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The main result of this paper gives necessary and sufficient
conditions for the p-primary part S(X), of the Schur group
S(K) to be induced from S (F), for any subfield F of K where
K is contained in @ (c,), under the restriction that ¢, is not in
K if p>2 and » is odd if p =2, where ¢, is a primitive nth
root of unity.

Moreover we completely answer the question: “When is
S(Q,+¢e3Y) induced from S(Q)?” for any 7, and also the
question: “When are the quaternion division algebras in S(Q(c,))
induced from S(Q(s, + £;1))?” for any #n. Finally, in the last
section we investigate the “generalized group of algebras with
uniformly distributed invariants” which we introduced in an
earlier paper. We obtain, for the first time, a sufficient
condition for the group to be induced from a certain subgroup.

Preliminaries. Let L = Q(¢,) and let K be a subfield of L.
Although it is not necessary for all results in the paper it is con-
venient to choose % as small as possible for a given K. The Schur
subgroup S(K) of the Brauer group B(K) consists of those equivalence
classes [A] which contain an algebra which is isomorphic to a simple
summand of the group algebra KG for some finite group G. An
elegant proof of the following result was given by Janusz [18, Prop.
6.2, p. 89]:

(1.1) Let [A]€ S(K) where [A] has exponent % then e¢,, a primitive
nth root of unity is in K. (In fact (1.1) holds for any field K.)

For K over Q finite abelian, Benard and Schacher [2, Th. 6.1,
p. 89] proved the following:

If {[A]e S(K) then:
(1.2) 1If the index of A is » then ¢, is in K.

(1.3) If q is a K-prime above the rational prime ¢ and o0 e G(K/Q),
the Galois group of K over @, with a(c,) = ¢’ then the Hasse
g-invariant of A satisfies:

inv, A = b,inv,» A(mod 1) .

If [A]e B(K) and A satisfies (1.2)-(1.3) then A is said to have
uniformly distributed imvariants. These algebras form a subgroup
U(K) of B(K). For a treatment of this group see Mollin [7, 14, 15,
16]. We note from (1.2)-(1.3) that S(K) is a subgroup of U(K). For

169



170 RICHARD ANTHONY MOLLIN

a generalization of U(K) to the algebraic number field case and
consequences thereof (including, therefore, results for S(K) see
Mollin [8]-[13]).

Now, if [A]e UK) and q' and q are K-primes above ¢ then
A@®x K, and AQ@x K, have the same index where K, denotes the
completion of K at q. We call the common value of the indices of
A @z K, for all K = primes above ¢ the g-local index of A and denote
it by ind,(A).

We shall have need of the following formula which can be found
in Deuring [3]:

(1.4) Let [A]e B(K). Let K/F be finite and let § be a K-prime
above the F-prime q. Then:

inv;(AQ®; K) = |K;: F,|inv, A(mod 1) .

Henceforth, when we write a tensor product it shall be assumed
to be taken over the center of the algebra in the left factor. More-
over, by the symbol S(F)@® K we mean the image of S(F) under
the map which extends the center to K. The symbol ~ denotes
equivalence in the Brauer group.

If q is an F-prime above ¢, then any reference to the decom-
position of q in K over F (abelian), shall be referred to as the
decomposition of ¢ in K/F since the decomposition essentially depends
on ¢ and not on q. For example if q is unramified in K over F we
say ¢ is unramified in K over F.

Finally, for groups G and H contained in G, a €G — H means
ae€@G but a¢ H.

For most basic results concerning S(K) the reader is referred
to [18].

2. Induced p-elements. Let Q(ec,) be the smallest cyclotomie
field containing K. We may assume 7 % 2(mod 4) since Q(¢,) = Q(¢,,)
whenever n is odd. Let p be a prime such that if p is odd then ¢,.
is not in K and if » = 2 then » is odd. Let F be a subfield of K
and set G, = G(Q(e,)/F). Now we present for the first time necessary
and sufficient conditions for S(KX,) to be induced from S(¥),. In the
following theorem we maintain the above notation and assumptions.
To avoid the trivial case S(K), =1 we assume ¢, is in K.

THEOREM 2.1. S(K), = S(F), ® K if and only if
(1) ¢, 18 in F and
(2) G&&@NnG=GaGr.

Proof. Since S(K), # 1 then equality holds only if ¢, is in F.



INDUCED p-ELEMENTS IN THE SCHUR GROUP 171

We show that the equality of the theorem is equivalent to (2) when
(1) holds.

By [6, Th. 2, Th. 3, Th. 5] and [17, Th. 2.2, Th. 2.3], an algebra
class in S(K), is determined by a skew-pairing «* on G to <{¢,) and
by certain elements in S(Q(¢,)), ® K (which also lie in S(F) & K).
A similar statement holds for S(¥),. Therefore S(K), = S(K),® K
if and only if every skew-pairing on G is the restriction of a skew-
pairing on G, Since the values lie in {¢,), this is equivalent to the
assertion that the inclusion of G into G, induces an inclusion of G/G*
into G,/G?. This is equivalent to (2).

The following result obtained in Mollin [14, Corollary 2.3, p. 165]
is immediate.

COROLLARY 2.2. If K/Q is real of even degree and K is in Q(e,)
where n 1s odd and mo prime congruent to 1 modulo 4 divides n
then S(K) = S(Q) ® K.

Before presenting a sequence of results anchored to Theorem 2.1
we demonstrate that the theorem does not hold if # is even and e,
is not in K. We shall need a result which we isolate as a lemma
since it verifies remarks made in Mollin [14, p. 165], (remarks follow
Theorem 2.2 therein).

LEMMA 2.8. Let n = 2*h, a = 2, (2, h) = 1, and let K = Q(¢, + &;%).
(i) If a =2 then S(K) = S(Q) K K,
() If a > 2 then S(K) # S(Q) R K.

Proof. (i) If a =2 and h = 1 the result is clear. We assume
that o > 1. We see eagily that in order to obtain S(K) = S(Q) ® K
it suffices to prove ind, A =1 for [A]e S(K) whenever |K,:Q,| is
even where p is a K-prime above p. If p|»n then by Yamada [18,
Th. 1, p. 591], ind, A = 1 for any [A] e S(K). If p does not divide
n and |K,:Q,| is even then Yamada’s aforementioned result says
that if [A]eS(K) with ind, A = 2 then p/*= —1 (modn) where f
is the residue class degree of » in Q(¢,)/Q. This means that p is
inert in Q(¢,)/K so that f/2 must be even in order that |K,:Q,| is
even. Thus, 2 = —1(mod n) implies that —1 is a square modulo
4, which is absurd. This establishes (i).

(ii) If A =1 then the result follows from Yamada [18, Th. 2.2,
p. 586] and Mollin [7, Th. 2.6, p. 277]. We assume 2 > 1 and let
n = pit --- p? where the p;’s are distinet primes. Choose a prime
p such that p = —1(mod ) and p = 5(mod 2%). Such a choice is
allowed by the Chinese Remainder theorem. Now we show that
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there exists [A] € S(K) with ind, A = 2 and such that [A] ¢ S(Q) ® K.

The smallest positive integer f such that »/ = l(mod n) is 2*2
i.e., the residue class degree of p in K over @ is 2°~2. Thus, by the
choice of »p we have: p does not divide », f is even, p**%= —1(mod n)
and p?# +1(mod 2%). By Yamada [18, Th. 1, p. 591] this guarantees
the existence of [4] is S(K) with ind, A=2. Now, since p/*% —1(modn)
then p splits completely in @(e,) over K. Hence, f = 2°% equals the
residue class degree of p in K over Q. Since a > 2 it follows that
[A]¢ S(Q) ® K from (1.4).

Now we present the aforementioned example to show that the
theorem does not hold if »n is even and ¢, is not in K. We maintain
the above notation; i.e., K = Q(e, + ;') where n =2, b > 1,0 >
2, (2, k) =1, and G, = GQ(c,)/(Q). Let:

Gy = (0) X {ay X g X +++ X gy

where:
el = €l , &) =g ;
€ha = €3 s‘}’f:sh;
and
TP =at =gl =1
where:

oi(e,) = ex; s, = r(mod pii) ; s, = L(mod n/p%)

where 7, is a primitive root modulo p,, and A, = p{*(p, — 1) for
1=1,2 +--,5. By Lemma 2.3, S(K)=* S(@ ® K. We have G?=
6% X {gt®y %« « X Lt and G = {agh®--- ¢!y, Therefore GiNG =
(1> = G*. This establishes the counterexample.

Now we establish a series of results tied to Theorem 2.1. In
the introduction to [19] Yamada remarks that if K is a real subfield
of Q(e,) such that G(Q(e,)/K) is ecyclic; then the structure of S(K)
does not depend on whether or not »n is divisible by a prime con-
gruent to 3 modulo 4. Lemma 2.3 indicates that Yamada is correct
in general. However, if we restrict our attention to maximal real
subfields of Q(e,) for n odd the result goes through. The following
theorem therefore is the exact analogue of Yamada’s result on real
quadratic fields [18].

Moreover, this theorem generalizes and simplifies the proof of
the result obtained in Mollin [14, Th. 2.2, p. 164]. Finally it completes
the answer to the ‘Tensoring question’ for the maximal real subfield
of Q(s,) for any =.
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THEOREM 2.4. Let K = Q(e, + &;2) where » > 1 is odd. Then
S(K) = 8@) & K if and only if there exists a prime q dividing n
such that q¢ = 3(mod 4).

Proof. To establish the necessity assume S(K) = S(@) QX K. We
have: G = G(Q(c,)/K) = {(p!? - .. ¢*'*> where the ¢, and h, are defined
as in the above example. If we assume p, = 1(mod4) for all ¢ =1,
2, --+, s then it is clear that A, = 0(mod4) for all 1=1,2, ---,s.
Thus: G:NG = (""" X --+ X {g*")?*> = G. However G*= (1),
so G:N G # G* which implies by Theorem 2.1 that S(K) = S(@) X K
contradicting the hypothesis, thereby establishing the necessity.

Conversely if S(K) # S(Q) ® K then by Theorem 2.1 we have:
G:NG = G = {1). Therefore GiNG = G. This forces h; = 0(mod 4)
for each i =1, 2, ---, s, which establishes the theorem.

It is reasonable to ask whether or not a similar result holds for
an arbitrary real subfield Q(¢,) for n odd. If % is a prime-power it
does, (see [18]).

However, if n is divisible by at least 2 distinet primes it does
not. The following counterexample illustrates this fact.

Let n = 65 and let:

L 2 . . .
Dy3: €13 - > &3 5 P15t & > &5 5

By: &5 — &3 ; P5 813 — Ex3 -

Let ¢ = ¢};-¢; and let K equal the fixed field of <{¢). We note
G:N G = {g%-6%) = G* which yields S(K) = S(@) & K from Theorem
2.1. This completes the counterexample.

Now, let K over @ be finite imaginary and abelian with M as
maximal real subfield. From [1, Th. 2.1, p. 161] it follows that
[A]€ S(K) with index 2 satisfies A ~ BX K where [B]e B(M) and
B is also quaternion. A natural question to ask is whether or not
[Ble S(M). The following theorem answers this question for certain
fields.

THEOREM 2.5. Let K be contained in Q(e,) with n odd such that
K over Q is finite, imaginary and abelian, then

S(K),=SM)® K .

Proof. If G:N G # G* then there is a eyelic subgroup of G, of 2
power order such that

(i) HNG=HNG

(ii) HNG +# 1) and

(ili) HNG =+ H.
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Therefore by Pendergrass [17, Th. 2.3, p. 433] there exists [A]e
S(K), with ind, A = 2 where p has Frobenius automorphism corre-
sponding to a generator of H. By [1], op. cit., A ~ BR) K where
[Ble B(M) is quaternion. Thus, for a K-prime %5 above an M-prime
P which in turn sits above the rational prime p; we have from (1.4)
that:

invy A = invg BQ K = |Ky: M,| inv, B(mod 1) .

However, by (iii) above we have |K,: M,| =2 so it follows that
inv, A = 0, a contradiction which secures the theorem.

We note that the above theorem includes the case where M =
Qe, + &;Y) for » odd. The following theorem establishes that for
n even the result does not hold. Moreover it yields necessary and
sufficient conditions for elements of order 2 in S(Q(c,)) to be induced
from S(M).

THEOREM 2.6. Let
K=Q,), M=Q(, +c¢").

All elements of order 2 in S(K) are induced from S(M) if and only
if n is odd or a power of 2.

Proof. First we prove the necessity of the condition. Assume
that n=2m, where (2, m)=1, a>1, m>1. We now prove that there
exists an element of order 2 in S(X) which is not induced from S(M).
Choose a prime p = 1(mod 2*) and »p = —1(mod m). Thus the residue
class degree of » in K over @ is 2;i.e., the smallest integer f such
that »* = 1(mod n) is f = 2. However, p = p* = —1(mod %) so »
has inertial degree 1 in K over M. This fact together with p =
P’ = 1(mod 2%) is enough to ensure that there does not exist an
element in S(M) with p-local index 2, by Yamada [18, Th. 1, p. 591].
Now,

S(K), = S(Q(ex)) ® K

by Janusz [5, Th. 1, p. 346]. Since p = 1(mod 2*) then there exists
[Al€ S(Q(ey)) with ind, A = 2° by Yamada [18, pp. 135-189]. Let
[A¥"" =[B]. Then ind, B = 4 and if 8 is a K-prime above p then:

invy BQ K = | Ky: Q,(6)]inv, B(mod 1) .

But | K,: Q,(6)| = 2 so that ind,(BQ K)=2. We have [BR K]e
S(K) having p-local index 2 but B® K is not induced from S(M).
This establishes the necessity.
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Conversely, if n is odd then we are done by Theorem 2.1, so
we assume % is a power of 2. Given [A]e S(K) with ind, A = 2 we
have |K,: M,| = 1 which follows from the fact that A ~ B® K with
[Ble B(M) being quaternion. Now it suffices to show that there
exists [C]e S(M) with ind, C = 2, but this is immediate from Yamada
[18, Th. 2.2, p. 586].

3. The tensoring question for U,(K). Let K/F be finite Galois
where F'is an algebraic number field. We define U, (K) to be the
subset of B(K) consisting of [A] e B(K) such that:

(8.1) If the index of A is m then, ¢, is in K, and
(3.2) If P is a K-prime lying over the F-prime p and

T eG(K/F) with &, =e¢y then:
invy(A) = b, invy- (A)(mod 1) .

For a treatment of this subgroup, which we call the ‘group of
algebras with uniformly distributed invariant for K relative to F",
see Mollin [9]. We note here that S(K) is a subgroup of Un(K).

We need a definition before stating the next result. If K and
E are number fields and D is a K-division ring; i.e., D is a division
ring with [D]€ B(K) then we say that D is ‘E-adequate’ if there
exists an FE-division ring containing D.

THEOREM 3.1. Let E/F be a Galois extension of number fields
and K|/F any extension of number fields. If D is a K-adequate
division ring with [D] e U (E) where D has exponent n, then ¢, 1s
in K and for all p|n we have:

Ux(KE), =U(E), ® KE .

Proof. From Mollin [9, Th. 3.2, p. 263] we have ¢, is in K and
from Mollin [9, Lemma 31, p. 262] we have that U (F), ® KE is
contained in Ugx(KE),. From the proof of [9, Th. 2.10, p. 260] and
from [9, Lemma 3.1, p. 262] it is easily seen that it suffices to prove
that there are no higher p-power roots of unity in KE than in E
and that p does not divide |KE: E|.

Now, let D, be a K-division ring containing D. Then D& KE
is isomorphic to the division ring, of index » in D,, generated by D
and K. Therefore p does not divide |KE: E|. Now, if ¢, is in KE
but not in E then |E(e,.): E| = p and E(e,.) & KE. Thus p||KE: E/|,
a contradiction which establishes the theorem.
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