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ANALYTIC FUNCTIONS IN TUBES WHICH ARE
REPRESENTABLE BY FOURIER-LAPLACE
INTEGRALS

RiCcHARD D. CARMICHAEL AND ELMER K. HAYASHI

Spaces of analytic functions in tubes in C* which gen-
eralize the Hardy H? spaces are defined and studied. In
addition Cauchy and Poisson integrals of distributions in
Z]» are analyzed.

1. Introduction. Bochner ([1] and [2]) has defined the Hardy
H¥T°) spaces for tubes T¢ = R" + ¢C in C" where C C R" is an open
convex cone. Stein and Weiss [11] have studied the H?(T?) spaces
for arbitrary » > 0 and with respect to tubes T?, B being an open
proper subset of R” [11, pp. 90-91]. Vladimirov [12, §§25.3-25.4]
has considered analytic functions in 7% C being an open connect-
ed cone, which satisfy the growth [12, p. 224, (64)]. Vladimirov
has stated [12, p. 227, lines 4-5] that the growth which defines the
H* functions of Bochner is more restrictive than [12, p. 224, (64)].
We show in this paper that the H? growth is not more restrictive
than [12, p. 224, (64)] by showing that the functions of Vladimirov
are exactly the H?® functions. However, Vladimirov’s growth has
led us to define new spaces of analytic functions in tubes which
have growth estimates that are more general than that of the
H?(T*?) spaces, and we analyze these new spaces in this paper.
Further, we study Cauchy and Poisson integrals of distributions in
g;‘p.

The n-dimensional notation in this paper is described in [7, p.
386]. The definitions of a cone in R", projection of a cone pr(C),
compact subcone, and dual cone C* = {te R" <t y) =0, yeC} of a
cone C are given in [12, p. 218]. Terminology concerning distribu-
tions is that of Schwartz [10]. The support of a distribution or
funection ¢ is denoted supp(g). Definitions, properties, and relevant
topologies of the function spaces ., .., & = ., and & and
of the distribution spaces &’ and &%, are in [10]. The L' and
%" Fourier and inverse Fourier transforms are defined in [7, pp.
387-388] and [10, p. 250], respectively. The limit in the mean
Fourier and inverse Fourier transforms of funetions in L?, 1< p <2,
and L7, (1/p) + (1/g) = 1, are in [8] and [3]. F[¢(¢); ] (& ~[¢(w);t])
denotes the Fourier (inverse Fourier) transform of a funection in the
relevant sense. If V€.’ we denote its Fourier (inverse Fourier)
transform by F[V]=7V (F[V]. For ¢el’,1<p<2 the
Parseval inequality is
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(1.1) Z16(); @llle = [I8lley, (A/p) + A/@) =1,
with equality if » = 2, the Parseval equality.

2. The Cauchy and Poisson kernel functions and technical
results. Let C be an open connected cone, C* be the dual cone of
C, and 0(C) be the convex envelope (hull) of C. The Cauchy kernel
function [6, p. 201] is

2.1) Kz —t) = S exp(2mi(z—t, 7))dn, ze T°© = R* + i0(C), te R* .
C*

To avoid the triviality of K(z —¢) = 0 we assume in this section
that O(C) does not contain an entire straight line [12, p. 222,
Lemma 1]. In [6, Theorem 1] one of us proved K(z — t)e &, for
all ¢, (1/p) + (1/g) =1,1 < p <2, as a function of tc R" for fixed
2e T°9, But & ,C PF C D, for every q,1 < q < «, by [10, pp.
199-200]. We thus have

LemMMA 2.1. Let ze€ T°?9. As a function of tc R,
(2.2) Kz—t)eB NG forall q A/p) + Q) =1,1<p<2.

For an open connected cone C the Poisson kernel function [6,
p. 204] is

23) Qut) = EK&—DE@—1)

z=x+1yeT’?, teR".
K(2iy) ‘ +w

LeMMA 2.2. Q(z; t)eﬁ N for all ¢, 1 £q < o, as a func-
tion of te R" for arbitrary ze T°°.

Proof. Let a be any n-tuple of nonnegative integers. By the
Leibnitz rule

@9 DHQE D) = oo SELDIKE ~ )DIEE =),

z=0+1yeT’?.

By (2.2)D{K(z — t)) and DyK(z — t)) are in L*N L~ as functions of
te R*. Thus D¥Q(z;t)e I'NL"SL*, 1<q< . Hence Q(z;t)e Z 1,
1< ¢ < ;and Qiz;t)e & also since FZLqC,@', 1< g < oo,

As a function of x = Re(z)e R* for y € O(C) arbitrary we also
have

(2.5) Qz;y) = K@ + iy){((x + W) e NZforalql<gs o,
K(21y)
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We conclude this section with two important and useful theorems.

THEOREM 2.1. Let B be an open connected subset of R". Let
1<p<ooand A=0. Let git) be a measurable function on R"
which satisfies

(2.6) SR”[g(t)i”e_g”"W'”dt < M e ye B,

where the constant M,, depends only on A and g(t) and not on
yeB. Then ‘

2.7 F(z) = S gt)e=<0dt, z e T*
R

1s an analytic function of z€ T? and has an analytic extension to
TO(B).

Proof. For arbitrary u,c B there is an open neighborhood of
Yo, N(y,) B, and a ¢ > 0 such that {y:|y — ¥,] = 6} C N(y,). There
are k cones I';, =1, ---, k, having the properties as in [11, p. 92,
lines 12-15] and such that whenever two points » and w are in a
I'; then (w,w) = (1V"2/2)|v||w|. For each j=1,---,k choose y;
such that (y, — y;)€"; and |y; — ¥,) = 6. Then for each p, 1 < p< o,
and all tel';, j=1, ---, k, we have (—2np{y; — ¥, t)) = ¢ |t| where
e =1"2rnpd > 0. Using this fact, (2.6), and analysis as in [11, pp.
92-93] we have that the function

G(t) = g(t) exp(e|t|/2p) exp(—27{y,, t)), te R", 1 = p < oo,

is an L' function. If y = Im(z) is restricted so that |y — y,| < (¢/
47p) then
lg(t)e=n| < |G(t)], teR", z=Re(z)eR".

Since y,€ B was arbitrary it follows that F(z) is analytic in 7% and
has an analytic extension to 7°® by [4, p. 92, Theorem 9].

Note the indicatrix funetion #.(t) of a cone C defined in [12, p.
219]. O(C) may or may not contain an entire straight line in the
next theorem.

THEOREM 2.2. Let C be any open connected cone and A = 0.
Let g(t)e L?, 1 < p < o, such that

@8 | lowperoodt < Mz expap( + elyl) , yeC,

for all ¢ > 0 where the constant M,., depends on A, e, and g(t)
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and not on ye€C. Then supp(g) S S, = {t: uy(t) < A} almost every-
where (a.e.).

Proof. Assume g(t) # 0 on a set of positive measure in S4=
R"\S, = {t: us(t) > A}, an open set. Then there exists ¢, € S* such that
g(t) = 0 on a set of positive measure in any open neighborhood of
t,. Using ¢,€S4 and the continuity of the inner product, there is
a point y,€pr(C)cC, a fixed number ¢ > 0, and a fixed open neigh-
borhood N,(t,) of ¢, such that (—{y,, t))>(A + a)>0 for all te N,(t,).
Then

2.9) -, tO)=—A Y t) >NA +A0>0, teN/(), A>0.

Since y,epr(C)cC and C is a cone then Ay, C for all A >0 and
Y] = 1. Using (2.9) and then (2.8) with y = Ay, we have for all
N > 0 that

(2.10) exp(2Tp(LA + A0)) S lg(®)Pdt < M., exp(2apMA + &)

A

and hence

(2.11) exp(2rp\(o — €)) SN )lg(t)l”dt < M:.,

7¢o

for all ¢ > 0. By fixing ¢ > 0 such thato > ¢ > 0 and letting A—oo

in (2.11) we obtain a contradiction. The conclusion follows by not-
ing that S, is a closed set.

3. The analytic functions. The base B of the tube 7%=
R* + 4B is an open proper subset of R" in this section.

Let p>0and A=0. Vi= ViT? is the space of all functions
f(z) which are analytic in ze 7% and which satisfy

@1 1f@ + il = (|| 7@+ ipde)” = Moo, yeB,

where the constant M, ; depends on A =0 and f and does not de-
pend on y € B.

V? = V?(T®), p > 0, is the space of all functions f(z) which are
analytic in 7% and which satisfy

32 @+ il = (| _17@+ )rds) " = M. e=vyeB,

for every & > 0 where the constant M, ; depends on the arbitrary
¢ > 0 and on f and does not depend on y < B.

The spaces defined above have been motivated by the growth
[12, p. 224, (64)] of Vladimirov; we have denoted them as V} and
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V? accordingly. Notice that V? = N..,V? p > 0; hence V? Z V32,
A>0,p>0. The Hardy spaces H?(T®) = VX(T®), »p >0, [11, pp.
90-91] satisfy H*<V? »p > 0; hence H? V3 p >0, A=0. There
are tubes 7% and values of p such that H?, V? and V2 contain

nonzero functions and such that V? contains functions which are
not in H? or V>

4. Representations of the analytic functions. Analysis as in
[11, p. 99, Lemma 2.12], the L? Fourier transform theory, 1 < p < 2,
and a proof similar to that in [11, pp. 100-101] yield

LEMMA 4.1. Let B be an open connected subset of R" and
B’ B such that inf{|y, — y.|: y,€ B, y,€ B} = 0 for some 6 > 0. Let
f@) e ViT®),p>0,A=0. There exists a constant K which does
not depend on ze€ T? such that

(4.1) | f(@) < Ke™V', z=2a+iyeT".

If 1 <p <2, then

(4.2) VO, (t) = ¥V Oh,(t)

for all y and y' in B and for almost every te R" where
(4.3) h,() = F f(@ + w);t]l, yeB,

is the L, (1/p) + (1/q) = 1, inverse Fourier transform of f(x + iy),
Yy € B.

We now represent some V2(T?) spaces using Fourier-Laplace in-
tegrals.

THEOREM 4.1. Let B be an open connected subset of R". Let

f(2) e ViT?),1<p<2 A=0. There exists a measurable function
g(t), t € R*, such that

(4.4) (e7Dg(t)eLl’, (1/p)+ (1/g)=1,
for all ye B,

(4.5) [, |0 st < My e, yeB,
R™
where the constant M, ; depends on A and on f but not on z < T?, and
(4.6) f(z) = S g@)emevdt |, ze To.
R7™

Proof. Define h,(t) as in (4.3) and put
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(4.7 g(t) = e=dh(t), yeB.
By (4.2) g(¢) is independent of y € B. From (4.3) and (4.7) we have
(4.8) e rhg(t) = F [f(w + iy);t], yeB;

hence (4.4) holds by the Fourier transform theory. Since f(z)e
ViT®), 1< p<=<2, (1.1) holds for & [f(x + 1¥); t]; and by (4.8) and
(1.1) we have

(4.9) e 2gloe < [Ilf(@ + tY)ller < My ™", yeB,

from which (4.5) follows. The Fourier transform theory and (4.8)
yield

(4.10) f(@) = Fle ™), 2], 2=« + iyeT".

By Theorem 2.1 the integral on the right of (4.6) is analytic in T®
and is the L' Fourier transform of (exp(—2xn{y, t))g9(t))e L', y <€ B.
(4.6) now follows by the Fourier transform theory and (4.10).

COROLLARY 4.1. Let C be an open connected cone. Let f(z)€
VAT),1l1<p=<2 A=0. There exists a function g(t)c L’ (1/p)+
(1/q) = 1, with supp(g) < {t: ux(t) < A} a.e. such that (4.4), (4.5), and
(4.6) hold.

Proof. The existence of a measurable function g¢(¢) such that
(4.4), (4.5), and (4.6) hold corresponding to C follows from Theorem
4.1. Let k > 0 be arbitrary. For any yeC

(4.11) |, lowrde | lg(epressvemmiag
tl= tlsk
= M;,; exp(2rg(A + k)ly))

since g(t) satisfies (4.5). Choose ¥, = (¥,)/(A + k), y, € pr(C), the pro-
jection of C. Then y,€C, k> 0, since C is a cone and A = 0. By
(4.11) with y = y,

@12y | leidt = M exp@ra(A + Blu) = Mo

since y,epr(C). From Theorem 4.1 g(t) is independent of y € C, and
the right side of (4.12) is independent of the arbitrary k¥ > 0. Hence
(4.12) proves g(t) € L. Theorem 2.2 now yields supp(g)S{t: u(t) <A}
a.e.

The next result follows by the techniques used to prove Theorem
4.1 and Corollary 4.1 together with the facts that {t: u.(t) < 0} = C*
and measure (C*) = 0 if O(C) contains an entire straight line [12,
p. 222, Lemma 1].
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COROLLARY 4.2. Let C be an open comwnected come. Let f(z)e
Vo(T°,1 < p<2. Thereexists a function g(t)e L?, (1/p) + (1/q) =1,
with supp(g) € C* a.e. such that

(4.13) |, g wendt < M, yec,

Jor every ¢ > 0 where the constant M, ; depends at most on ¢ and
[ and (4.6) holds for ze T°. Further, if O(C) contains an entire
straight line then f(z) =0, z¢ T°.

If we assumed that g¢g(¢)e L* in Corollary 4.2 satisfies g(t)=
Z “[h(n); t] for some h e L” then we can prove

19 f@) = | aweerar = | ke -y, ze1r,

in Corollary 4.2. If p = 2 the assumption of such a function he L?
is redundant [3].

Since HY(T®)S V*(T®), p > 0, and H¥(T?HCSVYT®, p>0,A=0,
Theorem 4.1 and Corollaries 4.1 and 4.2 hold for f(z)e H*(T®),
1<p=2

COROLLARY 4.3. Let C be an open connected cone. We have
VAT = H{T").

Proof. Given f(z)e V¥T°), Corollary 4.2 yields ¢(t)e L* with
supp(g) S C* a.e. such that (4.13) and (4.6) hold. The Parseval
equality (1.1) for » = 2 yields

@ + i)llee = [lg@)e™ " e S M1 9]l2e 5

hence f(z)e HXT°). The proof is complete since H?(T°) & V*(TY),
p>0.

The proof of the preceding corollary combined with the repre-
sentation [12, p. 225, (67)] and the properties obtained for g(¢) there
show that the analytic functions of Vladimirov in [12, §§25.3-25.4]
are exactly the H¥T° = V¥ T°) functions.

5. Converse and dual theorems. We now prove a dual re-
sult to Theorem 4.1.

THEOREM 5.1. Let B be an open connected subset of R*. Let
1<p=2 and A=0. Let g(t) be a measurable function on R”
which satisfies (2.6). Then the function F(z), z€ T®, defined by (2.7)
is an element of VI(T®), (1/p) + (1/g) = 1.
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Proof. F(z) is analytic in 7% by Theorem 2.1, which also
implies (exp(—27{y, t))g(t)) e L', ye B; and by (2.6) this function is
in L? also, ye B. Thus (1.1) and (2.6) yield

[1F(@ 4+ i) || < |le7™Pg(t) |0 < My 0", yeB,
and F(z)e VI(T®) as desired.

COROLLARY 5.1. Let C be an open conmected cone. Let 1<p=2
and A= 0. Let g(t) be a measurable function on R* which satisfies
(2.6) for every yeC. Then g(t) e L?, supp(9)S{t: us(t) < A} a.e., and
the function F(z),z€ T°, defined by (2.7) is an element of Vi(T°),
(1/p) + A/g) = 1.

Proof. Theorem 5.1, the proof of Corollary 4.1, and Theorem
2.2 yield the results.

If p = 2, Theorem 5.1 and Corollary 5.1 are converses of Theorem
4.1 and Corollary 4.1, respectively. Similarly the next corollary is
a converse of Corollaries 4.2 and 4.8 together with (4.14) for p = 2.

COROLLARY 5.2. Let C be an open connected cone. Let 1<p=2.
Let g(t) be a measurable function on R" such that (4.13) holds with
q 7replaced by » and M., replaced by M.,  Then ¢(t)cL?;
supp(g) S C* a.e.; the function F(z),z€ T° defined by (2.7) is an
element of HYTC), (1/p) + (1/g) = 1; and there exists a function
heL® such that F(x + 1y) — h(x) tn L* as y— 0, yeC, with this
boundary value being obtained independently of how y— 0, yeC.
Further, if p = 2 then F(2) has the representation (4.14); and if
O(C) contains an entire straight line then F(z) =0, z¢ T°.

Proof. Because of previous analysis the only new idea is the
boundary value property. Since g e L? there exists k€ L? such that
hx) = ZF [9(t); 2] in L*. Then (F(x + iy) — h(x)) = F [(exp(—27{y, t))
9(t)) — g(t); x] in L ye C. TUsing (1.1) and the Lebesgue dominated
convergence theorem the proof is completed.

6. Generalized Cauchy and Poisson integrals. Throughout
this section C is an open connected cone such that O(C) does not
contain an entire straight line.

Let Ue 275, 1< p<2. By Lemma 2.1, the generalized Cauchy
integral of U

(6.1) C(U;2) = U, K(z — t)), z€ T°?,

is a well defined function of z e T°€,
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Using similar proofs we see that [6, Lemma 4] holds for p = 1,
and the convergence in [6, Lemma 5] holds in the topology of 7.
The analysis used to prove [6, Theorems 2, 9, and 10] can be adapted
where necessary to show that these results hold also for p = 1, and
we have the following extension of these results.

THEOREM 6.1. Let Ue 27, 1 <0 <2, and let C be an open
connected cone. C(U;z) is an analyic function of ze€ T°C which
satisfies [6, p. 202, (8B)] for z€ T, C' being any compact subcone of
O(C). For any $€.%” we have

(6.2) lim 04C(U; @ + 1y), ¢(2)) = (F [Le(n)F ' [U]], 6(x))

Y
y<€0(C)

with the tramsforms being in the &' sense. If U = V where Ve .o
w’Lth Squ( V);C*, then V = Zlalé'rntahzx(t)’ ha(t) € Lq, (l/p) + (l/q) = 19
Jor some mommegative integer m; we have

(6.3) C(U; z2) = KV, &%=y | ze TOC
as elements of &’; and

(6.4) lim 0C(U; 2 + i), ¢(@)) =<U, ¢), ¢ .

—0
yeC’co(C)

[6, Corollary 1, Theorems 11, 12, and 15] hold for p = 1 also.
[6, Theorem 16] can now be extended to include » = 1 and to con-
clude the analyticity of C(U;z) in T°?, the growth [6, p. 202, (8)]
for ze T%, C'cO(C), and the convergence (6.2) in each of the con-
nected components O(C;), € 4. The restriction of ze T°\{z:y =
Im(z)e O(C), y; =0 for any =1, ---, n} in [6, Theorem 16] is un-
necessary.

Now let Ue &5, 1 < p < o, and C be an open connected cone.
By Lemma 2.2 the generalized Poisson integral of U

(6.5) P(U;2) = (U, Q%)) , 2eT°,

is a well defined function of ze 7T°?. In general P(U;z2) is not
analytic. However, if z is in a generalized half plane in C* then
P(U,; z) is n-harmonic by a proof as in [5, Theorem 7].

We now extend and generalize slightly [6, Lemma 8]. The
proof is the same for all p,1 < p < «, and for ¢€ =2, as that in-
dicated for [6, Lemma 8].

LEMMA 6.1. Let Ue D0 1 < p < o, and ze T°°, C being an
open conmected cone. For yeO(C) we have



60 RICHARD D. CARMICHAEL AND ELMER K. HAYASHI
(6.6)  (P(Usx + ), gx)y = <U, Q= + iy; t), §(x))), € Z;* .

LeMMA 6.2. Let C be an open connected cone and 2z = x + 1y €
T°%. We have

6.7) lim | Q@ + iy; p(a)ds = 6(t), pe D

yey(;;%) R®
in the topology of F.« for all q,1 < q < =, and in the topology
of B

Proof. For yeO(C) and any n-tuple a of nonnegative integers
(6.8) Di({Qx + 1y; t), ¢(x))) = SM Di(¢p(x + 1))Qx; y)dx, ¢€ Py,

where Q(z; y) is defined in (2.5). ¢€ =22, implies ,(¢t) = Di(4(t)) €
DS D, for all ¢,1 < g=<e. Using [6, Lemma 6, (50)], (6.8), and
the analysis of [6, p. 214, (55)] and [6, Lemma 7] we have for any
g, 1=q< e,

lim
¥—0
y€0(0)

(6.9) — lim HS (Pal@ + t) — Pa(t))Qe; y>d“”“

D?<8Rn Q(x + 1y; t)p(x)dx) — D?(¢(t))’|”

which proves (6.7) in the topology of &, forallqg,1 < ¢ < «. Now
$€ T C B C Dy implies Y,(t) = DESE) e D uC B C Dyw. The
definition of <#Z implies that Jo(t) is uniformly continuous and
bounded on R*; hence the proof of [9, Proposition 3, (b)] yields

lim S Al + DY) = t)

ueO(c‘) R
uniformly for te€ R*. Because of this, (6.9) holds also for ¢ = «
which proves (6.7) in the topology of <& and in the topology of

ng = -@.
We now extend and generalize [6, Theorem 14].

THEOREM 6.2. Let Ue 275, 1 < p < . Let C be an open con-
nected cone and z = x + 1y € T°°. We have

(6.10) hm (P(U;x+ 1), ox)) =<U, ¢y, 6€F .

yeO(C)

Proof. The proof follows by (6.6), (6.7), and the continuity of U.
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Using Theorem 6.2, [6, Theorem 17] can be extended and gen-
eralized for Ue 2),,1 < p < -, where O(C) contains no entire
straight line. One concludes the existence of P(U;z), ze€ T°?, and
the convergence (6.10) as ¥y —0, y€O(C)), ne 4. The restriction of
2e T°NMz:y = Im(z)eO0C),y; =0 for any j=1,---,n} in [6,
Theorem 17] is unnecessary.
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