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This paper concerns fixed point theorems for nonexpansive
mappings in conjugate Banach spaces. An example shows that
there exist fixed-point-free affine isometries on weak* compact
convex sets. Asymptotic centers of decreasing net of founded
sets in /! are shown to be compact and a common fixed point
theorem for left reversible topological semigroup of non-
expansive mappings in /' is given.

1. Introduction. Let K be a nonempty weakly compact con-
vex subset of a Banach space and T: K — K a nonexpansive map-
ping, ie., ||Te — Ty|| = ||lv — y|l, 2, ye K. A theorem of Kirk [10]
(see also Browder [1], Godhe [6]) states that if K has normal struc-
ture then 7T has a fixed point. Whether the condition of normal
structure is essential remains an open problem, although Schoneberg
[13] has shown that some weakenings of normal structure suffice.
With a slight modification of normal structure, Kirk’s proof of his
theorem also yields the following theorem in conjugate Banach
spaces.

THEOREM 1 (Kirk). Let K be a nonempty weak* compact con-
vex subset of a comjugate Bamnach space and assume that K pos-
sesses weak™ normal structure (see Definition 1 in §3). Then every
nonexpansive selfmapping of K has a fixed point.

One major observation presented in this note is that the con-
dition of weak™ normal structure in Theorem 1 is essential, even for
affine isometries. We also derive a sufficient condition for a con-
jugate Banach space to have weak* normal structure. In particular,
we show that I, possesses weak™ normal structure. Asymptotic
centers of decreasing nets of bounded subsets in I, are shown to
form a normcompact nonempty subset and an application of this
result is made to obtain a common fixed point theorem for families
of nonexpansive mappings in [,.

2. A counterexample. Let ¢, be the space of null sequences,
equipped with the sup norm || .., ||z|l. = sup,s, %], and I, the
space of absolutely summable sequences equipped with the norm
I, Hell, = D |2:]. For each sequence xz, let «t and x2~ be the
positive and negative part of x, respectively. Renorm ¢, by the
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new norm defined by
2| = llz*]le + ll27]lw .
|-] is equivalent to [|-||. since ||z|l. =< |z| < 2||#|l.. This method

of renorming was used by Bynum [4] to renorm [,, 1 < p < co.

LeMMA 1. The dual of (e, |-]) is isometrically isomorphic to
@y, 1]-1]) with the norm ||-|| defined by

lle]l = max(l[a*|],, [[2~]].) .

Proof. Since || is equivalent to [|-||., the dual of (¢, |-]) is re-
presentable by [,. It suffices to show that

max (£l 11711 = sup {Safic v ey [la* |l + lla|l < 1}

for each f = (f,) €l,. Note that the supremum on the right can be
taken over z satisfying the further requirment that z,f; = 0 for all
4. (If z,f; <0, replace £ by another one with z, = 0.) It then fol-
lows that

gxifi = et [l + N a1
= max(||f*], W1 -

For the reverse inequality, note that one can approximate ||f*||,
NN by D2, x.f: by suitably choosing 2, =1 or 0 (—1 or 0).

ExAMPLE 1. Let K ={(x)el: 2, =0, >, 2, <1}. Kisa weak®
compact convex set in (I, ||-]|) since it is the intersection of the
unit ball and the weak* closed set {(z,):®;,=0}. Let T: K— K be
the mapping defined by the equation

Tw=<1—_2iwi, Xy, Loy ** 0y Tny >
&

for x = (x,)e K. We show that T is an isometry. Let %, y € K and
letI={ieZt:2,—y,=0}and J={jeZ*: x; —y; <0}. Assume that
Dier® — Y = Dujes Y; — @5 Then |lx — yl| = 3,2 — ¥, and

| Tz — Tyl = HE{ (Ys — @), @0 — Yy %y Tu — Yy H
=”Z‘,(?/y—90])—zl(xz—?h), ‘. — Yy, "'7xn~yvm "'”
Jje€ €
= Il'.l!iI.X(z'J xr; — ’yi,zwt — Y

iel 1€l

=2~y = lle—yll.
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Similarly, we also have || Tz — Ty|| = |lx — y|| in case ;2 — ¥, <
SiiesY; — x;. Hence T is an isometry. 7T is clearly affine and fixed
point free. Further properties of K and 7T are listed in the fol-
lowing:

(1) lim|ly — T"z|| = Diam(K) = 1, y, x ¢ K.

(2) K does not possess weak* normal structure. This is neces-
sarily true by Theorem 1 and the above demonstration.

(3) T"x converges weakly* to zero for each x ¢ K.

(4) K itself is a minimal T-invariant weak* compact convex set.
Indeed every T-invariant weak* comyact convex subset C of K must
contain 0 by (3). Hence T"(0) =e,cC for all n. Therefore K=
Co({e,} U {0}) £ C and C = K.

The above example shows that the condition of weak* normal
structure cannot be removed from Theorem 1 even if the nonexpan-
sive mapping is an affine isometry. In contrast, every affine non-
expansive selfmapping of a weakly compact convex set always has
a fixed point.

3. Conjugate Banach spaces having weak normal structure.
In this section we derive a condition for a conjugate Banach space
to have weak* normal structure.

DEFINITION 1. A weak* closed convex subset C of a conjugate
Banach space is said to have weak™* normal structure if every weak*
compact convex subset K of C containing more than one point con-
tains a point %, such that

sup{||z, — ¥y K} < diam K .

In the following theorem, R* = {r e R: » = 0} and the notation
x,—y will denote the weak* convergence of z, to ¥.

THEOREM 2. Let X be a the conjugate space of a separable
Banach space. Suppose that there exists a function o: R* X R*— R+
satisfying the following conditions.

(1) For each fixed s, o(r, s) is continuous and strictly increas-
mg in r,

(ii) o(s, s) > s for every s >0,

(i) if x, =0 and lim||x,]] = s > 0, then

lim ||y — @,/ = 0(||yll, s) for every ye K .

Then every weak® closed convex subset of X has weak® normal
structure.
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Proof. Suppose on the contrary that X contains a weak* closed
convex subset C which does not have weak™* normal structure. Then
there exists a weak™ compact convex subset K of C with Card K >1
and for every xc¢ K

sup{/|lx — y|:yeK}=diam K =d > 0.
By a method of Brodskii-Milman [3], there exists a sequence {z,} C K

such that lim d(x,+,, Co(x,),<,) = d. Since subsequences of {x,} share

the same property, we may assume that x, = z, for some 2, € K and
liml]jz, — «,|| =s. Clearly, s> 0. For each fixed m, we have
lim, |z, — 2.|| = d. Therefore, by (iii)

d= Hm [[ (2, — o) — @ — @] = (][ @n — ], 8) -
Using (i), d = d(s, s). Using (ii), we have s <d. We shall show

that sup{|2z, — ¥|]: ¥ K} < s. Suppose not, then there exists z¢ K
with ||z — x,|] > s. Then

lim ||z — .|| = lim ||(z — @) — (x, — x,)]]
= 0(/|z — @]l, 5)
> 8(s,8) =d

by (iii) and (i). Thisis impossible. Therefore, sup{|jz, — ¥|]: ¥ € K}=
s < d, which again contradicts our initial assumption. Hence C has
weak* normal structure.

The next proposition shows that the spaces l,, p = 1 satisfy the
condition in Theorem 2 with 6(r, s) = (#* + s?)'/»,

ProposiTiON 1. In I, if ©, — x, then for every yel,
(1) lim sup ||@, — y|I” = lim sup ||z, — 2[]” + [l — y|” .
In particular, if lim ||z, — x|| exists, we have

lim ||z, — y]| = (lim ||, — 2|]* + ||z — y[|)" .

Proof. For p =1, the equality is a special case of a more
general equality given in Proposition 2; see Corollary 8. For p > 1,
let J:1,—1, 1/g + 1/p = 1, be the duality mapping defined by

Jx = (|o, "' sgna, -, |2, [P sgnew,, ---).

J is weakly continuous and {Jz, x) = ||«||”, see [2]. Since J is the
subdifferential of the convex function f(x) = 1/p||z||”, we have

Zigy =yl = e — alP + || T = o + 1@ = ), 2 =yt
p vy 0
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(Gossez-Lami-Dozo [7]). Therefore

lim sup ||, — ¥|[” = limsup||x, — x||* + » Slt”"lﬂx — yllrdt
= lim sup ||x, — z||” + || — y|” .

Proposition 1 and Theorem 2 implies that every weak* closed
convex subset of I, has weak* normal structure. Note that such a
set may not possess normal structure. For a simple example, let C
be the unit ball and K = {(x,): ¢, =0, D2, «; = 1}. Then K is closed
convex and sup{l/jx — y|]: vy € K} = diam K = 2 for every x¢ K. Com-
bining this result with Theorem 1 we have the following result of
Karlovitz [9].

COROLLARY 1 [9]. Let K be a weak™ compact convex nonempty
subset of I, and T: K-— K be a nonerpansive mapping. Then T
has a fixed point.

4. Asymptotic centers in [,.

DEFINITION 2 [12]. Let C be a nonempty subset of a Banach
space X and {B,: ac 4} a decreasing net of bounded nonempty sub-
sets of X. For each z€C and ac 4, let

ro(a) = sup{|lx — y|: y € B.} ,
r(x) = lim 7,(x) = inf 7, () ,

and
r = inf{r(x): € C} .
The set (possibly empty) ¥ & ({B.:acd}, C) ={xeC:r) = r} and

the number 7 will be called, respectively, the asymptotic center of
{B,: a €4} w.r.t. C and the asymptotic radius of {B,: a € 4} w.r.t. C.

PROPOSITION 2. Let {B,.ac A} be a decreasing mnet of bounded
subsets of 1, and y, a weak™ convergent sequence with weak™ limit
y. Then

lim sup{||y — »||: ¥ € By} + lim sup ||y, — ¥||
= lim sup lim sup {||y. — z||: x € B,} .

(2)
Proof. For zel,, we shall denote by z the ¢th coordinate of

By the triangle inequality, we eclearly have the inequality = in
(2). By a simple diagonal process, we may assume that {B,: a ¢ 4}
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is a decreasing sequence {B,: » = 1} of bounded sets. Choose x,¢c B,
such that limsup ||y — «,|] = limsup,{lly — z||: x€ B,}. It follows
that it suffices to prove the following inequality:

lim sup ||y — «,|| + limsup ||y, — || = lim sup lim sup || Y. — @, .

We may also assume, without loss of generality, that ¥y = 0, and
that lim ||z,]||, lim ||¥,||, and lim, lim sup, ||¥.. — z.|| exist.

Let » = lim,, lim sup,, ||¥. — %,|] and k = lim||y.||. Suppose, on
the contrary that lim||z,||=7 — %k + p for some p»p>0. Let p>
€>0. Let m, N, and M, (N, and M, depend on m,) be sufficiently
large integers such that

Hym1” Z k—

’

£
4

> lyml =

N+t

£
8
len - yml” =r+

£
4 b
and

Hw,,]lgo'—k—l—p—%, for all n=M,.
Then for n = M,, we have
e k! ) kil .
7+ — 2@ — Yn |l = 2 —ym |+ 2 (@ — Y
4 1 N1t
Ny Ny ) o o )
=D ym | — el + X el — 3 (Y
1 1 N+t Fi+1
o ) ‘ Ny )
= [ Ym |l — 23 (Y| + H@all — 230 (22
Ni+1 1

Ny
>p-2_ & —k — & 2 2P,
= T T +tp— 2
Hence

Ny ) 1

le%’lzg(p—@, n= M, .

Since ¥, — 0 there exist m, N,> N, and M,> M, (N, and M,

depend on m,) such that

3

Ny
(2} S
iyl = 0

b

Hymzu gk - ‘% ’
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Z |Ymy| = ,

&
Hx'n - ymzll é’r + E ’
and

||x,.nzfr~k+p~§, for n=M,.

Then for n = M,, we have

o°+f5—zllw,, ymZil*le‘” Yy + Z]x‘” yii;l-%-z,]x‘” y
z Slof - Sl + Blvkll - 3 fe
+Elw‘“ Zly‘”
= | Ym,ll — 221@/‘” 2 Zly“’
+ [, ]| — 2 le‘”
zk~—§-——§———-5—+o—k+p———5——2IZ‘J:lIm‘”
Hence
ZIW‘” ;(p—e) for n=M,.

N+l

Continuing in this way, we obtain two sequences M, < M, <. --
and N, < N, <.-- such that for n = M,,

Npg 1
Z lx(l) _2__(p___5)’ NOZO.

N1 t1

Thus for n= M, ||x,]| = > |2¥| = k-1/2(p — ¢). This contradicts
the boundedness of the sequence z,.

COROLLARY 2. Let x, be a bounded sequence in 1, and y, Zy.
Then

lim sup ||z, — y|| + lim sup [[¥» — ¥|| = lim sup lim sup |z, — ¥.| .
COROLLARY 3. Proposition 1 for p = 1.

THEOREM 3. Let C be a weak™® closed convex momempty subset
of 1, and {B,: a € A} a decreasing net of bounded monempty subsets
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of C. Let the function r(x) be defined as in Definition 2. Then
for each s=0, {xeC:r(x) <s} is weak™ compact convexr and the
asymptotic center of {B,: ac A} w.r.t. C is a nonempty (norm) com-
pact convex subset of C.

Proof. Let K, ={xeC:7(x)<s} and let K be the asymptotic
center. Clearly, diam (K,) < 2s. Since 7(-) is a convex function,
K, is also convex. To show that K is weak* compact, it suffices to

sohw that K, is weak* closed. Let y,€ K, and y, —vy. By Prop-
osition 2.

(3) 7(y) = lim sup r(y,) — limsup ||y, — ¥yl =s .

Hence ye K, and K, is weak* closed. Suppose now that s =7,
where r is the asymptotic radius of {B,: a e 4} w.r.t.C. If r(y,) =,
then we must have limsup ||y, — y|| = 0 for otherwise »(y) <7, a
contradiction to the definition of . Therefore, for a sequence in
K, weak* convergence implies norm convergence. Hence K is com-
pact. Since K = (Y{K,: K, + @} and each K, is nonempty weak™
compact, we have K # .

COROLLARY 4. Let C be a weak™ closed convex subset of |, and
D a nonempty bounded subset of C. Then the Chebyshev center of
D w.r.t. C is nonempty compact convex. In particular, for any
two points x© and y, the set {zel;: ||z — 2|l = ||z —y]| = 1/2]|z — ¥}
18 compact.

Proof. 1f we let B, = D for every a € A4, the asymptotic center
of {B,: a4} is the same as the Chebyshev center of D.

We conclude this section by giving an application of Theorem
3. Let K be a set and S a semigroup of selfmaps of K. 'S is
said to be a topological semigroup if S is equipped with a Hausdorff
topology such that for each a ¢S, the two mappings from S into S
defined by s — as and s — sa for all s& S, are continuous. S is said
to be left reversible if any two nonempty eclosed right ideals of S
have nonempty intersection (cf. [5, p.34]). If K is a topological
space and S a left reversible topological semigroup of selfmappings
of K suce that the mapping (s, x) — s(x) is separately continuous,
then S becomes a directed set if we define a =b if and only if
aS C cl(bS). Moreover, if for a fixed element v ¢ K, we define W,=
cl(sS(u))) for all s€ S, then the family {W,: s S}is a decreasing net
of subsets of K (see [8]).
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THEOREM 4. Let C be a weak® closed convex nomempty subset
of I, and S a left reversible topological semigroup of nonexpansive
selfmappings of C such that the mapping (s, x) — s(x) is separately
continuous. If for some xeC, seS, sS(x) is bounded, then S has
a common fixed point in C.

Proof. Let W, be defined as in the last paragraph. By
Theorem 2 in [12], the asymptotic center K of {W,.seS}is a
S-invariant subset of C. By Theorem 4, K is a nonempty compact
convev set. Since a compact convex set has normal structure, by
Theorem 3 in [12] or Corollary 1 in [8], S has a common fixed point
in K.
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