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The goal of this paper is to characterize the interpolation
spaces between L,[a, b] or Cla, b] and the space of functions
for which W(x)f (x) belongs to L,la, b] or Cla, b]. In order
to achieve this, for a class of weights W(x) the Peetre K
functional is characterized.

We recall that the Peetre K functional on f € B, + B, where B,
are Banach spaces, both of which are contained in a linear Hausdorff
space, is given by

(1.1) K(z, f) = inf (|fills, + zllfills,) -
F=f1+fy

The Peetre interpolation spaces (B, B,)s.x for 0 <6 <1 and
1 < g £ « are given by their norms

(1.2) 1 Vi = 11l = SUD =Kz, 1)

and

3 N leer = {| e RE ] for 12 g <e0
0 T

It is therefore obvious that to find a characterization of the
space (B, By, x it is enough to characterize the functional K(z, f)
in terms of f(x). It can be noted that sometimes a natural condi-
tion can be given for a function to belong to a specific (B, B.)s,.x
without going through the function (see [4]), but it is preferable
to attain a description of K(z, f), since that will yield results for
all 1 =< ¢ £ « simultaneously. In this paper f <€ B,, and therefore
K(z, ) =inf, (|| f — glls, + llglls,). Moreover, for the sake of con-
venience, we shall substitute r = ¢".

The functionals in which we are interested, K,.(Z", f) and K(¢", f)
are given by:

(1.4) K., f)= itglf f—=gllz + tUgllz + 11 W97z
and

(1.5) K@, f) =t (S — glls + (W97 ()ls)

where B is L,a, b] or Cla, b] and where ¢g'” exists except perhaps
at zeros of Wi(x), and ¢g"" is locally absolutely continuous for z ¢
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[a, b]\{x,; w(x,) = 0}. Using the K, and K functionals of (1.4) and
(1.5), in (1.2) and (1.3), we have the norm || f|s,. x and seminorm
[l fllo.:x respectively. For 6 >0, || f|ls:x is bounded, that is, f
belongs to the interpolation space, if and only if || f|s,,. x is bounded.
This follows the simple observations that: (a) K(z, f) = || f| and
K.(z, f) £ 1| fll; and, since g in both (1.4) and (1.5) can be chosen
among |{g|| < 2|| f|| (otherwise g = 0 would yield a smaller number),
then (b) K. (z, f) = K(z, f) = K.(z, f) — 2]||fllz. For 6 > 0, in (1.2)
when the supremum is taken on = >4 and in (1.8) when the inte-

gral is S , the estimate (a) would imply boundedness. For 6 > 0 (b)

would irflply, for 7 < 6, that the difference between the expressions
with K and K, is bounded.

We shall solve the problem for W(x) having finitely many zeros
z; for which A,|zx — «,|" < W(x) < A,|z — 2,]" for < @, or x> 2z,
when j =1 or 2 respectively. Actually in §2 we shall show how
to reduce the question to that of characterization of K(¢7, f) when
the function is defined on [0, 1] and its support is in [0, 3/4] and
where the weight function is W(x) = 2*. We shall solve this main
problem in §3 for continuous functions and in §4 for L, functions.
We shall later, in §5, fully state the general result for the char-
acterization of K. We shall also state the actual interpolation
results as a corollary.

For C[0, 1], W(x) = 2* and w*(f, h) given by
(1.6) ;(f, h) =Sup Sup |4.«f(2)]

7=h (ri2)7<z

where 4;f(x) = 4,(4;7 f(x)) and 4,f(x) = flx + £/2) — flx — t/2) we
will have the relation

1.7 Ciw7(f, 1) = K(t', f) = Coi(f, t) for 0 <¢<d.

It is clear that away from the singularity 0 w?(f, t) behaves like a
modulus of continuity while near 0 much smaller differences are
taken, in other words, for w?(f, h) to be small the function has to
be much less smooth near 0 than away from 0. For example,
f(@) =2 and a = 1/2 will yield w¥*(f, ) ~ ¢t*®. The result in (1.7),
which will be proved in §3, can be stated also as the following
interpolation theorem.

THEOREM. Let f(x)eC[0, 1], Supp f [0, 3/4] and A, be given
by A, = {f eC|0, 1]; zf"(x) € C[0, 1], £ s locally absolutely con-
tinuwous} then fe(C, A)og JOr 0=0=1 or fec(C, A)ogx for 0<
0=1land 1 £q< o if and only if t—w*(f, t) is bounded for t<d

8
or S & "w*(f, t)'dt/t is bounded, respectively where w¥(f, t) is given
0
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by (1.6).

For L, the expression of w*(f, t) is somewhat more complicated
and the exact characterization of K(¢", f) will be given in §4 for
the above W(x).

The problem of interpolation between || f|lsw, and || £ |lsia.s
where B = L, (or C) i.e., the case W(x) = 1 was solved and treated
extensively. (See for instance [3] and [5].)

The problem of interpolation between L, (v) and L,(z¢) was solved
by Stein and Weiss [6] which covers in general the case where no
derivatives are involved.

For Cla, b] = C[0,1] and W(x) = (x(1 — x))“* a characterization
of the class {f; K(t*", f)/t* = 0(1), t — 0} was given by the author [4]
in order to characterize the class of functions for which Bernstein
polynomials of f(x) and their combinations converge to f(x) at a
certain rate.

For this particular case the present paper yields a different (but
equivalent) result and in addition here the K functional is charac-
terized and not only the class {f: K(t*, f)/t* = 0(1)}. It is clear that
the difference between K, and K is bounded by 2||f||t" and the
cases of interest would occur when t" = o(K(¢t", f)), t— 0 + .

2. Some simplifications. We first observe that if 0 < A4, <
W(x) = A,

(2.1) Ky, ) = ingf (1f = glls + t"Ulglls + [ W 9™ Ds)
where B is L,[e, b] or Cla, b] and

K.t )= ([f — gl + ¢lglls + 1 ]]2)

are equivalent norms independent of ¢ and therefore the situation
in which a continuous W(x) has no zero does not interest us in this
paper since it has already been solved and discussed elsewhere.

One can mention here that if W(x) is equal to zero on a sub-
interval of [a, b] the values of f in that subinterval will not affect
K", f). In any case the treatment in this paper is for W(x)
having only isolated zeros =«, satisfying A,z — x;|* < W(x) <
A,|x — x;|* for = either only on one side of x;, for that or on both
sides.

We can define

K, f)= igf ULf = 9llstapzisn + U 9@) 50005000
+ || W) g (@) || 512y, 2g0,0)]
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where x,, x,;, are consecutive zeros of W{(x) or one of them may
be an edge of [a, b] even in case a or b are not zeros of W(x). We
observe

K, £) = S K{E, 1) -

That K. (t", f) < >, --- is clear from the definition of the K fune-
tionals being infimums, and the inequality in the other direction
follows, since when g, chosen for [z;, x,.,] it does not affect its
choice elsewhere. In fact there is no relation between K,(t", f) and
K;(t", f)(4 # j) and all the information of f(x) can be derived
separately.

Moreover, if (a,b) is infinite, that is ¢ = —c or b= « or
both, and x; are infinitely many zeros of W(x) that do not have an
accumulation point, we still have K. (t", f) = S, K(t", f).

For a single K, a linear transformation can bring [z, x,.,] to
[0, 1].

To simplify even further we would like to separate the problem
into two symmetric problems near 0 and near 1.

For that we shall define the C* function +,(x) 0 = () = 1,
w(x) =1 on [0, 1/4] and v (x) = 0 on [3/4,1]. Recalling

K., f) = iglf(llf —gll + (gl + I Wg)ID)
we have
K., f) = K, fop;) + K (7, fF(1— ) -
We shall show
(2.2) K", fev) = MK, ), K, fL — 4) = MK, f) .

Therefore characterization of K.(t", f4) and K., f(1 — 4)) separ-
ately will suffice. This is the only point where K, (rather than K)
is used since when f = ¢ and g™ = 0 (g4 is not necessarily equal
to zero.

To prove (2.3) we shall need the following lemma.

LEMMA 2.1. If f,f"eL,a,b] 1< p < o or Cla,b], (f" " 1is
locally absolutely comtinuous), then for 0 < k <»r

(2.4) el < (Gl

where M does not depend on p mor on [a, b].

ALl ) 4 - ay-Hire,)

The lemma is well-known (see Adams [2, p. 81]) if M can
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depend on » and [a, b], which would suffice for this section but not
for the following sections. With M not depending on » or [a, b] I
was not able to find a reference, so a simple proof is enclosed. For
the space Cla, b] the validity of Lemma 2.1 was mentioned to me
by S. Riemenschneider who has a different proof (just for Cf[a, b])
using B-splines.

Using Lemma 2.1 we now prove (2.3). There exists ¢, satisfy-
ing [|f — g.ll +¢lg.ll + IWg”|) < 2K, (t", f). Therefore

K. (&, f) = |4, — gl + UUlganll + [W (@) D = [1F — gl
+ tTHWrgtm ”8[0,1/4J + tTngHB[o,ﬂ + HWr(gt"lfl)(r) HB[1/4,3/4] = ZK*(t", f)
+ ¢ max W(2)-3, (Z) g8 lstmsa |92 |l < 2K, f)

1j4sz=3/4

+ M 97 stymsm + 11 9:laiussm) = 2K (7, f)
+ tTM1HW<w)79¢mH3[1/4,3/4] + trMHgt”B[o,ﬂ § MzK*(tT, f) .

In fact we have shown a little more, that is

K., f) =M, i?f (Lf — gllswoam + U9 st08a + W @) 97 |l 510,551))

and a similar estimate for K,(¢", f(1 — 4,)) and the interval [1/4, 1].

In this section we show the equivalence treating different
K., f). In what follows K(t", f) will be used rather than K,,
but the difference is at most O(t") so that our result will relate to
K, only if ¢ = O(K(t", f)) (in which case " = O(K,(t", f)) too).

Proof of Lemma 2.1. We first observe that instead of proving
for 0<k<n

2.5) ¥z = Mn, {6 — a)*[| fils + (b — &))" *|F™l5} ,

it is enough to show
(2.6) ¥ = MIEND — a)*|| fllz + @& — &)l 45},

that is (2.5) with = = %k + 1 since (2.5) follows (2.6) by induction.
For a2 =< (a +b)2 and h = (b — a)/2k we use the Taylor formula
with integral remainder that for locally integrable f*+" with f®
locally absolutely continuous is given by

fle + jh) = f(x) + Ji},_&'f'(w) o 4 %@')_kfm)(x)

2.7) L on
+ _,lngo (7h — w)Ef (e + ) du

to obtain
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k
by (j )(—l)k‘jf(x + jh) = B*f P(x)

2.8
1 = [k 1)+ i b e
T j=1<j)(_) SO (Gh — w)* f " (x + u) du .

Therefore f, f**" eL,la, b] (or Cla, b]) implies f* € L,[a, (a + b)/2]
(or Cla, (@ + b)/2]) and

REf B e ptasarom = 2511 f [lzyta,
1 [k (@+b2
T =<J>{§

1k [B\(Ghy
= 21l + g 3 J 2L s

th(jh — W) (g 4 u)dulpdx }””

0

This can be written as

1f Oz ptanarnm = 25@2R) (b — @)™ [ f [z ta

(2.9) 1 2%+ . (1)
bt BB ) e

Using h=—(b—a)/2k we obtain a similar estimate for [|f™ ||, rars/2,
or || £ |lcta+ss2,1» and combining both we obtain (2.6) with the con-
stants in (2.9) for C[a, b] and with twice those constants for L,.
(The exact constants which we arrived at are not important since
they are not the best possible.)

3. The C[0, 1] case. In this section functions feC[0,1] for
which Supp f €[0, 3/4] are investigated but, as discussed in §2, it
is clear that feC]0, 1] in general is actually being treated and the
condition Supp f < [0, 3/4] is just for convenience.

THEOREM 3.1. Suppose f(x)eC[0, 1], Supp f [0, 8/4] and let

3.1 K, f) = igf (1f = glloro,n + 1129 () loto,1)
and

(3.2) 0I(7, 1) = Sup Sup _ | L5.ef @), 4:5@) = (=) = f(a—5)

<k rl27<z 2

then for a >0
(3.3) Mo (f,t) = K, f) £ Mo (f, 1)

where M, and M, depend on r and a but not on f and t.
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Proof. First we will show Mw}(f, t) < K(t", f). There exists
9. satisfying [|f — g.|| + ¢"|[2™g{"(2)|| = 2K(¢", f). We have

o (f, h) = 0} (f — g:, b) + @¥(g,, h)

and clearly w}(f — g, h) £ 27| f — g.|| £ 2" K(t", f). To estimate
wi(g,, h) we note that 77/2 < x'* always and therefore we can
estimate 47..f for 77 < a'* and for »9/2 < a'~* < »7 separately.
We observe also that for @« =1 h can be chosen so small that the
first case (1) < 2'7*) always applies.

For #**= 7y and 7 < h =t we write

| 47z f(@)] = [pra™gi" (@) = ¢

2" i) 5 22K, )

since x — (r/2)) < & < x + (r/2)y and |x/&| < 2.
Estimating ®}(g,, k) for /2 < 2'~* < »7 (in which case only
« < 1 has to be considered), we have using Taylor’s formula

x+ (I—7r[2) na® r r—1
[ o= ) ]

x

r 7 1
[ L7aeg ()| = X ( ) )(7——1)'_

=0

2"' o4+ (l—r/2)rad l_ . 2 a__ r—1
= llwgi” o5y max S _ 7/@03379” %) du] :
For [ > »/2
[ U2y,
x u'fﬂ'
< [(—r/2)na*]" — _r .
= o (l 2) 7.

For [ = »/2 the above is zero. For I < /2, we have, since x+(I—
r/2)nz* > 0,

[ e e Qo riape g,
2 u?’ﬂ

e e

0 "1 —a) Ao !

Therefore using 7 = ¢t

N < g T2 _ 7y 1

| dizegi@)| = K, P =y, max (- ) 71— a) ")
= MK, f) .

To prove now K(t", f) < M,w#(f, t) we construct g,(x) such that

L = gelleron + t7lle*gi” || = Muwi(f, 1) .
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To accomplish the construction of g, we have to define the
functions 4 (x) = y(4'x) where (x)eC>, 0= x) <1, W(x) is
decreasing, y(x) =1 x <1 and (x) = 0 = 3.

We also construet

0

ad) f@=(5) {70 o e b,

and
" _ i r . _]; r7]—1
fi@) = (L)1 = (2]
(3'5) rir R/ r
XS S Z(—l)"“( >f(x+k(u1+---+ur))du1-'°dur .
R/2r hi2r k=1 k
For a < 1 and ¢ satisfying 4-0+V0-® <t < 4-10-% we write
l

(3.6) gi() = kg Sramkapy_ (X)L — (@) + fHi-taxyri()

where M will be chosen later and for ¢ = 1 we write

(3.7) 0®) = 3} fomrapi (@)L = @) .
We now have to show

(3.8) ILf = gellowon = K3 (f, 1)

and

(3.9) e 279" llow,n = K.0X(f, 0)

We recall that

@) = 3 @@ — @) + f@h)

or
F@) = 3 @@L — @) -

(Both expressions are correct independently of « but will be used
respectively for « <1 and a = 1.)

Since in (8.6) and (8.7) at most two terms of the sum differ
from zero for any x we will prove (8.8) when we show for 4% <
X < 847k

(3.10) | f(@) = furre(@)| = 03(f, 1)
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for all £ when a =1 and for £k <1, | given by 4o g g-tu-o
only for a < 1; but in the latter case for x < 8-4°' we have to
show also

(8.11) | f(x) — file| = 0H(f, 8) .
To prove (3.10) we have

|f@) — furw(@)| £ Sup | Lt f(oc + 1774—ka>
— kS k1 2
4 <r<3-4

= Sup [ 4.f(@)| = 07 (f, 1) .

z—(r/2)nxX>4T
Nt

We derive (38.11) as follows
|f = fimel < Sup | 45 wa<x+7;.L4—w)
ti2<n=t

= Sup  [Len Q)] = Sup [£5af(Q) = 07(f, 1)

ti2sy
> (r/2) m l"M czwmca

for M =min(1, (»/8)**~*),since for such M, n(r/2)4"**M = (r/2)4~"*(t/2)M =

(r/4)4-14-10-04= 0= > 41 /8. M = 474 (r/8)V"%, (or =47t if M = 1).
We shall prove (3.9) now. First let us observe

(3.14) Fr@) = () 2( )( D, f @ + G1J2)

which can be proved following Achieser [1, p. 174] where the case
in which f, is translated to be centered at zero and » = 2 is treated.
Therefore, for 4 * <2 < 3-47% (and k < for a < 1)

Itr 'raf(*r)ka(x)| < tr3ral4 kraj‘(r) kﬂ(x)l < 31'11,,. 2 (J ) lAH k“(];r)f(x + jt4 koz/'»)

< 3rapr.2r max lAL—ka(j,T) f(x + jt4—~ka(_l_._
i

2>>‘§M Sup | 45af ()]

z—(r]2)nz®>4—k

= Mo (f, ) .

For f¥*(x) we have
w@i=(G) (- (3))

x 145, f< + jh 1) — L f @+ jh/4))H .

5 (7 o
(3.15) I

For h=t-47"M, t = 4~ """ and £<3-47! we derive t"||&"f}{ iay(2)|| <
Mw*(f, t) similar to our earlier calculation. To complete the proof
one has to check g{”(x) at points x for which g,(x) is equal to the
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sum of two terms or in other words, {x: 4 *<a<3-4*"}N{x: 47 F<
x < 8-47%7% = {x: 47 < x < -4} on which g,(x) = _(X)f;. .~ ra(2) +
(A — Yo @) frs—rara() = frmratral®) + Ay ()] fr.—ra(x) — fr.o=kara()]. Since
[vi(x)| = M4* we have to estimate only fiZh(x) — i a(x) and
we will use on this funetion Lemma 2.1 where b — a = 2-47%+,

Using (3.14) (for » = » in the lemma) and using (3.10) for % and
k — 1, we obtain in 4% < 2 < 8.4~

E@ @) | F @) = F @) S Moo 4@~k (f, 8
+ M A4 wX(f, t) .

Recalling trxm4* < 127*¢"4*" %~ which is bounded for a« = 1 or other-
wise k < ! and ¢t < 47'%~% which still implies that ¢’z *4*" is bounded,
we have ¢ a™ | (@)(fTia(@) — fiTa(2)] £ Mo} (f, t). Similarly
we can treat g,(2) in 47 < < 3-47%a < 1), (using (8.15) instead of
(3.14)).

4. The L, case. The expression for w} for the L, case is
more complicated. Possible different expressions for w} will be
discussed in §5 but a complete result will be obtained here with
w* given by

kolt}

0/t 0= Sup { & |7V 1icuns@rpasf”

(4.1) e
+ Sup {S |45 @) da} o)
pstizi—a (Jo
where 4.f in this section is a forward difference given by 4f(x) =
fl@+ 1) — f(x), 6@)=1 for a <1l d@)=0 for a =1 and kt)
given by k(t) = Max {k: 4~* + tr4-** < 4%}, One can observe that
for tr < 1/4 and a = 1 there is no bound on k& and we replace k,(t)
by . In accordance with the discussion in §2 we have Supp f C
[0, 8/4] with no loss of generality.

The functional w;(f, t) represents the L, smoothness of f in
exactly the same way as the » modulus of continuity does when
away from the singular point, in this case 0. Near the singular
point the function need not be as smooth. The expression (4.1) is
a quantitative measure of smoothness needed near 0 (the singular
point) as well as elsewhere that expresses the above qualitative
description. For K(t", f) given by

(4.2) K@, f) = ir;f (f —glly + tlz™g],)
we can derive the following theorem.

THEOREM 4.1. For f(x)e L, and Supp f [0, 3/4] we have
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(4.3) Awi(f,t) = K", f) = BoX(f, t)
where K", ) and o} (f, t) are given by (4.2) and (4.1) respectively.

Proof. We first show w}(f,t) < A'K(t", f) for some A > 0.
By definition of K(t", f) there exists g, such that || f—g.||S2K(#", f)
and t7||2"g"(x)|| < 2K(t", f). Obviously wi(f,t) < @*(f — g.t) +

a);k(gt’ t)'
To estimate w}(f — ¢,, t) we write f — g, = F, and

w}(F,, t) = r Sup Sup <7>
i\ 7.

7t J

% {k‘]zm S"k“m(x A Pda }’”’ L2 F.

k=1 sk
Since 47" + tr4=* < 4% (also 4% + tr4-* < 47*+?), each point
{=u+ njd* xe[47* 47*"] appears for fixed » and j at most twice
and therefore wX(F,, t) < r sup, (7]7)41{(77, f) + 22K, f).

Somewhat more complicated is the estimate of wj(g,, t). Using
Taylor’s formula (and forward differences), we have

I, = Sup (koz{‘j) 84_k+1|A§4~/mgt(x)[de )W

7t k=1 J;~k

<8015

oty ke . » 1p
><S @ + gp4—kﬂ—u>f—lg;~(u)du[ dx)

z

< M,(r)Sup Sup

st jsr

kolth o) —kt1
P>

=1,k

Observing that

wa‘m_k“

[ 74—y fueturegiuydu | do )"

€

(x _|_ jvu——ka . u)rfl —S— (‘7’774-ka)'r-—1 é ]'7]7‘*1 4ka
ure (4—-ka)r 4

x+h
and writing M[u g }(x)=Sup, l/hg ! w9 (u)|du, the Hardy-Little-
wood maximal function of w™g{”(u), we have for 1 < p <

kolthe, ki1 1/p
1, = M) supSup 7 (3 |7 MIwreg N 1 do)

k=1

= M(r)e 2K, f) .

For p =1 we estimate I, by Fubini’s theorem (using k(%))
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komxrkﬂ k Sxﬂ"]rkal " (u) | dud
a u'ragt'r uw udx

I < M(r)t""' Sup j
jsr k

=1 Jy—k x

kolt}

—k+2
< M S S P lureginw) | du < MKW, f) .
=1 )=k
For a <1 we have to estimate one more term i.e.,

I, = Sup {Soldggtlrdx}l/v.

ygtl/l—ﬂ'

Following the above and using Taylor’s formula around =z +
(r/2)n,

L= sw [{f+ ()

igr

Sx+rv--jv<x n (’I‘ _ 3)77 _ u)'r—lgi")(u)lduh’dx:\l/p

x4+ (r!2)y

=J, +J,.
Forx >7nor j<vr

[CEXLES Ehak P EXL L) S
ura - (77>'rzx -

and the estimate of J, proceeds as that of I, since ™" < ¢". For
x < and j = U > x)

(x+rn —rn —u)
u’l’d

A

r—roa—1
U

and

z
g ur—ra—ldu ~ 7]7'(1—01)
x4+ (r/2)7

Therefore we have

i 1/p
0

z+(r/2
Ji = C{S 77”‘—“””"8: g () I”u*““"‘"‘dudx}

i/p

= ¢ fpre-ereprico (T wregio(w) [ dul
= O ur g (w)|| = C|lw™g”(w)|| = 2CK(¥, f) -

To prove K(t", f) < Bw}(f,t) we define g, which will satisfy || f —
g:ll, = Bwi(f,t) and t"||x™ 9" |, < Bw(f, t). Define f;, fi* and g,
the same as in §3 by (3.4), (3.5), (8.6) and (8.7) with possibly
different M in (3.6).

To show || f — g.l| = Bw}(f, t) we write

15 = 07 = € {2 [17@) = frwrel@) P | yims()(X = o) Pl

=1

+ {1£@) = e P [0 P}
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which follows since the sum is finite for every z.
Since f,.,~:(x) can be written as

vt = () S

) (7 )@kl +u ) du, - du,

and since 0 <+, =<1 and ,_,(1 — 4,) = 0 in [47% 8.-47%'], the kth
term

S“"zHIIf — fraikalPde < <~%~_>T§t/r o St/r

4k 0 0

4—k+1
% S L Mispiraf Pdodu, - - - du,
4

Tt/ t/r pa—k+2
+ (l) § N .S S IAt’ul'"“7)4_(k_1)”/4af(x) ipdxdu1‘ . 'durf .

t 0 0 g~ k41

We observe now that with »=u,+---+u, or p=4"*(u,+--- +u,)
and since the integral is the same for all terms, we have on
L[4+, 1)

1= el s o(2) (7 [ 101, 0 + 0, ol -du,

= Coxf,1) .

Similarly we can treat the remaining integral remembering
that 4-900-% < ¢ < 47102 gnd (-4 < 47" and 4-'M < t/-* for
appropriate M. To estimate ||x™g{”|| we shall observe first that
(3.14) and (3.15) are still valid for f e L, except that the result is
valid almost everywhere rather than everywhere.

Rewritten to take into account forward difference, we have
for (8.14) and (3.15)

(4.4) rna@) = (£ ) 4 3 (= 19 ’ Miumeref @) aee.

and

e 0@ B (o
X A 4 ima=tan f (@) — Lfgpmetanf (X)) a.e.

Using (4.4) and (4.5), we have
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3.4~ k41
t”’S . | fl k() |Pd
-

3.4~ k+1
= Meymax | | Lo @) Pde
(4.6) R
< M(fr){maxg | Bmiete (@) P

1€5<r J4—

ikt
+ }ga;r( SFHI|Ag(t,ﬂ.4~a_4—a<k—1>f(w) Ipdx} .
We notice that it is a maximum or a finite number of terms and
j(t/r) and j(t/r)4—= are smaller than ¢ and moreover it is a maximum
on the same terms for all k. Similarly one can estimate

11
t”'g " ity [Pl
0

To conclude the proof let us follow Lemma 2.1 in muech the
same way as was done in the proof of Theorem 3.1.
To caleulate the L, norm of g{”(x) we recall that in

{; 475 <o <847} gy(a) = fr.4—rara(2)
+ Y1 ()] frgmrel) — ft~4“’~‘0‘+a(x)] ’

and since [y, | < M4*, we have to estimate in L, [47%*, 8.47%+]
Fuzi(a) — [ 4 o(2) and for this we use (4.4) and earlier estimates
in this section together with Lemma 2.1 where b — a = 2-4~%+,

It can be seen that the estimate for L, norm in [4-F+ 3.4-%+]
is given by a maximum of a finite number of terms that depend
on j and 7 but not on k. Using this and the fact that in the
sums (3.6) or (3.7) we have for any z only two nonzero terms, we
can conclude the proof i.e., t"||2™g{" || < Bw}(f, t).

If » is even, we can write w,(f, p, t)

ko{t}

w.f 0,0 =Sup { 3 (77 | ke o) i)

1/p

- + Sup {g;rvmgff(x)p}m,

vgtl/l—a

where the differences are symmetric (4,1 (x) = f(x + 7/2)— f(x—-7/2))
and k,(t) = Max (k: 4% — tr 4% > 4-*'), 1In this case one can prove
similarly:

THEOREM 4.2. For f(x)e L, Supp fc|0, 3/4], we have for t <t,
(4.8) Aw,(f, », t) = K1, f) = Bw,(f, p, t) .

Actually Theorem 4.2 does not yield a new result, just a similar
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characterization which is proved following the same method, but I
believe that (4.7) and ,.(f, », t) will be convenient using symmetric
rather than forward differences.

5. Conclusions. In this section we will use the two main
results for §§3 and 4 as well as considerations of §2 to obtain a
global description of the K functional (which is a sum of translates
of the local case) and also the interpolation theorem involved.

DErINITION 5.1. A weight function W(x) on [a, b] is of class 4
if it is a continuous nonnegative function with finitely many zeros
at a =, <, < --- <2, <b such that 0 < 4;;|x — ;[ = W(x) <
Blx — x,]% in 0<(x— 2)(—1)7 <6 where a;; >0 i=1,---,n
and 7 =0,1 and where, in case x, = a or x, = b, the above condi-
tion for 1=1,7=1 or i =mn,5=0 is void. (a and b might be
— oo or o« respectively.)

For W(x) of class A we may define the modified modulus of
continuity as follows:

For feC and ¢t < ¢,

5.1  @Xf, 6 W,C) =23 Sup  Sup |4 «;f(x; + (—1)x)]

i, <t (r!2)yp<zl=@ij
x<d/2
+ 8up {|4:7@) o £ 7 L elo, b] and |z — 2, > L]
n<t 2 4
For feL, and ¢t <t, we have

6.2) of,twil)=Sot(, 0+ Swl| gfpa)”

lz—2;1>d/16
where @}, ; are the expressions given by (4.1) with a,; replacing
a, f(x, + (—1)'x) replacing f(x) and k starting from k, rather than
1, (chosen so that 4-"+' < d/2, and therefore the distance between
x, and x, + (—1)’x is less than d/2). Both expressions are measure-
ments of smoothness showing that near a zero of W(x) less smooth-
ness is needed and that the amount of relaxation in smoothness
depends on the rate at which W(x) tends to zero near z,.

Now using the introduction, § 2 and the main result in §§ 8 and
4 we can conclude the following interpolation results:

THEOREM 5.1. For W(x) of class A, feCla, b] or feL,la,b],
and the expressions K", f), w}(f, t; w; C) and w}(f, t; w; L,) given
by (1.5), (56.1) and (5.2) respectively, we have for t = t(t, small
enough)
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(5.3) Mw:(f,t;w, B) = K(t', f) = Myw(f, t, w, B), 0<M,<M,<eo
where B is either Cla, b] or L,a, b].

THEOREM 5.2. Under the conditions of Theorem 5.1 and when
the interpolation space (B, B(r, W))s,..x. 1S given by the norm in (1.2)
and (1.83) using the functional K. (f,t) defined in (1.4) for B=C
or B = L,, we have f € (B, B(r, W) .x. tf and only if
(5.4) Sup t"w}i(f, t, w, BYSM(f) for q= and B=C or B=L,

0<t=sty

respectively and

(5.5) S ("w*(f, t, w, By & <M(f) for 1<q< > and B=C or B=L,

respectively.
6. Remarks and generalizations.

1. In an earlier paper [4] the author proved for Bernstein
polynomials, B.(f,x) for g8 <2 [IB.(f)— fllown = 01/n") if and
only if |[x(1 — x)}24f| < Mh®, as a result of the equivalence of
K@, /)P <M and Sup,<,<, s [[2(1 — 2)]°4if | < Mh? where K(&, f)=
inf, (||f — gllc + &||lz(1 — x)g"'(x)||;). This paper yields the new
characterization of ||B,f — fllcro,g = 0(n~#%), that is ||B.f — fll =
0(n=#?) if and only if ||z fllcwd 1-15 <Mh? where a of our Theorem
3.1 is 1/2. Similarly with respect to other results of [4] one can
deduce additional results from Theorem 3.1. (Results on conditions
for rate of convergence of combinations of Bernstein polynomials.)

2. For the case C[0, 1] given in §8 the condition K(t", f)/tf <
M (which is an important case) is equivalent to

Sup |z 45 f | < Mh* .
(rl2)h<z<i—(r[2)h
We did not go that route in order to characterize the K functional
completely and not just the case K(&", f)/t* < M.
3. An alternative for wi(f, t) could be

wi*(f, t) = SuIt) (S( ;1/1 | 4% f () 1Pde )l/p

6.1) N
+ Sup <SM|A§'f(x)[“’dx> for a < 1

pstlil—a

and

1 i/p
@E*(f, ) = Sup (S | £ f(x)l”dw) fora=1.
7=t (1}
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While in proving wi*(f, t) < AK(", f) there was no problem, the
author was not able to show K(t¥, f) < Awi*(f, t).

4. Various a were treated and while the case a = 1/2 has
already yielded a result about the rate of approximation of Bernstein
polynomials, the rate of approximation of the Post-Widder inversion
formula for Laplace transforms or the Gamma operators relate to
o = 1 and together with a much wider class of operators will be
treated elsewhere.
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