative; i.e., we shall prove

LEMMA 3.1. There exists a homotopy
H: (o], |@]) X F, X I — (:E,, E,)

such that
H:hyo o@D, = s@,057 .

For convenience we will identify the fibers . F, and ,F, with
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«05 (o) and sp;'(x,), respectively, where x, € |w|, so that j: ,F, — ,F,
becomes an actual inclusion. Moreover, this implies that

a¢a(x0’ y) = y
for all y €, F,, and likewise for ;@,. Let
T |w| X JF,— F,

denote the natural projection, and for each z¢|w|, let ¢,: [ — |®]
denote the affine line segment from x to %,. The desired homotopy
H may now be defined through the formula

H<xy y, t) = ﬁQw(xy o ﬁ@av;l ° a@a<¢z(t); y)) .
It follows immediately that
H(z, y, 0) = .@,(=, ¥)
H(x; y, 1) - ﬂ@w(x) y)

and this establishes our lemma.

So far as the third and last subdiagram is concerned (we will
not exhibit it), one sees that it is composed entirely of inclusion
maps and therefore commutes trivially. This concludes our proof of
the following

THEOREM 3.2. Let f: X — Y be a submersion and G a coefficient
group. There exists a convergent E* spectral sequence with
E:, ~ H, (f; G)
and E° isomorphic to the bigraded group associated with a filtration

of H (X;G).

4. Some applications. The applications to be set forth arise
by way of our main result 8.2 from the following fact regarding
the homology groups H, .(f;G).

THEOREM 4.1. Let f: X-— Y be a submersion and U an open
subset of Y. If H(f,;G) =0 for all y¢ U, then
H,(f;G)~ H, . (fIU;G),
where f|U denotes the restriction of f to the preimage of U.
To establish this results, it will be convenient to introduce a few

definitions relating to tubular neighborhoods. By a compact tubular
neighborhood we shall understand a homeomorphism @: B X FF— V,
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where B is a compact neighborhood in ¥ and V a compact subspace
of X, such that fo@ is the projection B x F — B. Given ye B we
will set F, = V' N f,, and will let

Qz’:Fy_——)Fyy

denote the homeomorphism induced by @ for v, ¥’ € B.

LEMMA 4.2. Let @: B X F— V be a compact tubular neighborhood
such that B does not meet U, and let 2 CF, be a singular t-cycle,
where y € B. Then there exists a compact subspace C < X such that

(4.3) Quz~0 in CNYf,,
for all y' € B.

The proof runs as follows. Our acyclicity assumption implies
that for every point y’ € B there exists a compact subspace C, such

that
Quz~0 in C, .

By compactness of B one may conclude with the aid of an elementary
tubular neighborhood theorem [7] that there exists a finite sequence
of points ¥,, ---, ¥, and corresponding compact tubular neighborhoods

iQ:Bi X Fi-—-—->V¢

such that
(i) each B, is a convex neighborhood of ¥;;
(ii) {B, ---, B,} covers B;
(i) C,cV,fori=1,---,s;
iv)y Vvnsf*BycV,fori=1,-...,s.
We claim now that (4.3) holds with

C=V,U---uv,.

For let 4y’ € B. By (ii) there exists an index ¢ such that %’ e B,, and
by (iii) one has

24@%2) ~0 in CN .

Since

0%z = D02R)

it will suffice to show that

’ ’
oy = 0y .
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But the desired homotopy may be constructed exactly as in Lemma
3.1, by virtue of conditions (i) and (iv).

We may now proceed to the proof of Theorem 4.1. Let {U,} be
a covering of U by an increasing nested sequence of compact sets,
and let {,p: .F — |.K|} be an approximating sequence of simplicial
bundles satisfying the conditions of Theorem 1.2, together with

4.4) for every a and o€ K, if |o| meets U,, then |c|C U .

Let ,K denote the largest subcomplex of K such that |K|cC U, and
let ,7: ,E — |.K | denote the corresponding simplicial bundle. We note
that (4.4) implies U, C |[,K|. One therefore obtains a direct subsystem

z = {C*(aK: Ht(ap; G)), 9551}
of chain complexes such that

H(im %) = H, (f|U; &) .

It will therefore suffice to show that the inclusion
g?c & = {C*(aK; Ht(aF; G))’ ¢£}

induces an isomorphism in the direct limit. Since the direct limit of
monomorphisms is again a monomorphism, it only remains to check
surjectivity. Given a generator

a®ceH(ol, |6]) ® H(F.; G)
for o € ,K, we must show that there exists 8 > a such that
(4.5) gia @ ¢) e C,(:K; H(F; @) .

Let A denote the complement of U in |¢|, and assume without loss
of generality that A is nonempty. We may identify .F', with p;'(y)
for some y € A and let ¢ be represented by a singular ¢-cycle z C ;' (y).
Since A is compact, we conclude by Lemma 4.2 that there exists a
compact C < X such that

(4.6) Dz ~0 in CNf,,

for all y’e A. Choose @ > a such that C c,E. Recalling (1.11), one
sees that (4.5) may be established by showing that for every w e K¢
with |w|C|o| and w ¢ ,K one has j4(c) = 0. But given such an o,
there must exist a point ¥’ €|w| N A, and one may identify ,F, with
»,¥"). The map j¢: ,F,— ,F, is then represented by ,0 (followed
by the inclusion »;'(y¥') C p;'(%’)), and consequently (4.6) implies the
vanishing of ja(e).

Theorem 4.1 will be of interest in two special cases. In the first
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place, if f: X*— Y™ is any submersion having connected fibers, the
conditions of (4.1) are seen to hold if one takes U to be the subspace
of Y corresponding to compact fibers, and takes ¢t = n — m. More-
over, the restriction f|U will now be a fiber bundle, and if X, ¥
are both oriented, the homology groups H,_,.(f,; G) may be canonically
identified with G for all ye U. It is therefore easy to evaluate
H,,_ .(flU;G), and one obtains

(4.7 H, . wlf; &)~ H(U; @) .

Secondly, the conditions of (4.1) may hold for an empty set U, in
which case one has

(4.8) H,(f;G) =0 for all s.

It should also be noted that (4.1) fails when U is not open.

Theorems 3.2 and 4.1 together give rise to an indefinite number
of geometric propositions, which we shall illustrate by means of a
few examples. The most immediate of these consequences is no doubt
the Vietoris-Begle theorem for submersions, which we have previously
established [7] by elementary methods. Turning to new results,
one has

THEOREM 4.9. Let f: X —Y be a submersion between orientable
mantfolds of dimensions n and m, respectively, such that every fiber
fy 18 either a homology (n — m)-sphere or else acyclic over a given
coefficient group G. Then there exists an exact sequence

A Hs(-X; G) — Hs(y; G) —_ -Hs—'n'l-m—l(U; G) — e

where UC Y denotes the subspace corresponding to compact fibers.

This clearly generalizes the Thom-Gysin sequence for sphere
bundles, and we also note that for submersions of codimention 1 the
result has been previouly established [5] by different methods. To
prove our theorem, one concludeds by (3.2) and (4.8) that EZ, is trivial
except when ¢ equals 0 or (» — m), which means that d"™+* is the
only nontrivial differential in our spectral sequence. One therefore
obtains exact sequences

- . dn—m+2 . -
0 Es 0 Es 0 s—ptm—1,n—m > s—ntm—1,n—m >0

and
00— Eso-o—n-l-m,n—m I -Ha(X; G) B Esofo —0

which by the standard “splicing trick” give rise to a long exact
sequence
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s — I{s(X; G) E— E32,0 —_ E82—7L+7VL——','IL—77L —_
Since
Es2~7o+m~1,nfm ~ Hs-n+M*1( U; G)

by (3.2) and (4.7), and clearly
El,~H(Y;G),

one obtains the result in question.

It is of interest to note that some of the information contained
in the generalized Thom-Gysin sequence for large values of s carries
over under much weaker assumptions; for example, one can obtain

THEOREM 4.10. Let f: X — Y be a submersion between orientable
manifolds of dimensions n and m, respectively, whose fibers are con-
nected. Then there is an inequality

R, (X;G) z R, .(U; @)

wmmvolving the Betti numbers of X and U, where UC Y corresponds
to the compact fibers.

To show this we note that E?, is trivial for s > m, and by (4.8)
it is also trivial for ¢ > n — m. Since all differentials touching
E,_, .. are therefore trivial for » = 2, one has

E;L—],n~m ~ E;:—-l,’lb——m .
But by (3.2) and (4.7), this implies that
E;%ofl,n—m ~ m-l( U; G) b

and the desired rank inequality follows now by the last assertion
contained in (3.2).

We will close with another result of this nature, which may be
established through a simlar consideration.

TBEOREM 4.11. Let f: X — Y be as in 4.10, with the additional
stipulation that the fibers are G-acyclic im positive dimension
n —m — 1. Then there is an additional rank inequality

R'n-2(X; G) .2_ Rm——z( U; G) ’

where UCY corresponds to compact fibers.

REFERENCES

1. S.S. Chern and E. H. Spanier, T he homology theory of sphere bundles, Proc. Nat. Acad.
Sci., 36 (1950), 248-255.



A HOMOLOGY SPECTRAL SEQUENCE FOR SUBMERSIONS 299

2. P. C. Endicott, Simplicial Bundles and the Homology Structure of Submersions, Dis-
sertation, Oregon State University, 1977,

3. S. MacLane, Homology, Springer, 1967.

4. J. Sekino, Homology Theory of Submersions, Dissertation, Oregon State University,
1974.

5. J. W. Smith, An exact sequence for submersions, Bull. Amer. Math. Soc., 74 (1968),
233-236.

6. ————, Submersions with p-connected fibers, Math. Z., 121 (1971), 288-294.

7. ——————, On the homology structure of submersions, Math. Ann., 193 (1971), 217-224.
8. E. H. Spanier, Algebraic Topology, McGraw-Hill, 1966.

Received August 23, 1978.

Orecon State UNiversiTy

Corvatris, OR 97331






PACIFIC JOURNAL OF MATHEMATICS

EDITORS
DONALD BABBITT (Managing Editor) J. DUGUNDJI
University of California Department of Mathematics
Los Angeles, CA 90024 University of Southern California
Huco RosSI Los Angeles, CA 90007
University of Utah R. FINN and J. MILGRAM
Salt Lake City, UT 84112 Stanford University
C. C. MoORE and ANDREW OGG Stanford, CA 94305

University of California
Berkeley, CA 94720

ASSOCIATE EDITORS

E. F. BECKENBACH B. H. NEUMANN F. WoLF K. YosHIDA

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA UNIVERSITY OF SOUTHERN CALIFORNIA
CALIFORNIA INSTITUTE OF TECHNOLOGY STANFORD UNIVERSITY

UNIVERSITY OF CALIFORNIA UNIVERSITY OF HAWAIIL

MONTANA STATE UNIVERSITY UNIVERSITY OF TOKYO

UNIVERSITY OF NEVADA, RENO UNIVERSITY OF UTAH

NEW MEXICO STATE UNIVERSITY WASHINGTON STATE UNIVERSITY
OREGON STATE UNIVERSITY UNIVERSITY OF WASHINGTON

UNIVERSITY OF OREGON

The Supporting Institutions listed above contribute to the cost of publication of this Journal,
but they are not owners or publishers and have no responsibility for its content or policies.

Mathematical papers intended for publication in the Pacific Journal of Mathematics should
be in typed form or offset-reproduced, (not dittoed), double spaced with large margins. Please
do not use built up fractions in the text of the manuscript. However, you may use them in the
displayed equations. Underline Greek letters in red, German in green, and script in blue. The
first paragraph or two must be capable of being used separately as a synopsis of the entire paper.
Please propose a heading for the odd numbered pages of less than 35 characters. Manuscripts, in
triplicate, may be sent to any one of the editors. Please classify according to the scheme of Math.
Reviews, Index to Vol. 39. Supply name and address of author to whom proofs should be sent.
All other communications should be addressed to the managing editor, or Elaine Barth, University
of California, Los Angeles, California, 90024.

50 reprints to each author are provided free for each article, only if page charges have been
substantially paid. Additional copies may be obtained at cost in multiples of 50.

The Pacific Journal of Mathematics is issued monthly as of January 1966. Regular sub-
seription rate: $84.00 a year (6 Vols., 12 issues). Special rato: $42.00 a year to individual
members of supporting institutions.

Subscriptions, orders for numbers issued in the last three calendar years, and changes of address
shoud be sent to Pacific Journal of Mathematics, P.O. Box 969, Carmel Valley, CA 93924, U.S.A
0ld back numbers obtainable from Kraus Periodicals Co., Route 100, Millwood, NY 10546.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION
Printed at Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.).
8-8, 3-chome, Takadanobaba, Shinjuku-ku, Tokyo 160, Japan.

Copyright © 1980 by Pacific Jounal of Mathematics
Manufactured and first issued in Japan



Pacific Journal of Mathematics

Vol. 89, No. 2 June, 1980

Frank Hayne Beatrous, Jr. and R. Michael Range, On holomorphic

approximation in weakly pseudoconvex domains..................... 249
Lawrence Victor Berman, Quadratic forms and power series fields . . ... ... 257
John Bligh Conway and Wactaw Szymarnski, Singly generated

antisymmetric operator algebras.................... ... 269
Patrick C. Endicott and J. Wolfgang Smith, A homology spectral sequence

SOV SUDIMETSTIONS . . ...ttt 279
Sushil Jajodia, Homotopy classification of lens spaces for one-relator

GrOUPS WItR TOFSTON . . . .o oottt et e 301
Herbert Meyer Kamowitz, Compact endomorphisms of Banach

AlEDTAS . . . .\ e 313
Keith Milo Kendig, Moiré phenomena in algebraic geometry: polynomial

alternations in R ... . 327
Cecelia Laurie, Invariant subspace lattices and compact operators. .. ... ... 351
Ronald Leslie Lipsman, Restrictions of principal series to a real form. . . . .. 367
Douglas C. McMahon and Louis Jack Nachman, An intrinsic

characterization for PIflows ......... ... .. .. i i, 391

Norman R. Reilly, Modular sublattices of the lattice of varieties of inverse
SCHUGTOUDS « « oot v vttt ettt e e e e et e
Jeffrey Arthur Rosoff, Effective divisor classes and blowi
Zalman Rubinstein, Solution of the middle coefficient pro
classes of C-polynomials.........................
Alladi Sitaram, An analogue of the Wiener-Tauberian the
transforms on semisimple Lie groups . ..............
Hal Leslie Smith, A note on disconjugacy for second orde
J. Wolfgang Smith, Fiber homology and orientability of m
Audrey Anne Terras, Integral formulas and integral tests
POSIHIVE MALTICES . . e e et



http://dx.doi.org/10.2140/pjm.1980.89.249
http://dx.doi.org/10.2140/pjm.1980.89.249
http://dx.doi.org/10.2140/pjm.1980.89.257
http://dx.doi.org/10.2140/pjm.1980.89.269
http://dx.doi.org/10.2140/pjm.1980.89.269
http://dx.doi.org/10.2140/pjm.1980.89.301
http://dx.doi.org/10.2140/pjm.1980.89.301
http://dx.doi.org/10.2140/pjm.1980.89.313
http://dx.doi.org/10.2140/pjm.1980.89.313
http://dx.doi.org/10.2140/pjm.1980.89.327
http://dx.doi.org/10.2140/pjm.1980.89.327
http://dx.doi.org/10.2140/pjm.1980.89.351
http://dx.doi.org/10.2140/pjm.1980.89.367
http://dx.doi.org/10.2140/pjm.1980.89.391
http://dx.doi.org/10.2140/pjm.1980.89.391
http://dx.doi.org/10.2140/pjm.1980.89.405
http://dx.doi.org/10.2140/pjm.1980.89.405
http://dx.doi.org/10.2140/pjm.1980.89.419
http://dx.doi.org/10.2140/pjm.1980.89.431
http://dx.doi.org/10.2140/pjm.1980.89.431
http://dx.doi.org/10.2140/pjm.1980.89.439
http://dx.doi.org/10.2140/pjm.1980.89.439
http://dx.doi.org/10.2140/pjm.1980.89.447
http://dx.doi.org/10.2140/pjm.1980.89.453
http://dx.doi.org/10.2140/pjm.1980.89.471
http://dx.doi.org/10.2140/pjm.1980.89.471

	
	
	

