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Let T be a compact endomorphism of a commutative semi-
simple Banach algebra B. This paper discusses the behavior
of the adjoint T* of T on the set X/ of multiplicative linear
functionals on B. In particular it is shown that Π T*n(X;) is
finite, thus generalizing the example of compact endomorph-
isms of the disc algebra.

0* Introduction and preliminaries. In this paper we discuss
maps which are simultaneously endomorphisms of Banach algebras
and compact operators. That is, these operators T are linear, satisfy
T(fg) = (Tf)(Tg) for all / and g in the algebra and map bounded
sets into sequentially compact sets.

As a motivating example, consider the disc algebra A, the sup-
norm algebra of functions analytic on the open unit disc D and
continuous on D. Every nonzero endomorphism T of A has the
form Tf — f°φ for f β A, where φeA and φ maps D into D. It
was shown in [3] that if φ is not a constant function, then T is
compact if, and only if, \φ(z)\<l for all zeD. Moreover, for
such φ, if φn denotes its nϊh iterate, then fϊ <P»Φ) — {̂ o} for some
zoeD, and further the spectrum σ{T) of T satisfies σ(T) = {(φ\zQ))n\n
is a positive integer} U {0, 1}. When φ is a constant function, the
range of T is one-dimensional and T is compact with σ(T) = {0, 1}.

We will now consider compact endomorphisms of other Banach
algebras and study to what extent the properties of compact
endomorphisms of the disc algebra can be generalized. Our princi-
pal results will describe the behavior of the adjoint T* of Γ on
the maximal ideal space of the algebra.

We first introduce some notation and terminology. Let B be a
commutative semi-simple Banach algebra with unit 1 and maximal
ideal space X and, in addition, let θ denote the zero functional on
B. If 0 Φ T is a (necessarily) bounded endomorphism of B, then
the adjoint T* induces a continuous function ψ from Xr = X U {θ}
into itself in the following way. For x e X, let exeB* satisfy
ex(f) = fix), where f—>f is the Gelfand transformation of B. It
is easy to verify that T*ex is multiplicative. There are two possi-
bilities. If T*exΦθ, then T*e9 = ey for some yeX and we let
φ(x) = y. For the second case, if T*ex = θ, we let φ(x) — θ. We
also define φ{θ) = θ. Since φ is essentially equal to T* restricted
to the set of multiplicative linear functionals on B, φ is a continu-
ous function from X' to Xr; φ will be called the map on X or Xf
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induced by T.
It is useful to note that if 2Ί = 1, then T*e9 Φ 0 for all xeX

since (Γ*eβ)(l) = ex(Tl) = eβ(l) = 1. Consequently, when Γl = 1, φ
maps X into X. On the other hand, if TlΦl, then £>(«) = θ for
some # e X .

If n is a positive integer, we let <pn denote the nth iterate of
φ, i.e., φo(x) — x and φn(x) = 9>(9>»-i(sc)) for xeX'. A routine topo-
logical argument shows that Π <Pn(X') is a nonempty compact subset
of Xf and Π <Pn(X') is mapped onto itself by φ. Further, when X
is connected and T Φ 0, then Γl = 1, whence φ maps X into X,
ίΊ ψn(X) is connected and 9> maps Π ψn{X) onto itself.

In the first section we will prove some structure theorems
leading to the following theorem.

THEOREM 1.7. Suppose B is a commutative semi-simple Banach
algebra with unit 1 and maximal ideal space X and T is a non-
zero compact endomorphism of B. If φ is the map on X' induced
by Γ, then Π 9\(X') is finite. If X is connected, then Π <Pn(X) is a
singleton.

We recall that we have already characterized the compact
endomorphisms of the disc algebra. Moreover, it is easy to verify
that for any commutative semi-simple Banach algebra with unit 1
and maximal ideal space X, and any a e X, the endomorphism T: f—>
f(a)l is compact. Using Theorem 1.7, we will prove that if X is a
compact connected Hausdorff space, then every nonzero compact
endomorphism T on C(X) has the form Tf = f(a)l for some a e X.
Finally we will discuss some relations between the range <p(X) of
the induced map ψ of a compact endomorphism and the strong and
Silov boundaries of other function algebras on X.

1* We begin with the following lemma dealing with the
spectral radius | |Γ | | β p of a compact endomorphism.

LEMMA 1.1. Suppose B is a commutative semi-simple Banach
algebra with unit 1. If T is a compact endomorphism of B and
T is not nilpotent, then \\T\\sp = 1.

Proof. If B is semi-simple and λ is an eigenvalue of any
endomorphism T of B, then for each positive integer n, Xn is also
an eigenvalue. For, if 0Φ feB and Γ/ = λ/, then T(fn) = (Tf)n =
χnfn φ o. On the other hand, when T is a compact operator, every
nonzero element in the spectrum σ{T) is an eigenvalue [4]. Since
σ(T) is a compact subset of the plane, it follows that if Γ is a
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compact endomorphism of B9 then σ(Γ)c{λ | |λ | ^ 1}.
It is easy to see that an endomorphism S of B is zero if, and

only if, SI — 0. Thus an endomorphism T is nilpotent if, and only
if, Tml = 0 for some positive integer m. Assume T is an endomor-
phism of B which is not nilpotent and set Fm — Tm l . Then for
each m, Fm is a nonzero idempotent in B and so

l = I IFJL = IKΓ-DΊL £ lir-iiu ^ I|Γ-|| lull.
Since this holds for all positive integers m, it follows that 1 ^
lim^o β | |27 m | |1 / m = | |Γ |U Combining this with the first paragraph
gives that if T is a compact endomorphism of a commutative semi-
simple Banach algebra with unit, then | |Γ | | β p = 1 if, and only if, T
is not nilpotent.

REMARKS. (1) Every quasinilpotent compact endomorphism of
a commutative semi-simple Banach algebra with unit is nilpotent.

(2) The hypothesis in Lemma 1.1 that B be semi-simple was
needed to indure that 0 Φ f e B implied 0 Φ fn eB for every positive
integer n.

(3) If B is not assumed to be semi-simple, then any denumer-
able plane set σ with zero as its only limit point can be the
spectrum of a compact endomorphism of B. For, it is well known
that for each such σ there exists a compact linear operator T on
Hubert space H with σ(T) = σ. If multiplication is defined on H
by fg = 0 for all f, g eH, then H is a commutative Banach algebra,
T is a compact endomorphism on H and σ(T) = σ.

The proof of the next lemma is straightforward.

LEMMA 1.2. Let B be a commutative semi-simple Banach algebra
with unit 1 and maximal ideal space X. If E is a nonzero idem-
potent in B, then BE and B(l — E) are closed subaίgebras of B
with units E and 1 — E, respectivelyy and B = BE 0 U(l — E).
If Z — {xeX\E(x) = 1}, then the maximal ideal spaces of BE and
B(l — E) are Z and X\Z, respectively. Further, if T is an endo-
morphism of B with TE — E, then BE and B(l — E) are invariant
under T in the sense that T: BE-+BE and T: B(l - E)~>B(1 - E).

LEMMA 1.3. Assume T is a nonzero compact endomorphism of
a commutative semi-simple Banach algebra B with unit 1. Then
there exists a smallest nonnegative integer M such that TM1 = TM+11.
If T is not nilpotent, then E — TM1 is a nonzero idempotent in B,
TE = E and B = BE® B(l - E) where BE and B(l - E) are
invariant under T and T is nilpotent on B(l — E).
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Proof. The lemma is trivial if Γl = 1. Also if T is nilpotent,
then TM1 — 0 for some positive integer M and there is nothing-
further to prove.

Assume T is not nilpotent and Γl Φ1. Let X denote the
maximal ideal space of B and φ the continuous function on X' =
X U {θ} induced by T. For each positive integer n, let Zn = {xe
X\φn(x) = #}. (Since Γl ^ 1, . ^ Φ φ.) For each w, Zn is both open
and closed in X, <p-\Z%) = Zn+1 and Zn c Z«+1. Also, φ~\Z2\Z^) =
φ-\Z2)\φ-\Z^Z\Z2 and, in general, φ^(Zt\Z^=Z%+t\Zn+1 for each n.

We assert that ^ = ZM+1 for some positive integer M. To
show this, assume Z1 Φ Z2 and let G be the element in B such that
G is the characteristic function of Z\Zλ. Such an element exists
by Silov's Idempotent Theorem [1, p. 88] since Z\ZX is a subset of
X which is both open and closed. By the definition of G, G(x) — 1
if x e Z2\Z, and 0(x) = 0 for all other xeX; therefore for each
positive integer k, TkG~(x) = G(φk(x)) = 1 if x e φ~\Z^Z^ = Zk+2\Zk+1

and TkG~(x) = 0 otherwise. We will now show that if Zk+2\Zk+1Φ φ
for all positive integers h, then σ(T)z>{X\ |λ | = 1} which will be a
contradiction since T is a compact operator. Thus assume Zk+2\Zk+1Φ
Φ for all positive integers k and choose λ with |λ| = 1. Let n
be a positive integer and consider |[(λ + TfnGT{x)\ for some
x e ^W+2\Z%+1 Φ φ. Then

|[(λ+Γ)-GΓ(aO| =
2n

Σ T"G

But if xeZn+2\Zn+1, then TkG~(x) = 0 unless fc =
(TnGT(x) = 1. Therefore

(x)

i, and G(φn(x)) =

'2n\
n j

and so

(*)

C)G(φn(x))

n

If ^w + 2 =̂ ̂ w + 1 for all n, we can find such an x for each positive

integer n and so (*) holds for all n. Also lim*.^ (^n)1/2n = 2. [2,

LEMMA 1.2]. Then letting n~>o° in (*) gives
\n)

2 = lim ^ lim

for all λ, |λ | = 1. However, from Lemma 1.1, | |T| |,P = 1. There-
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fore if |λ| = 1, then Xeσ(T) and, as a result, every point in
{λ| |λ | = 1} is in σ(T), a contradiction. Therefore the assumption
that Zk+2\Zk+1 Φ φ for all positive integers k is false and so there
is a least positive integer M for which ZM — ZM+ι.

Now let E — TM1. Since T is not nilpotent, E is a nonzero
idempotent in B. Also {x e X\ E(x) = 1} = {x e X\ (TMlT(x) = 1} =
{x 6 X\φM(x) Φ θ) = X\ZM = X \ ^ + 1 = {x e X\φM+1(x) Φθ} = {xe
χ\ (TM+1lΓ(x) = l} = {xeX\ (TEΓ(x) = 1}. Therefore TE = E.

From Lemma 1.2, we have that BE and J5(l — E) are commuta-
tive semi-simple Banach algebras which are invariant under T. The
final assertion in the lemma that T is nilpotent on JB(1 — E) follows
from the fact that (1 — 2?) is the multiplicative identity in B(l—E)
and T"Q - E) = TM1 - TME - E - E = 0.

REMARK. Lemma 1.3 shows that E = JΓ¥1 is an eigenvector of
T in B and so lGσ(Γ) unless T is nilpotent.

Next suppose S is a nonempty closed subset of the maximal
ideal space X of a commutative semi-simple Banach algebra B with
unit 1. Then the kernel of S, ker (S) = {/ eB\f(t) = 0 for all ί e S}
is a closed ideal in 5 and Bx — B/ker (S) is a commutative semi-
simple Banach algebra with unit. If Xx denotes the maximal ideal
space of Blf then Xλ is the hull of ker(S), i.e., X, = {xeX\f e
ker(S) implies f(x) = 0}. Xx is a closed subset of X and S c I ^ J .
Further, if xeX, and / = / + ker (S) e B/kev (S), then/Λ(α?) =/(a?)
[1, P. 12].

Now let T be an endomorphism of B with TΊ = 1 and ψ the
map of X->X induced by T. Clearly, if φ(S)aS, then ker (S) is
invariant under T. Also if φ(S)cS, then Λ j c l , For, if
Φ(S)aS, / e k e r ( S ) and a e l , then T/eker(S), which implies
(TfT(%) — 0 and this, in turn, implies f(φ(x)) = 0, i.e., if xeXlf

then (̂cc) e X1# Thus ^(Xt) c X : if φ(S) c S.
Furthermore, if ker (S) is invariant under Γ, then T induces

an endomorphism T of Bλ into 5L defined by Tf — Tf for feB^
Let <p be the map on Xx induced by f. Then by definition,
(TfT(x) = f~(φ{x)) for all x e l , We claim that φ = φ\Zi. To this
end, let x e Xx. Then ^(x) 6 Xlf and so 7"(φ(aj)) = (ϊ7Γ(α) = (2yΓ(ίβ) =
(TfΓ(x) = f(φ(x)) = f~(φ(x)). Since this holds for all / e S 1 ? it follows
that <̂ (#) = φ{x) for each a; 6 Xlf as claimed. We remark, too, that
if T is a compact endomorphism, so is T [4].

With these observations we now prove the following.

LEMMA 1.4. Assume B is a commutative semi-simple Banach
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algebra with unit 1 and maximal ideal space X and suppose T is
a compact endomorphism of B with Tl = 1. If φ is the map on
X induced by T and <9* — ΐ\φn{X), then S^ is a nonempty compact
subset of X and φ maps <9* onto itself. Let k e r ( ^ ) = {f\f(x) = 0
for all x e S^} and set Bx — B/ker (S^). Then Bx is a commutative
semi-simple Banach algebra with unit, and X,, the maximal ideal
space of Blf satisfies S? c Xλ c X. If T is defined on Bλ by Tf —
Tf for feB19 then f is a compact endomorphism of Bγ and σ(T)a
{λ| |λ | = 1} U {0}. Also, if ψ is the map on Xx induced by T, then

Proof. The properties of Bx were discussed before the state-
ment of the lemma. Also φ maps X into X since Tl = 1, and we
have already noted in the introduction that φ maps &" onto Sf.

To prove that σ(T) c {λ| |λ | = 1} U {0}, suppose the contrary that
there exists λ, 0 < |λ | < 1, Xeσ(T) and f / = λ/. For each xe<9*
there are two possibilities.

( i ) There exists a positive integer JV such that φN(x) — x. In
this case (ΓVΠa?) = / " ( ^ ( » ) ) = /"(*) and also {TNfT{x) = λ T W .
Therefore Γ(x) = XNp(x), and since |λ | < 1, /"(a?) = 0.

(ii) For all n, φn{x) Φ x. Since φ, and therefore φ, maps Sf
onto itself, we can choose distinct tn e S^ satisfying φn(tn) = x.
Thus if f / = λ/, then (Γ / Γ ( O = / ^ . ( O ) = / Λ ( « ) , while (f /Γ(ί,) =
Xnf_~(tn), also. Since | | / " | L <°° and Xn-*Q it follows that f~(x) =
Xnf~(tn) -* 0. Hence if φn(x) Φ x for all n, then /"(α?) = 0.

Thus we have just shown that if 0 < |λ | < 1 and 57= λ/, then
f~(x) = 0 for all xe£*. But this implies / = 0. Therefore all the
nonzero eigenvalues of T lie on the unit circle.

All that remains to be shown is that £f = Π »̂(-XΊ). Now,
Π φ.(Xd = n 95 (-Σi) since ^ = 9>|Xι. Therefore S? = Π ?>#(X) 3
Π 9>»(-XΊ) = n<p%(Xi)i3^ which proves that ^ =

LEMMA 1.5. Suppose B is a commutative semi-simple Banach
algebra with unit 1 and maximal ideal space X. Let T be a com-
pact "endomorphism of B with σ(T) — {0, 1}. Then there exists a
finite set of idempotents, {Elf , Em}, in B with the following pro-
perties.

( i ) {Eίf ,Em} forms a basis for ^Γ = {f\Tf = /} and

( i i ) I f E = Σΐ=iEk, t h e n B-= BE,® •••
(iii) For each k, k ~ 1, — -, m, BEk is a closed subalgebra of B

with multiplicative identity i^. Also BEh is invariant under T and
all the eigenvectors of T in 52£fc corresponding to 1 have the form
cEk, c complex.
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(iv) If E = ΣΓ=i Ek9 then B(l - E) is a closed subalgebra of
£ with multiplicative identity 1 — E. J5(l — E) is invariant under
T and T is nilpotent on B(l — E). Also TM1 = E for some positive
integer Λf.

(v) If TΊ = 1, then ΣϊU Ek = 1 and 5 =

Proo/. ( i ) Since σ(Γ) = {0, 1}, ^ T = { / | Γ / = / } ^ (0). Also
is closed under multiplication since T(fg) = (Tf)(Tg) — fg

whenever /, g e ^V. Further, since T is a compact operator, ^4^
is finite dimensional. Therefore ^V is a finite dimensional commu-
tative semi-simple Banach algebra and hence there exist idempotents
Eu , Em in <yK which form a basis for Λ" and which satisfy
EtE,- = δijEj. We note that since Et e ^Vf i = 1, , m, 2£, must be
an eigenvector of T with TEt = i?*.

(ii) Suppose # = Σ ί U # * τ h e n 1 = ΣϊU-#* + (1 - E) and so
for each / eB, / = Σ£=ifEk + /(I - ^ ) . Thus B = B ^ + +
BJE?W + B(l - JE). Further, since E,Eά = δ,^- and £7,(1 - j£) = 0
for all i, it is easy to verify that / can be uniquely represented in
this form. Therefore B = BE, 0 0 BEm 0 JB(1 - E).

(iii) In view of Lemma 1.2 all that remains to be demonstrated
here is that all the eigenvectors of T in BEά corresponding to 1
have the form cEif c complex. Now, if T(fEά) = fE3 e BE3, then
fEά e ^Γ so that fEj = ΣΓ=i α ^ Therefore / ^ = / S / = (ΣϊLi α ^ ) ^ =
α ^ as claimed.

(iv) B(l — E) is a closed subalgebra of B which is invariant
under T since TE = E. Also, since σ(T) = {0,1}, in order to prove
that T is nilpotent on B(l-E), it suffices to show that T(f(l-E)) =
/(I - E) implies /(I - £7) = 0. But, if Γ(/(l - ^)) = /(I - E),
then / ( l -£ ' )G t χrnB( l- jE r ) = (0). Hence Γ is nilpotent on B(l-E)

and so there exists a positive integer M such that Γ ^ l — E) = 0
or, equivalents, Γ^l = Γ ^ = E.

(v) If 21 = 1, then 1 = TM1=E from (iv). Therefore 1 - ^ = 0
and B = BE, 0 . . . 0 BEm.

REMARK. The decomposition B = BE, 0 0 BEm 0 B(l - J5)
leads to a splitting of the maximal ideal space X of B into disjoint
open and closed subsets Ylf -, Γw, Y, of X where Yk = {cc|^(x) =
1}, A? = 1, , m and F = X\UΓ=i Ffc. Further, Yfc is the maximal
ideal space of B^4 and Y is the maximal ideal space of B(l — E).
If φ is the map on I U {θ} induced by T, then <p(Yk) c Γfc, & =
1, ••-, m, and ^(Fj .) = Ffc. The last equality holds since TEk—Ek.

The next lemma describes the behavior of T* on each F*.
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LEMMA 1.6. Suppose B is a commutative semi-simple Banach
algebra with unit 1 and maximal ideal space X. Let T be a com-
pact endomorphism of B with the property that o(T) — {0, 1} and
the only eigenvectors corresponding to 1 are the constants. If φ is
the map on X induced by T, then φ maps X into itself and there
exists a unique element x e X such that φ(x) — x. Furthermore,
lim^f(φn(y)) = f(x) for all yeX and feB, and f]φn(X) = {x}.

Proof. The map φ takes X into itself since Tl — 1.
Since T is a compact operator and the space of eigenvectors

corresponding to 1 is one-dimensional by hypothesis, B can be
written B^R^N, where R1={(T-I)f\f sB) and N, = {f\ Tf = /}
= (c). The closed subspaces Rλ and N± are invariant under T [4].

Further, T is quasinilpotent on RlΛ For, if geRx and Tg = g,
then g eNx Π Rx = (0). Therefore 1 is not an eigenvalue of T on
Rλ. Also there are no other eigenvalues of T on Rλ since each
eigenvalue of T on Rλ is an eigenvalue of T on B and σ{T) = {0, 1}
by hypothesis. Thus T is quasinilpotent on Rx and so

lim ( s u p H y ^ l ' Γ = lim || Γ ||i£ - 0 .

Therefore for each ε>0 there exists P*>0 such that || T\T-I)f\\<
P*εn\\(T - I)f\\ for all positive integers n and all feB. Then
letting P=P*\\T-I\\ we have || T\T - I)f\\ < Pe%\\f\\ for all
positive integers n and all feB.

Now fix xeX. For each / e S , |/(9> +1(a?)) - f(<PM)\ = I [ ( Γ -
W ] ^ ^ ) ) ! = |[T^(T~ /)/Γ(^)| ^ | | T - ( T - / ) / | | < Pε-||/ii for all
positive integers n. Therefore {f(φn(x))} is a Cauchy sequence of
complex numbers and so lim^^f(φn(x)) exists for each feB. Let
l(f) = lim,^/(<£>„(#)). Then it is easy to verify that I is a linear
multiplicative functional on B. Also i Φ θ since Tl = 1 implies
1(1) = 1^0. Consequently there exists x e X defined by f(x) = l(f)
for all feB and thus l im,^ (TnfΓ(x) = lim.^/C^ίa?)) = /(») for
all / e δ . Also Γ / e B , and so \\m^J,TfT{φn{x)) = (Γ/Γ(«) for all
jfeJS; this implies \im*^f(φ(φJίx))=f(φ(x)). However,

for all / e 5 . Therefore f(φ(x))=f(x) for all /eJ5 which proves
that x is a fixed point of φ.

We next show that n φJiX) = {£}. To this end, let M-x =
{/l/(^) — 0}. Since <p(a?) = x, the closed maximal ideal Mς is invariant
under T. Also 1 is not an eigenvalue of T\M~. For, if there exists
feM* with Tf = /, then / is an eigenvector of T which must
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equal a constant c, say, by hypothesis. But c — 0 since the only
constant in M* is 0. Since σ{T) — {0, 1}, T is quasinilpotent on Λfj.

Now let y be an arbitrary element in X. Since / — f(x)l e Mx
and T is quasinilpotent on Mx we have that

lim\f(φn(y)) ~ f(x)\1/n = lim | Γ (/ - f{x)lT{y)\Un = 0 .

Using an argument similar to one used in the first part of this
proof, it can be shown that for each ε > 0 there exists P1 > 0 such
that \KΨM) -/(£)I < Pie | | / | | for all / e ΰ , n > 0 and yeX. This
implies that if ^ is an open subset of X with α; e ^/, then φJ^X)^^
for large n. Therefore f)φn(X) = {x}. It now follows easily that
x is the only fixed point of φ.

(The uniqueness of x also follows from the fact that the dimen-
sions of {/|T/ = /} and {I e F | T*l = l\ are equal. Since {/ |Γ/=/}
is one dimensional, once we have shown that x is a fixed point of
φ in X, then it must be unique.)

We now combine these lemmas to prove the following.

THEOREM 1.7. Suppose B is a commutative semi-simple Banach
algebra with unit 1 and maximal ideal space X and T is a non-
zero compact endomorphism of B. If φ is the map on X' = X{J{Θ}
induced by T, then Πφn(X') is finite. If X is connected, then
Πφn(X) is a singleton.

Proof. If T is nilpotent, then Π φn(X') = {0} and there is
nothing further to prove.

Assume T is not nilpotent. From Lemma 1.3 there exists a
smallest positive integer M and a nonzero idempotent E — TM1 with
the property that TE = E, T: BE-^ BE and B = BE®B(1-E).
Also Z= {x eX\E(x) = 1} is the maximal ideal space of BE, φ(Z)aZ
and φM:X\Z-+{θ}. Let S? = Πφn(Z). Since f]φn(Xr) = ^U{θ} it
suffices to prove that £f is finite.

Consider Γ on BE. Since £ is a unit in BE and TE = E,
Lemma 1.4 implies that T induces a compact endomorphism T on
Bλ = BE/ker {&) which satisfies TE = E and σ{T) c{λ| |λ| = 1}U
{0}. Letting Xt denote the maximal ideal space of Bι and φ the
map on Xx induced by T, Lemma 1.4 also implies S^ ~ {\φn(X^).

Since T is a compact endomorphism on Bx and σ(T)a{X\ |λ| = 1}
U {0}, each nonzero eigenvalue of f is a root of unity and so
there exists a positive integer N for which σ(TN) — {0, 1}. Also
TE = E implies TNE = JB. Therefore f̂  is a compact endomor-
phism of Bx with o (Γ^) = {0, 1} and by Lemma 1.5, Bx can be
written B1 = B ^ 0 © 5 ^ where E = ΣΓ-i -&*, ̂ ^ are idempo-
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tents in B19 TNEk = Ek and all the eigenvectors of TN on BxEk

corresponding to 1 have the form cEkf c complex. We also have
that Xι = Yλ U U Ym where Yk is the maximal ideal space of
BγEk. It is clear that φN is the map on X, induced by TN and
so we have that φN(Yk) czYkf k = 1, , ra. Thus

Now using the fact that all the eigenvectors of TN on BJEk

have the form cEk, c complex, it follows from Lemma 1.6 that
there exist xke Yk with Γ\φlYn(Yk) = {xk}, k = 1, , m. Therefore

•9* = Πφn(Z) = ΠφΛX.) = ΓiφNn(X1)

— \X1, ' ' ' f Xmj

Thus £/" is finite and hence Γ\φn(X') is finite, as needed.
Finally, if X is connected, then the only nonzero idempotent in

J5 is 1. In this case Tl = 1 and therefore φ maps X into itself.
Hence S — ΓΊ φ»(X) is connected and since S is finite, S must be a
singleton.

2. We conclude with several miscellaneous theorems and ex-
amples relating to compact endomorphisms.

It was noted in the introduction that if a is a specific point in
the maximal ideal space of a commutative semi-simple Banach
algebra with unit 1, then the map T: f—> f(a)l is a compact endo-
morphism of B. We will show that if X is a compact connected
Hausdorff space, then every nonzero compact endomorphism of C(X)
has this form. We also show that the same is true for C1, the
algebra of functions on [0, 1] with continuous first derivatives. We
will begin this section with a theorem about compact endomor-
phisms of function algebras.

Recall that a function algebra is a sup-norm closed subalgebra
of continuous functions on a compact set X which separates points
of X and contains the constants. A peak set of a function algebra
is a closed subset E of X for which there exists a function / in
the algebra with | | / | | = f(x) = 1 for xeE and |/(cc)| < 1 for xe
X\E. A generalized peak point is a point xQ in X such that {#0} is
an intersection of peak sets, and the strong boundary of a function
algebra is the collection of generalized peak points. Further, if W
is a Gδ subset of X containing a generalized peak point x0, then
there exists a peak set E with xQeE(z W [1].

THEOREM 2.1. Let X be a compact connected Hausdorff space
and suppose B is a function algebra on X whose maximal ideal
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space is X. Further, assume 0 Φ T is a compact endomorphism
of B with ψ the continuous function on X induced by T. If φ(x0)
is a generalized peak point of B for some xoeX, then Tf = f(φ(xo))l
for all feB.

Proof Assume φ(xQ) is a generalized peak point of B. The
claim is that <p(x) — φ(x0) for all x e X. Suppose the contrary that
there exists y e X with φ{y) Φ <p(x0). Since <p(x0) is a generalized
peak point, there exists a peak set E such that <p(x0) e E and φ(y) £
E. For this set E, let feB satisfy | | / | | = f(x) = 1 for all xeE
and I f(x) | < 1 f or x e X\E. Further, let / . - (J(l + /))\ Then 11 /, 11 =
1 and since T is a compact operator, there exist a subsequence {fnk}
and a function g eB with Tfnje—>g uniformly. Clearly lim*..^ (J(l +
/(&)))• = 1 if /(a?) = l and l i m ^ ( i ( l + /(«)))* = 0 if f(x)Φl.
Since g(x) — lim^^ (J(l + fip{x)))Tk for xeX, the continuous func-
tion g can assume at most two values, 0 and 1. However, the
domain of g is connected. Hence g must be constant. This leads to a
contradiction since if <p(y) & E, then g(y) = l i m ^ (J(l + f(φ(y)))Yk = 0
while g(x0) = l i π w (J(l + f(φ(xo)Wk = 1. Therefore φ(a?) = 9>(α?0) for
all x e l as claimed.

If X is a compact Hausdorff space, then every x e X is a
generalized peak point of C(X). Consequently, we have the follow-
ing immediate corollary of Theorem 2.1.

COROLLARY 2.2. If X is a compact connected Hausdorff space,
then every nonzero compact endomorphism T of C{X) has the form
Tf = /(α?o)l for some x0 e X.

THEOREM 2.3. Let C1 be the algebra of functions on [0, 1] with
continuous first derivatives, pointwise arithmetic operations and
11/11 —II/IU +II/Ίloo. Then every nonzero compact endomorphism
T on C1 has the form Tf = /(c)l for some c e [0, 1].

Proof. Let T be a compact endomorphism of C1 and φ the map
on [0, 1] induced by T. Then φ 6 C1. We claim that φ is a constant
function. Suppose ψ is not constant. Then there exists a e (0,1)
with φ\a) Φ 0. Let b = 9>(α). Then δ e (0, 1). For each positive

integer n, let /,(&)= j V ί6-')2dt. Then ΛeC 1 , sup o ^ 1 1 fn(x) \ =

Γe-Λ(δ~<)2cZί < 1 and supo^i |/or(^)| = supo^βίile—ίδ-β>2 = 1. Therefore
Jo

II/JI < 2 for all n. Since {/J is a bounded set in C1 and T is a
compact endomorphism, there exist g e C1 and {fnjc} with T/WA; —> g.
In particular ^' is continuous and (Tfnk)' —> #' uniformly. Now
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(Tf,k)\x) = f«k'(φ(x))φ'(x) = e-*(i-«"x)V(a0, and hence

sr'(o) = lime-'t*(δ-*'(<ιl)V(α) = φ'(a) .
k->oo

Since φ(ά) — b, g\a) Φ 0. However, since φ\a) Φ 0, φ(x) Φ b in some
deleted interval about a, and so it follows that

g'(x) = lϊme-^-v^φ'ix) = 0
fc->oo

in that deleted interval. This is a contradiction to the continuity
of g'. Hence φf — 0 and ^ is a constant function. Therefore
(Tf)(x) = f(φ(x)) = f(c) for some c e [0, 1] and so Tf - /(c)l.

Modifications of the statements and proofs of Theorem 2.1 and
Corollary 2.2 for disconnected X are straightforward. For example,
if X is an arbitrary compact Hausdorff space and T is a compact
endomorphism of C(X), then there exist a finite number of idempo-
tents EJ9- ,Em in C(X) and points ίι, , ί m e l with Tf =
Σ?=i f(tk)E-(k) where TΓ is a permutation of the set of integers
{1, .-.,m}.

There is a similarity between Theorem 2.1 and the example of
the disc algebra, namely, that in both cases the range of a non-
constant φ does not intersect the strong boundary. However, it is
not possible to extend this by replacing strong boundary with
Silov boundary as the following example shows. (C and R denote
the complex and real numbers, respectively.)

EXAMPLE. Let X be the subset of C x R defined by 1 =
{(s, 0) | | s | ^l}U{(0, t)\O^t ^1} and let B = {f eC(X)\z-+f(z, Q) is
analytic}. Then B is a function algebra whose Silov boundary is
{(s, 0)| 131 = 1} U {(0, ΐ)|0 ̂  t ^ 1}. The point (0,0) is in the Silov
boundary, but is not a generalized peak point. Define φ on X by
φ(z, 0) == (s/2, 0) and cp(O, t) = (0, 0). Then it is easy to verify that
T: Tf = /09? is a compact endomorphism of B and <ρ(0, 0) = (0, 0) is
in the Silov boundary. However T does not have the form Tf =
/(0, 0)1. Note, though, that Πφn(X) = {(0, 0)}.

Another reasonable conjecture from the example of the disc
algebra might be that if T is an endomorphism of a function
algebra B on X for which φ{X) does not intersect the Silov
boundary, then T is compact. This, too, is not true.

EXAMPLE. Let X = {(z, t)\\z\^l and 0 ̂  t ^ 1} and let B =
{/ G C(X) I s -> f(z, t) is analytic for each t}. The Silov boundary of
B is {(s, ί)| \z\ •= 1, 0 ̂  ί ^ 1}. Define 9? by <p(z, t) = (z/2, t). Then
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φ(X) = {{z, t)\ \z\ ^ 1/2, 0 ^ t ^ 1} does not intersect the Silov
boundary, yet Tf — foφ is not compact since, for instance, n?>»(-X") =
{(0, t) 10 ^ ί ^ 1} is not a singleton.

As a final example along these lines, we note that even if
Πφn(X) is a singleton, the endomorphism Tf = f°φ need not be
compact. For, let B = C(D), the algebra of continuous functions
on the closed unit disc D and let <p(z) = J?/2. Then Π 9>»(S) = {0},
while Tf = /09? is not compact because, as we have seen, each
compact endomorphism on C(D) has the form Tf = /(α)l for some
aeD.

REFERENCES

1. T. W. Gamelin, Uniform Algebras, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1969.
2. H. Kamowitz, The spectra of a class of operators on the disc algebra, Indiana Univ.
Math. J., 27 (1978), 581-610.
3. 1 Compact operators of the form uC9, Pacific J. Math., 80 (1979), 205-211.
4. J. R. Ringrose, Compact Non-Self-Adjoint Operators, Van Nostrand Reinhold Co.,
London, 1971, 50-51.

Received September 12, 1979 and in revised form November 29, 1979.

UNIVERSITY OF MASSACHUSETTS/BOSTON

DORCHESTER, MA 02125





PACIFIC JOURNAL OF MATHEMATICS

EDITORS

DONALD BABBITT (Managing Editor)

University of California
Los Angeles, CA 90024

HUGO ROSSI

University of Utah
Salt Lake City, UT 84112

C. C. MOORE and ANDREW OGG

University of California
Berkeley, CA 94720

J . DUGUNDJI
Department of Mathematics
University of Southern California
Los Angeles, CA 90007

R. F I N N and J . MILGRAM

Stanford University
Stanford, CA 94305

E. F. BECKENBACH

ASSOCIATE EDITORS

B. H. NEUMANN F. WOLF K. YOSHIDA

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA
CALIFORNIA INSTITUTE OF TECHNOLOGY
UNIVERSITY OF CALIFORNIA
MONTANA STATE UNIVERSITY
UNIVERSITY OF NEVADA, RENO
NEW MEXICO STATE UNIVERSITY
OREGON STATE UNIVERSITY
UNIVERSITY OF OREGON

UNIVERSITY OF SOUTHERN CALIFORNIA
STANFORD UNIVERSITY
UNIVERSITY OF HAWAII
UNIVERSITY OF TOKYO
UNIVERSITY OF UTAH
WASHINGTON STATE UNIVERSITY
UNIVERSITY OF WASHINGTON

The Supporting Institutions listed above contribute to the cost of publication of this Journal,
but they are not owners or publishers and have no responsibility for its content or policies.

Mathematical papers intended for publication in the Pacific Journal of Mathematics should
be in typed form or offset-reproduced, (not dittoed), double spaced with large margins. Please
do not use built up fractions in the text of the manuscript. However, you may use them in the
displayed equations. Underline Greek letters in red, German in green, and script in blue. The
first paragraph or two must be capable of being used separately as a synopsis of the entire paper.
Please propose a heading for the odd numbered pages of less than 35 characters. Manuscripts, in
triplicate, may be sent to any one of the editors. Please classify according to the scheme of Math.
Reviews, Index to Vol. 39. Supply name and address of author to whom proofs should be sent.
All other communications should be addressed to the managing editor, or Elaine Barth, University
of California, Los Angeles, California, 90024.

50 reprints to each author are provided free for each article, only if page charges have been
substantially paid. Additional copies may be obtained at cost in multiples of 50.

The Pacific Journal of Mathematics is issued monthly as of January 1966. Regular sub-
scription rate: $84.00 a year (6 Vols., 12 issues). Special rato: $42.00 a year to individual
members of supporting institutions.

Subscriptions, orders for numbers issued in the last three calendar years, and changes of address
shoud be sent to Pacific Journal of Mathematics, P.O. Box 969, Carmel Valley, CA 93924, U.S.A
Old back numbers obtainable from Kraus Periodicals Co., Route 100, Millwood, NY 10546.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION
Printed at Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.).

8-8, 3-chome, Takadanobaba, Shinjuku-ku, Tokyo 160, Japan.

Copyright © 1980 by Pacific Jounal of Mathematics
Manufactured and first issued in Japan



Pacific Journal of Mathematics
Vol. 89, No. 2 June, 1980

Frank Hayne Beatrous, Jr. and R. Michael Range, On holomorphic
approximation in weakly pseudoconvex domains . . . . . . . . . . . . . . . . . . . . . 249

Lawrence Victor Berman, Quadratic forms and power series fields . . . . . . . . 257
John Bligh Conway and Wacław Szymański, Singly generated
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