A NOTE ON THE KONHAUSER SETS OF BIORTHOGONAL POLYNOMIALS SUGGESTED BY THE LAGUERRE POLYNOMIALS

H. M. (HARI MOHAN) SRIVASTAVA
Two new classes of bilateral generating functions are given for the Konhauser polynomials \(Y_n^\alpha (x; k) \), which are biorthogonal to the Konhauser polynomials \(Z_n^\alpha (x; k) \) with respect to the weight function \(x^\alpha e^{-x} \) over the interval \((0, \infty)\), \(\alpha > -1 \) and \(k = 1, 2, 3, \ldots \). The bilateral generating functions (1) and (2) below would reduce, when \(k = 1 \), to similar results for the generalized Laguerre polynomials \(L_n^{(\alpha)}(x) \). Furthermore, for \(k = 2 \), these formulas yield the corresponding properties of the Preiser polynomials.

It is also shown how the bilateral generating function (2) can be applied to derive a new generating function for the product

\[
Y_n^{\alpha-kn}(x; k)Z_n^{\beta}(y; l),
\]

where \(\alpha, \beta > -1, \ k, l = 1, 2, 3, \ldots, \) and \(n = 0, 1, 2, \ldots \).

1. Introduction. Recently, Joseph D. E. Konhauser discussed two polynomial sets \(\{Y_n^\alpha (x; k)\} \) and \(\{Z_n^\alpha (x; k)\} \), which are biorthogonal with respect to the weight function \(x^\alpha e^{-x} \) over the interval \((0, \infty)\), where \(\alpha > -1 \) and \(k \) is a positive integer. For the polynomials \(Y_n^\alpha (x; k) \), the following bilateral generating functions are derived in this paper:

\[
\sum_{n=0}^{\infty} Y_{m+n}^\alpha (x; k)z^n t^n
\]

\[
= (1 - t)^{-m - (\alpha + 1)/k} \exp (x[1 - (1 - t)^{-1/k}])
\cdot F[x(1 - t)^{-1/k}; y; zt^\alpha/(1 - t)^\alpha] \tag{1}
\]

and

\[
\sum_{n=0}^{\infty} Y_{m-k+n}^{\alpha-kn}(x; k)z^n t^n
\]

\[
= (1 + t)^{-1 + (\alpha + 1)/k} \exp (x[1 + (1 + t)^{1/k}])
\cdot G[x(1 + t)^{1/k}; y; zt^\alpha/(1 + t)^\alpha], \tag{2}
\]

where

\[
F[x; y; t] = \sum_{n=0}^{\infty} \lambda_n Y_n^\alpha (x; k)\sigma_n(y) t^n, \tag{3}
\]

\[
G[x; y; t] = \sum_{n=0}^{\infty} \lambda_n Y_{m+k+n}^{\alpha-kn}(x; k)\sigma_n(y) t^n, \tag{4}
\]
λ_α \neq 0 are arbitrary constants, m \geq 0 and q \geq 1 are integers, σ_\alpha(y) is a nonvanishing function of N variables y_1, \cdots, y_N, N \geq 1, and

\begin{equation}
ζ_\alpha(y; z) = \sum_{r=0}^{[n/q]} \binom{m+n}{n-qr} \lambda_r σ_r(y) z^r.
\end{equation}

For k = 2, our formulas (1) and (2) yield the corresponding properties of the polynomials introduced earlier by Preiser [5]. When k = 1, both (1) and (2) would reduce to similar bilateral generating functions for the generalized Laguerre polynomials \(L^{(α)}_m(x) \), since (cf. [2] and [3])

\begin{equation}
Y^{α}_m(x; 1) = L^{(α)}_m(x), \quad α > -1.
\end{equation}

Furthermore, in its special case when m = 0, q = 1 and σ_\alpha(y) \equiv 1, n \geq 0, (1) would give us our earlier result [6, p. 485, Eq. (1)], while a similar special case of (2) is believed to be new.

2. Proofs of the bilateral generating functions (1) and (2). In our derivations of the bilateral generating functions (1) and (2), we shall require the following known results:

\begin{equation}
\sum_{n=0}^{∞} \binom{m+n}{n} Y^{α}_{m+n}(x; k) t^n = (1 - t)^{-m - (α+1)/k} \exp(x[1 - (1 - t)^{-1/k}]) Y^{α}_m(x(1 - t)^{-1/k}; k)
\end{equation}

and

\begin{equation}
\sum_{n=0}^{∞} \binom{m+n}{n} Y^{α-kn}_{m+n}(x; k) t^n = (1 + t)^{-1+(α+1)/k} \exp(x[1 - (1 + t)^{1/k}]) Y^{α}_m(x(1 + t)^{1/k}; k),
\end{equation}

where m is an arbitrary nonnegative integer, and (by definition) α > -1 and k = 1, 2, 3, \cdots. The generating-function relationship (7) was proven independently by Calvez et Génin [1, p. A42, Eq. (6)] and Prabhakar [4, p. 803, Eq. (3.3)], while (8) is due to Calvez et Génin [1, p. A42, Eq. (7)].

If we substitute for the coefficients ζ_\alpha(y; z) from (5) into the left-hand side of (1), we find that

\begin{equation}
\sum_{n=0}^{∞} Y^{α}_{m+n}(x; k) \zeta_\alpha(y; z) t^n = \sum_{n=0}^{∞} Y^{α}_{m+n}(x; k) t^n \sum_{r=0}^{[n/q]} \binom{m+n}{n-qr} \lambda_r σ_r(y) z^r = \sum_{r=0}^{∞} λ_r σ_r(y) z^r t^r \sum_{n=0}^{∞} \binom{M+n}{n} Y^{α}_{M+n}(x; k) t^n,
\end{equation}
where, for convenience, \(M = m + qr, r = 0, 1, 2, \ldots \).

The inner series can now be summed by applying the generating relation (7) with \(m \) replaced by \(M \), and the bilateral generating function (1) would follow if we interpret the resulting expression by means of (3).

Formula (2) can be proven similarly by appealing to (8) in place of (7), and we omit the details involved.

3. Applications. By assigning suitable values to the arbitrary coefficients \(\lambda_n \), it is fairly straightforward to derive, from our formulas (1) and (2), a large variety of bilateral generating functions for the polynomials \(Y_n^a(x; k) \) and \(Y_n^{a-kn}(x; k) \), respectively. On the other hand, in every situation when the multivariable function \(\sigma(y_1, \ldots, y_N) \) can be expressed as a suitable product of several simpler functions, we shall be led to interesting classes of multilateral generating functions for the Konhauser polynomials considered.

As a simple illustration, if in (2), (4) and (5) we set \(m = 0, q = 1 \),

\[
\kappa_n = \frac{(-1)^n}{\Gamma(\beta + ln + 1)} , \quad \sigma(y) = 1, \quad n \geq 0, \quad \beta > -1, \quad l = 1, 2, 3, \ldots ,
\]

and make use of the definition [3, p. 304, Eq. (5)], we shall readily arrive at the bilateral generating function

\[
\sum_{n=0}^{\infty} \frac{n!}{\Gamma(\beta + ln + 1)} Y_n^{a-kn}(x; k)Z_n^l(y; l) t^n
\]

\[
= (1 + t)^{-1 + (\alpha + 1)/k} \exp \left(x[1 - (1 + t)^{1/k}] \right) H[x(1 + t)^{1/k}, -y^l/(1 + t)] ,
\]

where, for convenience,

\[
H[x, t] = \sum_{n=0}^{\infty} Y_n^{a-kn}(x; k) \frac{t^n}{\Gamma(\beta + ln + 1)} .
\]

For \(k = l = 1 \), the generating relation (11) would evidently reduce to a familiar result for the generalized Laguerre polynomials; indeed, (11) may also be looked upon as being complementary to our earlier result [6, p. 491, Eq. (14)].

REFERENCES

Received November 2, 1979. This work was supported, in part, by the Natural Sciences and Engineering Research Council of Canada under Grant A-7353.

University of Victoria
Victoria, British Columbia, Canada
V8W 2Y2
Shashi Prabha Arya and M. K. Singal, *On the locally countable sum theorem* .. 1
John Theodore Baldwin and David William Kueker, *Ramsey quantifiers and the finite cover property* ... 11
Richard Body and Roy Rene Douglas, *Unique factorization of rational homotopy types* ... 21
Ethan Bolker and Ben G. Roth, *When is a bipartite graph a rigid framework?* .. 27
Alicia B. Winslow, *Continua in the Stone-Čech remainder of R²* 45
Richard D. Carmichael and Elmer Kinji Hayashi, *Analytic functions in tubes which are representable by Fourier-Laplace integrals* 51
Stephen D. Cohen, *The Galois group of a polynomial with two indeterminate coefficients* .. 63
Russell Allan Johnson, *Strong liftings commuting with minimal distal flows* ... 77
Elgin Harold Johnston, *The boundary modulus of continuity of harmonic functions* .. 87
Akio Kawauchi and Takao Matumoto, *An estimate of infinite cyclic coverings and knot theory* ... 99
Keith Milo Kendig, *Moiré phenomena in algebraic geometry: rational alternations in R²* .. 105
Roger T. Lewis and Lynne C. Wright, *Comparison and oscillation criteria for selfadjoint vector-matrix differential equations* 125
Teck Cheong Lim, *Asymptotic centers and nonexpansive mappings in conjugate Banach spaces* ... 135
David John Lutzer and Robert Allen McCoy, *Category in function spaces. I* ... 145
Richard A. Mollin, *Induced p-elements in the Schur group* 169
Jonathan Simon, *Wirtinger approximations and the knot groups of F^n in S^n+2* ... 177
Robert L. Snider, *The zero divisor conjecture for some solvable groups* 191
H. M. (Hari Mohan) Srivastava, *A note on the Konhauser sets of biorthogonal polynomials suggested by the Laguerre polynomials* 197
Nicholas Th. Varopoulos, *A probabilistic proof of the Garnett-Jones theorem on BMO* .. 201
Frank Arvey Wattenberg, *[0, ∞]-valued, translation invariant measures on N and the Dedekind completion of *R* 223