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Let G be a bounded domain in the complex plane and let
#(z) be continuous on G. In this paper we study the boundary
modules of continuity, @(5), of # on G and the modulus of
continuity, ©(3), of # on G. We investigate the extent to which
the inequality “w(6) <&(5)” holds when # is harmonic on G and
show that the precise formulation of such inequalities depends
on the smoothness of 9G.

1. Introduction. Let G be a bo_unded domain in the complex
plane and let u(z)_ be continuous on G. :l‘he modulus of continuity
(MOC) of u(z) on G is the function w,(5, G) defined for 6 = 0 by

®,(0, G) = sup {|u(z) — u(@)|: 2,2 €@, [z — 2’| <0} .

Thus ®,(5, G) is nondecreasing and lim,..+ w(6) = w(0) = 0. If G is,
say, convex, then w,(d) is subadditive and continuous. The boundary
modulus of continuity (BMOC) is denoted @&,(5, 0G) and defined by

@,(0, 0G) = sup {[w(@) —ul@)|:, TedG, [{ - =4} .

When no confusion should arise, we will simply write w(é) and @&(5).
It is clear that @,(5, 3G) < ®,(5, G)(6 = 0), and that if w(z) is
simply continuous on G, little more can be said. In this paper we
investigate the extent to which the reverse inequality holds for w(z)
harmonie (or analytic) on G.
Rubel, Taylor and Shields [6, p. 31] have proved the following
result for u analytic.

THEOREM. Let G be simply connected and let $(6)(6 = 0) be a
continuous increasing, nonnegative subadditive function. Then for
w(z) analytic on G, continuous on G,

@(9) = $(0) = w(d) = Cg(9) ,

where C 18 an absolute constant, independent of G.
It can be shown that C > 1 18 nmecessary.

For #(z) harmonic, it is known that if G = D = 4(0, 1) is the
unit disk and u(z) is harmonic on D, continuous on D, then

(1) w(®) < C(log —;-)ca(a) (0<o= %) ,
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where C is an absolute constant. This result is best possible on D
in the sense that the log (1/0) factor cannot be improved [6, p. 34].
We add, however, that (1) can be sharpened for some &, since
standard techniques for estimating Poisson integrals give

(2) ®() < 3@(5) + FO y@ds .
4 Js g?

It can be shown that (1) follows from (2). We note that (2) also
gives a result of Hardy and Littlewood [3]: if ®(0) < 0%(0 < a < 1),
then @(6) < Gé*. More recently Dankel [2] has shown that (1) holds
for a wider class of bounded simply connected domains G. In
particular, (1) holds if oG is an analytic curve or if oG is Dini-
smooth and has bounded arc chord ratio.

In this paper we answer some of the remaining open questions
concerning the relation between w,(6) and @,(6) for harmonic w. In
§2 we show that the relation between the MOC and BMOC is related
to the smoothness of 0G, and describe a wider class of domains
G for which (1) and (2) hold. In §3 we consider a function f =
% + 2v analytic on G and briefly discuss the relationship between
@,(0) and ws0). In §4 we give a class of examples showing the
results of §2 are best possible and at the same time answer a
question of Dankel [2] by showing (1) is not valid on arbitrary
bounded, simply connected domains.

2. The MOC of harmonic functions. The proofs of the main
theorems in this section use the following result of A. Beurling [1,
p. 55].

THEOREM. Let G be a simply connected domain in the complex
plane, let v S 0G and let z€G. Let d(z, 0G) and d(z, v) denote the
distance from z to 0G and v respectively, and z, v, G) denote the
harmonic measure of v with respect to z and G. Then

4 d(z, 0G)\"* _ 4 (d(z, 0G)\"*
(3)  #azm @) = Arc tan<_d(z, 7)> =2 dGz, v>> ’

where the last imequality follows simce Arctanxz < x for x = 0. We
can now prove the following theorem.

THEOREM 1. Let G be a bounded simply connected domain and
suppose u(z) 1s harmonic on G and continuous on G. Then

0(3) = @(25) + BV 2z S'G'c?)(s) is
7 log 2 s g¥2
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where |G| denotes the diameter of G.

Proof. We first observe that

@(d) = sup {|u(z) — u@)|: 2, 2’ €@, |z — 2’| < 6}

(4) = sup {{u() — u()|: €@, z¢G, |z — | <6} .

This equality is proved in [6, p. 26] for analytic w and the same
proof is valid for harmonic w. We assume z€G, £ €6G have been
chosen with |2 — (| <06 and |u(z) — u({)| = @(0). Without loss of
generality, we assume { = 0. If z2e€0G, then w(d) = @) gives the
desired inequality. We assume z€G. Then

w0) = [u@) — u()| = || @) - u O}tz di, &)
= |, a(the a6 .

Let A, ={({e€0G:|{] <26} and A,={CeoG:2"0 < |{| 2% 2=
n<N=1+ [log,|G|/6]---“ 1’ denotes the greatest integer func-
tion). Then

w0®) = 02) + 3| a(Dute, i, 6)

N
< @(20) + 3 BE ez, A, G)
4

5 d(era) UGN,

= @(20) + i A

T n=2

by (3). Since d(z, 0G) < 6 and d(z, 4,) = 2"%0, we have

w(0) < 3(28) + L 3 @22
T n=2

8

< @) + 272270
T

1 2t/2

The result follows by substituting s = 2'*'6 in the last integral.
Two useful corollaries follow from Theorem 1.

COROLLARY 2. If @(0) is subadditive, then
®,(0) = Co~°@,(0) ,

where C = C(|G)) is a positive constant.

COROLLARY 3. If @(6) <0* 0= a =1), then
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o (O<a<—é—
w(©) = C 51/210g_;_ <a:—21_’0 3<%)
o CEESE

Again, C = C(|G]) is a positive constant depending on |G|.

Corollary 3 follows by integration. Corollary 2 is proved as
follows.

Proof. Since ®(5) is a subadditive modulus of continuity, we
can find a continuous, nondecreasing concave function A\(6) for which
@(0) = \M0) = 200) (0=0),

[5, p. 45]. Then M\)/6 is nondecreasing for ¢ > 0. Thus,

®,(8) < 20(5) + Co” S‘G‘ﬁ@lds

F 83/2
< 2@(3) + C5-\() S'G‘s-wds
< C'5-(5) |

In §4 we give an example showing Corollaries 2 and 3 give the best
possible order of magnitude.

Theorem 1 can be improved in some cases. In particular, our
next result relates the global MOC to the BMOC and the smoothness
of 6G. We give a definition to classify boundary smoothness.

DeFINITION 4. For 0 < a <1 and ¢ > 0, let
Sla, &) = {z: |Arg (2)] < Ez?i and 0 < Rez < e} .

For e C and 0 real,
S, ¢, L, 0) =L + €'S(aq, &),

is the “cone” S(a, ¢) rotated through angle # and translated so its
vertex is at {. A bounded, simply connected open domain G satisfies
a (exterior) cone condition of order (a, ¢) if for each {€6G there
exists a real 6 = 6(C) such that

Sla, e, L, ) NG = ¢ .

THEOREM 5. Suppose G satisfies a cone condition of order (a, €)
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0<a<le>0). If u®) is harmonic on G, continuous on G and
has BMOC ®(5), then

(5) () < &(CO) + Dov# SE <(’D(s) ds |

s gUtAIB
where 3 =2 — a and C, D, E are positive constants depending on
G.

Proof. We may assume { =0€0G,zeG with |z — (| <6 and
|u(z)—u()|=w(). We further assume 6({)=0, so that S(a, ¢, ¢, 6)=
S(a, ¢) and S(a,e) NG =¢. Let > 0 and » > 0 denote, respective-
ly, the center and radius of the circle inscribed in 9S(a, ¢). We
have d(n, 0G) = r = ¢(1 + csc a/2)™* (see Figure I).

0S(a, €)

Ficugre 1.

o(z) = (z—f;?- + %)‘9 B=2-a),

be a mapping from G in the z-plane to a domain H in the é&-plane.
We take the branch cut for @(z) along the segment [0, ]. Then @
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maps G conformally onto H = &(G), with ¢(0) = 0€oH. It is clear,
in fact, that AN{¢ <0} =¢, so @ is actually one-to-one and con-
tinuous on G. We can now define v(¢) = u(@-4¢)) for £c H by taking
the branch cut for

255/2

(6) @) = Ly

along {& < 0}. This assures that ¢~ is analytic on H, continuous
and one-to-one on H, with G = @~ (H). Thus v(¢) is harmonic on H
and continuous on H. We then have

(7) @,0, G) = |u(z) — w(0)|
= |v(2(2)) — v(0)]

<, 190 — w0 #0@), dz, H)
< | 6.0070) Ouow), ds H) .

For e H we have |98 — 1| = n/(n + |G|). Combining this with (6)
and (7) gives

(8) .0, G) =< SaH @, (n(n + |GN|EF)UD(2), dg, H) .
Let A, = {¢€oH: |&] < (40/nr)¥?} and

.= {ecom (if) <|El§(2;:5)2/ﬁ} @=n=N)

where N = [log, (9 + 7)/0)] < log, (27/9). It then follows that

d0@, oM 5 1961 = ()

and
wo,m = (23" - (2)”

> (2% — 1)(2;"‘6 )" esasN.
r

From (8) and (3) we obtain

(9) i) = (M > ii <?"+1(_77+_1§_Q >(22/ﬂ — 1)-vegu-mif

r T a2

< G(CP) + DS B0 3y

208
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where C and D are positive constants depending on |G|, » and ».
The desired inequality is obtained by letting s = C62° in the last
integral.

We can now write down corollaries similar to those for Theorem
1.

COROLLARY 6. Assume the hypotheses of Theorem 5. If, in
addition, @(0) is subadditive, then

®(0) = Co"P"@(9) ,

where C is a positive constant depending on G.

COROLLARY 7. Assume the hypotheses of Theorem 5.
If &) =06" (0<v=1), then

o7 <0 <7 < i)
8
w(3) < Clovs 10g‘—51— (v= %, 0<3é <%> .
5vs (v> %)

Minor adjustments to the proof of Theorem 5 prove the follow-
ing result.

THEOREM 8. Let G be a bounded, simply connected open domain.
Suppose there exists an & > 0 such that for each { coG there is a
disk, D,, of radius ¢ with {cdD, and D,NG =¢. If u@) s
harmonic on G, continuous on G and has BMOC @(3), then

() < @(CP) + DBSE 5)8(—23)-013 ,

3

where C, D, K are positive constants depending on G.

For notational convenience, the “disk condition” described in
Theorem 8 will be referred to as a cone condition of order (1, ¢).
If G is a bounded, simply connected open domain that does not
satisfy a cone condition of any order (¢, ¢) (0 <a =1,&> 0), then
we will say G satisfies a cone condition of order (0,1). Thus
Theorem 8 shows that if G satisfies a cone condition of order (1, ¢),
then our estimates for w(6) are essentially those given in (2) for
the unit disk. This analogy with the disk illustrated further in the
following corollaries.
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COROLLARY 9. If G satisfies a cone condition of order (1,¢)
(e > 0), and @) is subadditive, then

®() < C(log %)a(a) .

COROLLARY 10. If G satlisfies a cone condition of order (1,c¢)
and @) =0" (0<v=1), then

257 0<do<l
@(0) = C{Blog—;— (v = 1)

The following corollary improves a result of Dankel [2].

COROLLARY 11. If G 1is bounded and convex, and u(z) s

harmonic on continuous on G, then

0(5) < Co(5) log —;_ .

Proof. Since G satisfies a cone condition of order (1,1), it
suffices, as in the proof of Corollary 2, to show @) is bounded
above and below by multiples of some continuous, nondecreasing
concave function A(5). The fact that G is a bounded, convex domain
implies 6G 1is rectifiable, and that G has bounded arc-chord ratio.
For ¢, (' edG, let s(C, ') be the length of the “shorter” arc along
oG from C to {’. Then for some constant 4 > 0 we have

1= 268 <4,
=T

for all {,{'€dG. Let
B(3) = sup {|u(l) — u()], &, L' €dG, s, ) < 6},

be the BMOC of # with respect to arc length along 0G. Then 5(5)
is subadditive and for 6 > 0,

) < @B < B(A) < (A + 1)) .

We now let A(6) be a continuous, nondecreasing concave function
with M0) < @(6) < 20(6). This completes the proof.

3. Analytic functions. Let G be a bounded simply connected
open domain and suppose f(z) = u(2) -+ iv(z) is analytic on G and

continuous on G. Using the results from §2, we obtain results
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relating the MOC of f on G to the BMOC of % or v.
The following well-known result gives a bound on [f’(2)| in
terms of w,(0, G).

THEOREM 12. Let G be a bounded region, let f(z) = u(z) + 1v(2)
be analytic on G, and let u(z) be continuous on G. Then for z€ @

20,(d,, G)
d b

z

(10) [f(a)] =
where d, denotes the distance from z to 0G.

With proper co_nsideration given to the smoothness of 9G, we
can estimate w;(d, G) from (10). We first require two definitions.

DEFINITION 13. Let M) (t = 0) be a nonnegative, increasing,
subadditive function with lim,_,+ AM¢) = 0. A domain G is a A-domain
if there exists a function ¢: R — R and a positive constant M with

G={x+wy>s@)},
and
(11) lo(x) — ¢(2)| < MM\l — o'|) ,

for all z, '€ B. The smallest M for which (11) holds is the bound
for G. Any rotation of A-domain is also a A-domain.

DEFINITION 14. A bounded, simply connected domain G is a
local n-domain if there exist positive constants ¢ and M and a se-
quence {U;:47=1,2, ---} of open sets such that: .

(i) For each { 0@ there is a U, with 4({, ¢) £ U,.

(i1) For each U, there is a M-domain G, with bound not ex-
ceeding M such that:

unGg,=U0naG.

M is called a bound for G. If Az) = Cz* (some 0 < a < 1), then G
is a local Lip(a)-domain. Our definition of local Lip (1)-domain
coincides with the definition of a domain with minimally smooth
boundary [7, p. 189].

The following theorem and its corollary is proved in [4].

THEOREM 15. Let G be a local m-domain and let u(t) (& = 0) be
a nonmnegative, increasing, subadditive functio'nl with lim, ..+ p(t) = 0.
Suppose f(z) is analytic on G, continuous on G and
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(@) < f“fj:)

for each z€G. Then there is an 1) > 0 such that

(12) 00,0 < AS"&@}@dt ,
Jor all 6 = 7.

In (12), we have assumed A(f) is concave and so has a non-
negative derivative at all but at most countably many points. This
assumption affects the inequality (12) by at most a constant multiple
[5, p. 45].

COROLLARY 16. Let G be a local Lip (a)-domain and let B

(0<B<1) be given with a + 3> 1. If f(z) is continuous on G,
analytic on G and

|f'@)] = Cdi™,

for all ze_G, then f(z) satisfies a Lipschitz condition of order a +
B—1on G.

Combining Theorems 5, 12 and 15 gives the following result.

THEOREM 17. Suppose G is a local v-domain and that G satisfies
a cone condition of order (a,e) (0 = a <1,¢>0). Let f(z) = u(z) +
iv(z) be analytic on G, continuwous on G and suppose u(z) has BMOC
@,(0) on 0G. Then there is an 7 > 0 such that

0,0, ) < A{Sa@[@(m) + Dgve g _dﬂds]dt} ,

0 Y

where 3 =2 — «a and A, C, D, E are constants depending on G.

In Theorem 17, we have again assumed A(¢) is concave. The
proof is immediate since the representation (9) for our estimate of
w,(6, G) is clearly nonnegative, increasing, subadditive and tends to
0 with 6. Corollary 16 can be used to draw analogous conclusions
concerning Lipschitz conditions.

4, Examples and remarks. In this section we first present a
class of examples that shows Corollaries 2 and 6 are best possible
in the sense that the exponents on the 6’s cannot be improved. Let
1< B =2 and let ¢,(2) = (1 — 2)* where, for 1 < 8 <2, we take a
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branch cut along z > 1. Then ¢, is 1-1 and continuous on D, analytic
on D onto a domain G, that satisfies a cone condition of order
(2 — B,1). Consider the function ux({), harmonic on G, continuous
on G, with us(8) = |C| for {€dG,. Define vy(z) on D by v,(z) =
us((L — 2)#). Then v, is continuous on D, harmonic on D and u,{) =
v5(¢7'(€)) (L eGy), where ¢;'({) =1 — (¥® is defined with branch cut

along { < 0.
Now @,,(0,0G,) =4d. If 4 is given with 0 < 6 < 2%, then 6 e G,

and
®,4(9, Gs) = up(8) = vs(1 — 6Y%)
LS (@ P(L — 8%, 6)d6

I

%

om
1 S 11— e“|FP(1 — 6", 6)d6 .
T Jals

For 6 < 6 < = we have |1 — ¢”|® = (20/7)f and P(1 — 0", 8) = (0V%|6%).
Thus

289
Tfl-HB
> ( 281 )51/5
TR —1)

= CoU-#12G, (3, 8G) .

— x -t
0,0, G0 2 20" or-ean

\%

The example further shows that the constant in Corollary 6
cannot be taken independent of @ =2 — 8. A similar argument,
using ¢;(z) = A(1 — 2)? (A > 0) shows the constants in Corollaries 2
and 6 cannot be taken independent of |G|. If we take 0 <v =1
and repeat the above argument with u,({) = |{|” ({ €93G;), we obtain
examples that show Corollaries 8 and 7 are best possible.

As a final remark, we note that Theorem 5 actually says some-
thing about were in G |u({) — u(z)| can achieve the bound given in

(5).

THEOREM 18. Let 0 <a, <a, =<1 and €, ¢, 6, >0 be given (if
a, =0, take ¢, = 1). Let G satisfy a cone condition of order (o, ¢,)
and suppose there is a v S 0G such that G satisfies a cone condition
of order (a,, &,) at each {ev. Suppose u(z) is harmonic on G, con-
tinuous on G and has BMOC @(5). [f, for each 0 <& <0, we have
0(d) = |u) — w(z) for some (e, 2€G, |{ — 2| <0, then

(1+82)/82

o(8) < (Co) + Dovee SE bE) g 6 <8
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where B3, =2 — a, and C, D, E are positive constants depending on
a,, & and |G|.

Referring back to the example presented at the beginning of
this section, Theorem 17 gives the following fact. Let {d,}3-, be a
sequence of positive numbers with ,—0. Suppose (,, 2, (n=1,2, ---)
are given with (,€dG;, 2,€G, [(, —2,/ <6, and ®,,0,, Gs) =
[us(C,) — up(2,)|. Then lim ¢, = limz, = 0.
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