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In this paper, we treat an aspect of the following problem.
If a compact Hausdorff space X is given, and if 7 is a group
of homeomorphisms of X which preserves a measure g, then
find conditions under which M”(X, p) admits a strong lifting
(or strong linear lifting) which commutes with 7. We will
prove the following results.

Introduction. (1) Let (X, T) be a minimal distal flow. Then
there exists an invariant measure g such that M~(X, ) admits a
strong linear lifting o commuting with 7. The linear lifting p is
“quasi-multiplicative” in the sense that o(f - g) = o(f) - p(g) if fe C(X)
and g e M~(X, #). In particular, if (X, T') admits a unique invariant
measure g, then M>(X, ¢) admits p as above. This result may be
viewed as a generalization of “Theorem LCG” of A. and C. Ionescu-
Tulcea [7]; see 1.7. If T is abelian, then M~(X, ;) admits a strong
lifting.

(2) Let G be a compact group with Haar measure g Then
M~>(G, r) admits a strong linear lifting p (which is quasi-multiplica-
tive), which commutes with both left and right multiplications on
G.

The author would like to thank the referee for correcting and
improving Corollary 3.10.

Preliminalies.

NoraTioN 1.1. Let X be a compact Hausdorff space. If pisa
positive Radon measure on X, let M~(X, 1) be the set of bounded,
p-measurable, complex-valued functions on X. Let L™(X, p) be the
set of equivalence classes in M>(X, ¢) under the (usual) equivalence
relation: f~g=f—9g=0 ¢ —a.e. If E is a Banach space, let
M>(X, E, ) ={f: X— E|f is weakly p-measurable, and Range (f)
is precompact}. (Recall f: X — E| is weakly p-measurable if x—
{f(x), ¢’y is p-measurable for all ¢’ = E' = topological dual of E.)

DEFINITIONS 1.2. Let X, ¢ be as in 1.1. A map p of M~(M, p)
to itself is a linear lifting of M*(X, p) if: (i) o(f) = f ¢ — a.e.; (i)
f=9g ¢ —a.e =p(f) = p(g9) everywhere; (iii) p(1) =1; (iv) f = 0=
o(f) = 0; (v) p(af + bg) = ao(f) + bo(9) (f, g€ M™(X, 2); 0,0 C). If,
in addition, (vi) o(f-9) = po(f)-p(g) for all f, ge M~(M, 1), then p

77



78 RUSSELL A. JOHNSON

is a lifting of M~(X, p). If (i)-(v) hold (if (i)-(vi) hold), and, in
addition, (vii) o(f) = f for all feC(X), then p is a strong linear
lifting (strong lifting). See [10, p. 34].

DeFINITION 1.8. Let p be a linear lifting of M~(X, ), and let
E be a Banach space. We “extend p to M*(X, E, )” as follows:

€, p(@)@)) = p<e, (@) (9 M™(X, B, 1), ¢’ e E', x e X).

DEFINITION 1.4. Let p be a linear lifting of M“(X, ¢). Suppose
that o(f-9) = o(f) - o(9) whenever feC(X) and g€ M=(X, ££). Then
o is a quasi-multiplicative linear lifting of M>(M, p).

DeFINITIONS 1.5. Let G be a topological group. The pair (G, X)
is a left transformation group (t.g.) or flow if there is a continuous
map @:G x X— X: (g, x) —¢g-x such that (i) ¢,-(9,-2) = (9.9,) - x;
(ii) idy -z = 2(g, 9. € G; idy = identity of G; x€ X). One defines a
right transformation group in the obvious way. Say that (G, X)
is free (or, G acts freely) if, whenever g.-x = x, one has g = idy
(ge@G, xe X).

DEFINITIONS 1.6. Let G be a compact topological group, and let
T be a locally compact topological group. The triple (G, X, T) is a
bitransformation graup if (i) (G, X) and (X, T) are (left and right,
respectively) t.g.s; (ii) (g -x)-t=g9g-(x-t) (9e@G, ze€X, teT). In
our considerations, the topology of T will play no role, so we will
assume T is discrete. If (G, X, T') is a bitransformation group, and
feM>(X, 1), we let (f-g9)x) = flg-2), and (¢ f)x) = flx-t)(geG,
xeX, teT).

DEFINITION 1.7. Let (X, T) be a right t.g. with T a topological
group. Say that (X, T) is distal [2, 4] if whenever x and y are
distinet elements of X, there is no net (¢,) < T such that lim,x-¢, =
lim,y-t,.. If X=T=G@G where G is a compact group, then the t.g.
(G, G) defined by multiplication on G is distal. Say that (X, T) is
minimal if, for each x € X, the orbit {x-t|te T} is dense in X.

DEFINITION 1.8. Let Y be another compact Hausdorff space,
and let z: X— Y be a continuous surjection. Again let g be a
positive Radon measure on X, and define v = z(¢). Then M*=(Y, v)
may be embedded in M~(X, ) via f— fozr. Suppose p is a linear
lifting of M>(X, p), and p, is a linear lifting of M>~(Y,v). Say p
extends 0, if O|y=w,) = 0o

We will need several simple results concerning quasi-multiplica-
tive, strong linear liftings. We include them in the following lemma.



STRONG LIFTINGS COMMUTING WITH MINIMAL DISTAL FLOWS 79

LeMMA 1.9. Let X be a compact Hausdorff space, ¢t a positive
Radon measure on X with Support () = X. Let o be ¢ quasi-
multiplicative, strong linear lifting of M=(X, p). Let E be a Banach
space.

(a) Let pe M~(X, E, pt). Let feC(X). Then po(f-¢)(x) = flx)-
p(P) @)@ € X).

(b) Let f: X — E be weakly continuous. Let g€ M~(X, r). Then
P - f)x) = p(g)() - flx)(x e X).

(¢) Letgpe M~(X, E, tr). Suppose KCcUcCX, where K is compact
and U is open. If ¢(x) =0 for p— a.a. xe U, then p(g)(x) =0 for
all xe K.

Proof. Using the definition of p(f-¢) (1.2), we have
&, p(f - 9)@) = pde, [ - $@) = p(f - (&, 9)@) = p(f)(@) - p{e/, 9> (@) =
f(@)<e, p(g)x)) (¢ e E', xc X). Part (a) follows. Part (b) is proved
in a similar way. To prove (c¢), let feC(X) be equal to zero on K
and 1 on X ~ U. Then f(z)¢(x) = ¢(x) for p-a.a.x. It follows that
o(f -¢)(x) = p(g)(x) for all xe X. By 1.7(a), p(g)(x) = 0 if x € K.

We remark that, in 1.7(c), one need only assume that g(x) = 0
weakly a.e. on U; i.e., that (¢, ¢(x)) =0 for p-a.a. xc U (¢'€E").
Also note that F may very well be C, in which case M*(X, FE, p) =
M=(X, ro).

2. A reduction. We will prove a preliminary result (2.2),
which will then be used in proving the main Theorems 3.1 and 3.7.

Assumptions, Notation 2.1. Let X be a compact Hausdorff
space with Radon measure g such that (i) p(X) =1; (ii) Support
() = X. Let (G, X, T) be a bitransformation group (1.5), where G
is compact and T is any (discrete) group. Suppose f is both G- and
T- invariant (thus p#(f - 9) = p(f) and u(t- f) = p(f) for all feC(X),
teT, and g€G). Also suppose G acts freely (1.5). Let Y = X/G
(the space of G-orbits with the quotient topology), with n: X — Y
the canonical projection. Since G and T commute (1.5), there is a
natural transformation group (Y, T). If p is a linear lifting of
M=(X, p), say that o commutes with G (and T) if o(f-g) = o(f)-9g
(and po(t- f) =t-p(f)) for all feM>(X, ¢) and geG (and teT).

PROPOSITION 2.2. With assumptions and notation as in 2.1, let
v = (). Suppose o, 18 a quasi-multiplicative, strong linear lifting
of M=(Y,v) which commutes with T. Then there is a quasi-
multiplicative, strong linear lifting o of M=(X, tt) which extends
0, and commutes with G and T.
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The proof is modeled on the proof of a similar proposition in
[9]. We first show that 2.2 is implied by a seemingly weaker
result. More terminology is needed.

Notation 2.3. Let H be a closed, normal subgroup of G. Let
7wy X — X/H be the projection, and let v, = w5(¢). Then (G/H, X/H)
is a free t.g. Each ¢te€ T induces a homeomorphism (again called %)
of X/H onto X/H, and (G/H, X/H, T) is a bitransformation group.

THEOREM 2.4. With the notation of 2.3, let H be Lie. Write
Z = X/H. Suppose there is a strong, quasi-multiplicative, linear
lifting 0 of M>=(Z, vy) which commutes with G/H and T. Then there
18 a strong, quasi-multiplicative, linear lifting p of M=(X, p) which
extends 0 and commutes with G and T.

Proof of 2.2, using 2.4. Let J be the set of all pairs (P, 8),
where P is a closed normal subgroup of @, and g8 is a quasi-multi-
plicative, strong linear lifting of M*(X/P, v,) which extends p, and
commutes with G/P and T. Then (G, p,)eJ. Order J as follows:
(H, B) < (H,, B;) = H,D H, and B, extends B,. We first show (*) J
is inductive under <.

To prove (*), we use methods of [8, pp. 29-83]. Let J,=
{(P,, B.)lax€ A} be a totally ordered subset of J, and let P = MNyey Pa-
Suppose first that A has no countable cofinal set. In this case,
M=(X|P, vp) = Uses M*(X/P,, vp ). Thus if fe M*(X/P, v,), we may
well-defined B(f) = B.(f) for appropriate a. It is easily seen that
(P, B) is in J, and that it is an upper bound for J,.

Now ‘assume that A contains a countable cofinal subset. We
assume that J, = {(P,, 8.)|» =1}, and let P =), P.. Let Q, be
the projection of M*“(X/P,v,;) onto M~(X/P,, vy ) [8, Theorem 3,
p. 32]. As in [8, Theorem 2, p. 46], we let Z be an ultrafilter
on {n|n =1} finer than the Fréchet filter. Define A(f)() =
lim,, 8. Q. ) @) f € M“(X/P, vp); x€ X/P). As in [8, Theorem 2, p.
46], one cheeks that g is a linear lifting. We must show that g is
(i) strong; (ii) quasi-multiplicative.

To do this, fix » momentarily. We will give a formula for @,.
Let L = P,/P. Then X/P,~ (X/P)/L. If f e LA X/P, vp) D L*(X/P, v5),
let (Q,f)(x) = SL S -x)dl (x € X/P; dl = normalized Haar measure on

L). The right-hand side is defined v,-a.e., and may be viewed as
an element of L*X/P,, vy )D L*(X/P,, vp,). Simple manipulations,
plus uniqueness in [8, Prop. 7, p. 29], show that Q. =Q,.

Let feC(X/P). From the formula just given, we see that
Q.f — f uniformly. It is now easy to cheek that g is strong. To
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see that @B is quasi-multiplicative, let feC(X, P), ge M*(X/P, vp).
Let f,=Q.f. Observe that [8.(Q.(f-9))(®) — Ba(Qu(fr N@) =||Q.(f - 9)—
Jo Dlley the norm being that of L*(X/P, v,). By [8, Prop. 7(2), p.
29], this is<||f -9 — fu-9llo SIIf — full-llgllo — 0 as m— . So,
if x € X/P, then B(f-g)(x)=lim, B.(Q.(f - 9)(@)=lim, B.(Q.(f. - 9)(x)=
(by Prop. 7(4), p. 29, of [8]) lim, B,(f. Q.9)(@)=lim, f,(2) - B.(Q.9)(x)=
f@) - plg)(x). So g is quasi-multiplicative. It is easy to check that
B commutes with G/P (this uses 28.72e of [5]), and 7. Hence (P, B)
majorizes J,.

Now let (K, p) be a maximal element of J. If K = {idy}, we
may use the technique of [7] to find a closed normal subgroup P of
G such that P+ K and K/P is a Lie group. Applying 2.4 (with
G — G/P, H— K/P), we find an element (K, §) of J which strictly
majorizes (K, p). This contradicts maximality, so K = {idy}. Hence
2.2 is true if 2.4 is true.

We turn now to the proof of 2.4. Basically, it is a rehash of
the proof of Theorem 2.7 in [9], with modifications due to the fact
that we now assume 6 to be a strong limear lifting. We indicate
the modifications; it is assumed that the reader has [9, §3] before
him. Notation is as in 2.3.

Proof of 2.4. Let feM>(X, tt). Recall Z = X/H. For the mo-
ment, we forget about 7, and consider only that part of 2.4 which
refers to G and H. For z,€ Z, define R/(z,) as in [9, 3.5]. The first
modification must be made in the proof of [9, 8.7]. Note that [9,
01] need not be true, since 6 is not a lifting. We avoid this
problem by replacing [9, O1] with 1.8(c) (with E = C), and by
letting L resp. I be compact subsets of < resp. ¢ such that
2, L c L. The argument of the fifth paragraph on [9, p. 75] now
proves that B(z) = A,(B(2)) for all ze LcL; in particular for z = z,.

The second modification must be made in (*) of the proof of
[9, 8.8(b)]. We can no longer state that, if we M~(Z, v;) and be
M=(Z, L*(H, \)), then é(w-b)(z) = d(w)(z)-6(b)(z). However, note that
b,: Z— L*(H, ») (defined in [9, 3.3)] is weakly continuous if f e C(X).
So, we may replace [9, (*) and (01)] by 1.8(b) and 1.8(c).

In the proof of [9, 3.8(c)], we again replace [9, (*) and (O1)]
by 1.8(b) and 1.8(e).

In 3.10 and 3.11, we make the change discussed in [10]. Namely,
let (W, be a D’'-sequence in H such that ¢—'W,9 = W,(90eG). As

in [9], define T'(w,) = 1/MW.) SHRf @) (W), (R)ANR) (0 € X, 20=7(0),

o — characteristic function). Then, let o(f)(z) = lim, Tj(x,), where
¢ is an ulrafilter finer than the Fréchet filter. It turns out (use
the Case I portions of [9, 3.11-3.14, and also 3.15]) that p is a strong
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linear lifting of M~(X, ) which extends 6 and commutes with G.
We will show that p is also quasi-multiplicative. To do this, suppose
feC(X) and ge M*(X, ). Then lim . Ti(x) = f(x) for all xc X [9,
3.14(b)]. Also, R/(z) = the equivalence class of f/|., -1., in L™(X, \,,)
for all z,€ Z (see [9, 2.6 and 3.8(b)]). Finally, ||R*(2)]|l. < |lgll.. [6,
3.4(c)]. So,

170 = S Taw0 | = s ||, U ) — F@DR )b iNh)
S 11915, 100 = S@) ], ()A) — 0

as nm — oo since f is continuous. Hence o(f - ¢)(x,) = flx,) - o(g)(x),
and o is quasi-multiplicative.

So far, we have shown that M~(X, ¢) admits a strong, quasi-
multiplicative, linear lifting p which extends ¢ and commutes with
G. To complete the proof of 2.4, we must show that p commutes
with T. To see this, it suffices to prove

(1) R(2)(hao) = R (2 - O)(hto - ) (@ € X, 2 = Tu(®o), REH, teT).

But (for notation see [9, 3.3]), one has b./(z) = bi(z-t) for vy-a.a.z
(because the map z — z-t preserves vy). Let o be a linear funec-
tional on L?(H, ). Then (for notation see [9, 3.4(c)]), one has
(B¥(z,), 6> = 6<bL7, o) (2,) = 0<{bj(z - t), 0)(%,) = (since § commutes with
T) = (B(z,-t), ). By [9, 3.5], we see that (1) is true. This com-
pletes the proof of 2.4.

REMARK 2.5. Prof. D. Johnson has shown (unpublished) how
that part of the proof of 2.4 involving a D’'-sequence may be
simplified using an approximate identity on L'(H, \).

3. Main results.

THEOREM 3.1. Let G be a compact topological group with Haar
measure Y. Then M= (G, ) admits a strong, quasi-multiplicative,
linear lifting o which commutes with both left and right transla-
tions on G.

Proof. Apply 2.2 with X =T = G.

Let us now consider minimal distal flows (1.7). From [2, 3, 4, 5]
we have the definition and theorem given in 3.2 and 3.3 below.

DEFINITION 3.2. Let (X, T) and (Y, T) be transformation groups.
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Say (X, T) is an almost-periodic (a.p.) extemsion of (Y, T) if there
is a bitransformation group (G, Z, T) and a closed subgroup H of
G (not normal, in general) such that (i) (Z/G, T) = (Y, T) (i.e., there
is a homeomorphism h: Y — Z/G such that A(y-t) = h(y) -t for all
yeY, te); (i) (Z/H, T) = (X, T.

Furstenberg Structure Theorem 3.8. Let (X, T) be a minimal
distal flow. There is an ordinal a and a collection {(X,, T)|B < a}
of flows such that (i) X, contains just one point; (ii) (X, T) in an
a.p. extension of (X,_, T) if B is a successor ordinal; (iii) if 3 is a
limit ordinal, then (X, T) is an inverse limit of {(X,, T)|w < g}
([3}; thus C(X;) = clos .<s C(X,), where C(X,) is injected into C(X,)
in the natural way); (iv) (X,, T) = (X, T).

Notation 3.4. Let (X, T) be a minimal distal flow, and let
{(X;, T)|B < a} be as in 3.3. If B is a successor ordinal, let (G4, Z,, T)
be a bitransformation group and H;, C G a closed subgroup such that
() (Zs/Gp, T) = (X, T); (i) (Zp/Hp, T) = (X, T). If p=w = aq,
there is a homomorphism (i.e., a map which commutes with the
flows) I1;5: (X;, T)— (X;, T). We write II; for the homomorphism
taking (X, T) to (X;, T)(B < a). If p¢ is a Radon measure on X, let

Yo = 11(12).

DEeFINITION 3.5. Consider some left t.g. (L, W) with L and W
compact. Let Y = W/L, and let v be a Radon measure on Y. Let
v be normalized Haar measure on L. The L-Haar lift ¢ of v is
defined as follows:

wh) =\ (| ro 2d@))dw  (Fecam) .

PrOPOSITION 3.6. There is a T-invariant probability measure
¢ on X such that (i) if B is any ordinal = a, if © < B, and if
feC(X,), then p(f) = p,(f); (ii) if B 18 a successor ordinal, and if
Ne: (Zay, T) — (Zs/Hp, T) =~ (Hy, T') (see 3.4), then tt, = 14(v), where v is
the Gg-Haar lift of ps_,.

The proof of 3.6 is an easy application of 8.3 and transfinite
induction.

THEOREM 3.7. Let (X, T) be a minimal distal. There is an
imvariant measure p on X such that M>(X, ) admits a strong,
quasi-multiplicative, linear lifting p which commutes with T.

Proof. Let p be as in 3.6. Let J be the set of ordinals g < «
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for which M*=(X,, ¢;) admits a quasi-multiplicative, strong linear
lifting p, which commutes with 7. Clearly 0ecJ. Suppose 7elJ,
and let 3 =+~ + 1. Let v be the G;-Haar lift of v,. By 2.2, M*(Z,, v)
admits a quasi-multiplicative, strong linear lifting 0,, which extends
o; and commutes with G, and 7. Then p, commutes with Hj,
and so the formula p,(f) = P(f)(f € M™(X;, tts) CM*=(Zs, v)) defines a
quasi-multiplicative, strong linear lifting of M*=(X,, ;) which com-
mutes with 7. If g is a limit ordinal, and if {v|yv < g}cJ, then
the methods used in the proof of 2.2 may be applied again to show
that geJ. Hence aeJ, and p, satisfies the conditions of 3.7.

CoroLLARY 3.8. If (X, T) is minimal distal with unique in-
variant measure (t, then M>(X, tt) admits o quasi-multiplicative,
strong linear lifting which commutes with T.

COROLLARY 3.9. If T s abelian and (X, T) 18 minimal distal,
then there is an invariant measure p on X for which M*=(X, t1)
admits a strong lifting which commutes with T.

Proof. Let x,€ X, and suppose x,-%, = %, for some t,eT. We
claim that, in this case, xt, = ¢ for all x € X. For, minimality of
(X, T) implies that there is a net (¢,) © T’ such that x,-¢{,— x. Then
2t = lim, (@, - t,) - &, = lim, (%,- %) -t, =x. Hence if S={teT|t
fixes some x€ X}, then S={teT|t =idy on X}. We may there-
fore (replacing T by T/S) assume that T acts freely (1.5) on X.
Now, by 3.7, there is a strong linear lifting of M>(X, ¢#) which
commutes with 7. By [11, Remark 2 following Theorem 1], there
is a lifting p of M~(X, ) commuting with 7. By [10, Theorem 2,
p. 105}, p is strong.

COROLLARY 3.10. If (X, T) is a regular [1] minimal flow, then
there s an invariant measure ft on X such that M~(X, 1) admits
a strong lifting o which commutes with T. In particular, (X, T)
may be the universal minimal distal flow [3].

Proof. We begin as in 3.9. Let z,€ X, and suppose x,-%, = x,
for some t,e T. Let xe X. By [1, Theorem 3], there is a homeomor-
phism ®: X — X such that (i) ® commutes with T; (ii) o(x,) = z.
Then z-t, = ¢(x,) - &, = @(x, - t,) = P(x,) = x. Now proceed as in 3.9.
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