
Pacific Journal of
Mathematics

EXTREMAL PROBLEMS ON NONAVERAGING AND
NONDIVIDING SETS

HARVEY LESLIE ABBOTT

Vol. 91, No. 1 November 1980



PACIFIC JOURNAL OF MATHEMATICS
Vol. 91, No. 1, 1980

EXTREMAL PROBLEMS ON NON-AVERAGING
AND NON-DIVIDING SETS

H. L. ABBOTT

A set A of integers is said to be non-averaging if the
arithmetic mean of two or more members of A is not in A.
A is said to be non-dividing if no member divides the sum of
two or more others. In this paper we investigate some of the
many extremal problems which arise in connection with non-
averaging and non-dividing sets.

1. Introduction* In [1] the author showed that a modification
of an old argument of F. A. Behrend [3] could be used to disprove
a conjecture of Erdos and Straus ([4] and [11]) on non-averaging sets.
In the present paper the method of Behrend is put in a more general
setting and we use it, together with a number of other devices, to
derive several new results on non-averaging and non-dividing sets.
In all of the questions we consider, however, the results obtained
are far from being definitive.

2* The main theorem* The following theorem is a generali-
zation of a result of Behrend on arithmetic progressions. In fact,
Behrend's theorem is given as Corollary 3 below.

THEOREM 1. Let I, B and t be positive integers exceeding 1, and

suppose {I, B) = 1. Let

(1) s = tl\B - I)2

and let

( 2 ) n = Bι - 1 .

Then there exists a partition of {1, 2, , n} into s sets Al9 A2, , As

such that for each m, 2 ^ m ^ I, and each i, 1 ^ i <̂  s, no m mem-
bers of Ai have arithmetic mean in At

Proof. Write the numbers 1, 2, , n in base B so that if
1 <; a ^ n, we have

a = Σ dάcήB* , 0 ^ dla) ^ B - 1 .
1 = 0

Let r = t(B — I)2 and partition {1, 2, , n} into r sets Sl9 S2, , Sr

where
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It will be useful to associate with a the lattice point (do(a), d^a), ,
dt_i(α)) in E\ Note that the lattice points corresponding to numbers
in Sά lie on a sphere of radius V j .

Next partition Si into k = I* sets, two numbers a and b in S3- being
placed in the same set if d^a) = dt(b) (modi) for i = 0, 1, , t — 1.
Thus {1, 2, , ri) has been partitioned into kr — tl\B — I)2 = s sets
Άi> Λ2f , A β .

Suppose that for some m, 2 ^ m ^ i, and some i, 1 ^ i <^ s, there
are distinct numbers yθ9 yly , ym in At such that

( 3 ) Vo + yi+ -•• + ym-i

Define xό for j = 0, 1, , I by

if 0 <; i ^ m
( 4 ) Xj , .

(y if m ^ j

It follows from (3) and (4) that

( 5 ) x0 + a?i + + tfj-i = ixz .

From (5) it follows that

Σ dQ(Xi) = h + μB
i=0

and

Zdo(#j) = h + vB

where 0 ^ λ ^ J5 - 1 and 0 ^ ^, v ^ ί - 1. Thus

( 6 ) Σ do(xj) = (μ~ v)B + Idoixt) .
5=0

Now do(#o), cZ0(̂ i), , do(#ι-i) belong to the same residue class modulo
ϊ and consequently I divides the left side of (6). Since (i, B) — 1,
we must have l\μ — v. However, since \μ — v\ < I, this gives μ = v
and hence

l

Σ do(Xi) = ϊ
i=o

This argument may now be repeated to show that

( 7 ) Σ d,(*i) = id*(a?,) for ΐ - 0, 1, , ί - 1 .

If Po, P2, — -, Pi are the points of i?4 corresponding to x0, xu , xx
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then (7) is just the statement that Pι is the centroid of Po, Ply . ? Pz__x.
Since the points lie on a sphere, we must have Po = Pλ — = Pt

and hence x0 = xt = — xz. It follows that y^~yx — = i/™ c o n ~
trary to hypothesis. This completes the proof of the theorem.

3* Some consequences of the main theorem*

COROLLARY 1. Denote by fin) the size of a maximal non-averag-
ing subset of {1, 2, , n). Then fin) > cnnmo

Proof In Theorem 1 take t = 5, B = I2 + 1, so that, by (1) and
(2), s = 5Γ and n = I?5 — 1 ~ i10. One of the sets, say Aly contains
at least [n/s] ~ 1/5 ~ (1/5)^1/10 numbers. If I ^ J ^ i , let A be any
Z-subset of Ax and if |AX| < ί, let A ~ Aλ. In both cases A is non-
averaging and \A\ > o^1/10, as required.

REMARK 1. Corollary 1 appears in [1]. We point out that Straus
[11] proved fin) > exp (cl/log n) and Erdos and Straus [4] proved
fin) < cnm. It had been conjectured by Erdδs and Straus that
fin) < exp(c*l/log w). Corollary 1, of course, shows that this con-
jecture is false. However, the following interesting question now
arises: Does there exist a number a such that fin) — na+0{ι)Ί It
seems certain that such an a exists, but we have not been able to
make any progress towards proving it.

COROLLARY 2. Denote by fmin) the size oj a maximal subset A
of {1, 2, , n) with the property that no m members of A have
arithmetic mean in A. Then, for each fixed m J> 2,

fΛ(n) > n exp (-(2 + o(l))(2 log m log n)m) .

Proof In Theorem 1 take I = m and put B = mm + 1. (We
suppose, without loss of generality, that t is even.) Then, by (1)
and (2), s = tm2t and n — mί2/2. One of the sets contains at least
[n/s] — (l/£)m(1/2)ί2~2ί numbers and a simple calculation shows that

JLmu/«*2-« > n exp (-(2 + o(l))(2 log m log n)m) .
b

COROLLARY 3. (Behrend). Denote by rjji) the size of a maximal
subset of {1, 2, ---,n} not containing a three term arithmetic pro-
gression. Then

nin) > n exp (- (2 + o(l))(2 log 2 log n)m) .
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Proof. Since rz(n) = f2(ri), the result follows from Corollary 2.

COROLLARY 4. (Moser [6]). .For positive integral k, let W(k)
denote the least integer such that if {1, 2, , W(k) + 1} is partitioned
arbitrarily into k sets, one of the sets contains an arithmetic pro-
gression of length 3. Then

W(k) >kclosk .

Proof. In Theorem 1 put I = m = 2 and determine t by

(8) ί 23ί ̂ k< (t + l)23 ί + 3.

By (1), s = ί 23ί and if we put β = 2* + 1 we get, by (2), n ~ 2ί2.
Then, by a simple calculation using (8), we get W(k) ̂  W(s) ^ n ~

Theorem 1 may also be used to show that various sets of integers,
which arise in a natural way, contain large non-averaging subsets.
We mention two examples.

COROLLARY 5. Let P — {p: p <; n, p prime). Then P contains
a non-averaging subset of size at least cnino/log n.

Proof. In Theorem 1 take t = 5 and B — I2 + 1, as in Corollary
1. One of the s sets contains at least [π(n)/s] ~ nino/5 log n primes
and the result follows.

COROLLARY 6. Let Qk denote the set of the kth powers not
exceeding n. Then Qk contains a non-averaging subset of size at
least ckn

1/sk2+2k, where ck is a constant depending only on k.

Proof In Theorem 1 take t = 4& + 1, B = P + 1 and note that
one of the s sets contains at least [nvk/s] - Z/(4ft + 1) ~ (XIAk + ΐ)n1/8k2+2k

kth powers. The result follows.

REMARK 2. Corollary 6 includes Corollary 1 as the special case

4* Additional results on finite non-averaging sets* It would
be of interest to know whether there exists a number β > 0 such
that every set of n integers contains a non-averaging subset of size
at least nβ. We cannot answer this question, but we obtain a partial
result in this direction as follows:
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THEOREM 2. Let m ^ n. Then almost all n-subsets of{l, 2, , m}
contain a non-averaging subset of size at least c(f(n) log log n)1/2/log n,
where f has the same meaning as in Corollary 1 and where almost

all means all but o(( ;)•

In order to prove the theorem we shall need the following lemma:

LEMMA 1. There exists a partition of {1,2, , n} into k<
2n log n/f(n) non-averaging sets.

Proof. Let A be a maximal non-averaging subset of {1, 2, , w} =
JV, so that I A\ — f{n). For integral λ let A + λ = {α + λ: a e A) and
let Aλ = (A + λ) Π N. It is clear that Aλ is non-averaging. Let
λ0 = 0 and suppose we have defined numbers λ0, \9 , λ5 . Let
D3 = {d:deN, d<£ Aλ. for i = 0, 1, 2, , j}. If ΌάΦ 0 , then for
every d e Dd and every a e A, there exists an integer λ such that
λ + a = d and 0 < |λ | <: n. Thus for some λ*, 0 < |λ*| ^ n, the
equation λ* + a = d has at least \Dά\f(n)/2n solutions aeA, deDj.
Let λ i+1 = λ* and let Dj+ι = {d:deN, d% Ax. for i = 0, 1, , j + 1}.
We have

Since |D 0 | = w - /(%) < w(l - f{n)j2n) we get

Now choose k = [(2tιlogtι)//(w)]. Then

Thus I !>!. I = 0 and the sets AXQ, Aλχ, , A^ are non-averaging sets
whose union is N. This implies the lemma.

REMARK 3. The idea used in the above proof seems to have been
first used by G. G. Lorentz [6]. Subsequently it has been used by a
number of other authors in many different situations. See, for ex-
ample, [9] or [10] for a general discussion of the method and further
references to the literature. We point out also that, with careful
attention to detail the bound k ^ (n/f(n))(l + log f{n)) can be obtained.

Proof of Theorem 2. The argument is similar to that used in



6 H. L. ABBOTT

[8] and [2], but is somewhat more complicated. Let w = m/n and
partition {1, 2, , m} into intervals Ilf I2, , In where

Ia = {a: (a — ΐ)w < a ^ aw} .

The first part of the argument involves showing that the elements
of almost all ^-subsets of {1, 2, , m) are fairly well distributed
among the intervals 7α. More precisely, we shall prove that if

(9) Γ^ log log
2 log n J

and if T denotes the number of ^-subsets of {1, 2, , m} which have
elements in fewer than μ of the intervals Ia then

We may clearly suppose m ί> 2n, since otherwise T = 0. We have

(10) Γ ^ Σ J Σ Π

where, in the inner sum, the summation is over all compositions of

n into j parts. In fact, (10) can be established as follows: (nλ is

the number of ways of selecting j of the intervals Iay say Iai, Ia%9 , Ia.

and Πl=i( ft ) ίβ the number of ways of selecting n integers,

bi of which are in Iai. From (10) we get

ή
n\y

n \ 6 1 + δ 2 + . . . + 5 y = » 6 J 6 2 ? . . .
4-

n!

+

Σ by the multinomial theorem

-nμμn

%) (nloglognV b

\ 2logn / '~ n\\n ) \ 2logn

= mw /log log ?Λ» = / m^ \
w! \τ/log^ / \n\2n)
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, as required.

Let N be an ^-subset of {1, 2, , m} which has elements in at
least μ of the intervals Ia and let A = {a: Ia Π NΦ 0 } . For each
α e i choose aaelaf] N and let A' = {αα: α e A}. We now show that A!
contains a non-averaging subset of size at least c(f(n) log log n)1/2/log n.
Since A! Q N, the theorem will then follow.

Partition {1, 2, , n} into k < 2n\og n/f(n) non-averaging sets
via Lemma 1. One of these sets, say C, must be such that

(ID q=,\c^A\

Let h = [τ/~<Γ] a n ( i f ° r ^ e C f l A let

Jα = I? U i^2) U U IXl)

where

Then, by the pigeon hole principle, there exists an integer v0 and a
set i * c C f l i , I A* I = ft, such that aael^ for each α e A * . Let
A = {α«:αeA*}. We claim that Ax is non-averaging.

Suppose that aaQ, aav , αα?) (^ ^ ft —• 1) are distinct members of
Ax satisfying

(12)

We have

Thus (12) can be

(13)

aaι> + a

, - («« -

written

w(pap•

β l + +

- -±)w + t

as

p-l

a<*p_x = paap .

P-l

-PK + Σδ«

The conditions 0 < 6̂  ^ w/ft and 2 ^ ^ ^ ft — 1 imply that the right
side of (13) lies strictly between — w and w and must thererfore be
0. It follows that

Σ a, =
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However, the numbers a0, av , ap are in C and C is non-averaging.
This is a contradiction. It follows that Aγ is non-averaging. More-
over, by (11),

- h = [V~q] > c{f{n) log log n

This completes the proof.
We conclude this section with an additional application of Lemma

1, which complements Corollary 5.

THEOREM 3. Let P — {p: p :£ n, p prime}. Then p contains a
non-averaging subset of size at least cf(n)/(log nf.

Proof. By Lemma 1, {1, 2, , n} can be partitioned into k <
2n log n/f(n) non-averaging sets. One of these must contain at least
[π(n)/k] > cf(n)/(\og nf primes and the result follows.

5* Infinite non-averaging sets* In all of what follows a and β
are numbers such that na < f(n) < nβ. We prove first the following
result, a weaker version of which was announced in [1].

THEOREM 4. There exists an infinite non-averaging set A of
positive integers whose counting function satisfies

A(x) > χ«^+^ .

Proof. Let m > 1 be a positive integer. Let n , = m and let
nk = [mnlt{ + 1] for k = 2, 3, . Let At be a maximal non-averaging
subset of {1, 2, , nj and, for k ^ 2, let Ak be a maximal non-
averaging subset of {nk + 1, nk + 2, •••,?&* + nk_^. Let A = (J?=i Λfe
Suppose now that m is chosen so that \Ak\ < (m/2)wί_lβ

We now show that A is a non-averaging set. Suppose there are
distinct numbers α0, ̂ , , αt 6 A such that

(14) α0 + αx + + αt_! — ίαt .

We may assume α0 < ^ < < at^. Let αt_! 6 ̂ 4.fe. Suppose first
that k ^ 3. It is clear that not all of α0, αx, , at_x are in Afc. Thus
we may determine r, 1 ̂  r ^ t — 1, such that α0 < αx < < αr_x <;
^*-i + tt*-2 < % + 1 ̂  αr < < at_x ̂ nk + nk^. Then

(t — r)nk < aQ + αx + + α ^

< rα,.^ + (t — r)at_x

< 2rnk_1 + (ί -

(14) = (ί - r)^ f c + (t
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< (t — r)nk + 2tnk_1

< (t - r)nk + mwjfci? , as ί ^ |Λ_ X | < —wg_i
2

< (ί - r + l)n*

^ £% .

If αέ e Aι and i ^ & then ία* > tnk > a0 + a1 + + at_u by (14) while
if I <; fc — 1 we have £α* ̂  t{nk_λ + %t__2) <Ξ 2£%fc_1 < mnkt{ < nk ^
(ί — r ) ^ < α0 + aι + + at_u by (14). This is a contradiction. The
above argument does not apply verbatim to the case k <^ 2, but the
same method works. Thus A is non-averaging.

Let x be given and let k be determined by nk < x <> nk+1. We
may suppose that x is so large that k ^ 3. Then, if wfc < α? <; wft + *%„!
we get A(x) ^ A(Λ4) ̂  \Ak^\ > τC_2 > wS/(1+^8 > xa/{1+^\ while if
^fc + w*-i < x ^ wt+1, we get A(x) ^ I A*] > n%^ > xα/(1+^)2. This com-
pletes the proof of the theorem.

We consider next the problem of establishing the existence of
an infinite non-averaging set of primes whose counting function grows
at least as fast as xc for some c > 0. In order to achieve this we
shall need to make use of the following deep result on the distribu-
tion of the primes, which we state as a lemma.

LEMMA 2. Ifθ^> 7/12, the interval [x, x + xθ] contains at least
cxθ/logx primes for all sufficiently large x.

REMARK 4. The bound θ ^ 7/12 in Lemma 2 is due to Huxley
[5] who improved earlier results of Hoheisel, Ingham and Montgomery.
See [5] for an account of the history of the problem. In the appli-
cations, we can actually get by with the bound θ ^ 3/5 of Montgomery.

THEOREM 5. There exists an infinite non-averaging set P of
primes whose counting function satisfies

P(x) > ^/(1+^2/(log xf .

Proof. Note first that since nk_x — (l/m)nl!a+β) and since
1/(1 + β) ^ 3/5 (β S 2/3), the number of primes in the interval
{nk + 1, "-,nk + w&-i} is, by Lemma 2, at least cnl!a+β)βognk. By
Lemma 1, {nk + 1, , nk + nk_^ can be partitioned into fewer than
2wJk_1 log /ftfc_i//(wί._i) non-averaging sets. One of these sets must
therefore contain at least c/(%_i)/(log nk_tf primes. Let Pk be this
set of primes and let P — \Jk=1 Pk. The argument used in Theorem
4 shows that P is non-averaging and that P(x) > xa/a+β)2/(\og xf.
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6* Non-dividing sets* Denote by g(n) the size of a maximal
non-dividing subset of {1,2, ••-,%}. Straus [11] proved that if
{al9 a2, , ak} is a non-averaging subset of {1, 2, , [n/k]}, then
{w — au n — α2, , n — αΛ} is a non-dividing set. Thus if k ^ /([w
we have #(%) ̂  k. It follows that the following theorem holds:

T H E O R E M 6. g(n) > n

a/{1+a).

Our next result is the analogue of Theorem 3 for non-dividing
sets.

THEOREM 7. Let P = {p: p ^ n, p prime}. Then P contains a
non-dividing set of size at least cna/ii+a)/(log n)2.

Proof. By Lemma 1 it is possible to partition {1, 2, , [n1/a+a)]}
into fewer than n{1~a)/ll+a) log n non-averaging sets Au A2, , Ak. By
the result of Straus, the sets B* = {n — aό\ aό e Ax) are non-dividing.
By Lemma 2, the set {n — [n1/a+a)], , n} contains at least cnia+cc)/log n
primes. Thus one of the B's must contain at least cnaί{1+a)ft[og n)2

primes, as required.
A simple argument shows that there exist no infinite non-dividing

sets of integers. Call a set A quasi-non-dividing if no member of A
divides the sum of two or more smaller members of A. We investi-
gate infinite quasi-non-dividing sets. Our first result is the following
theorem:

THEOREM 8. There exists an infinite quasi-non-dividing set A
whose counting function satisfies A(x) > x1/6.

Proof. It is a simple matter to verify that if n > 1 is a positive

integer and k is determined by ί 7 J < n <Ξ (!x) ^ e n {w — & + 1, ,

n — 1, n} is a quasi-non-dividing set. Thus, if h(n) denotes the size
of a maximal quasi-non-dividing subset of {1, 2, , n), then h(n) ^
en112. Also it is an easy consequence of a result of Szemeredi [12]
that h{n) ^ cnm.

Let m > 1 be a positive integer and let A1 be a maximal quasi-
non-dividing subset of {1,2, --^m}. Suppose we have defined sets
Au Ai9 - - , Ar. Let ίr = Σαej^Λ, and let pr be the least prime
exceeding tr. Let A?+1 be a maximal quasi-non-dividing subset of
{1, 2, , tr} and let Ar+1 = {pra: a e A?+1}. Put A = U?=i Λk. It is
now a simple matter to verify that A is quasi-non-dividing. More-
over, the observation made in the first paragraph together with the
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fact that, for large r, pr ~ tr, enables one to show in a straight-
forward way that A(x) > x1/6. We suppress these details.

Our final theorem establishes the existence of a reasonably dense
quasi-non-dividing set of primes.

THEOREM 9. There exists an infinite quasi-non-dividing set P of
primes whose counting function satisfies P(x) > xα2/8(1+α)2/(log xf.

Proof. Let m be a large positive integer and let nx — m. For
k ^ 2, let nk — [ni~ΐ1/oc)]. Let P1 be a maximal non-dividing set of
primes in {1, 2, , wj. Suppose that we have defined Pl9 P2, , Pfc_x.
By Lemma 1, it is possible to partition {1,2, , [wi/ίl+α)]} into
sk < n{

k

1-a)/a+a) log nk non-averaging sets A?\ , Ai*\ The sets
_βίfe) = {^ — di\ at 6 Ajfe)} are then non-dividing sets which cover
{nk — [n]!a+a)]f , nk — 2,wfc — 1} = Ik. The primes in Ik, of which,
by Lemma 2, there are tk > ^ / ( 1 + α )/log^ f c in number, are distributed
over the Φ{nk^ reduced residue classes m o d ? ^ . Thus one of the
B's must contain a set Pk of primes of size at least [tklskφ{nl-.^)\ >
n]C

n/{a+1))/2/(log nk)
2, and which all belong to the some residue class

modulo wJU. Let P = U?=i Pk
We now show that P is quasi-non-dividing. Suppose there are

primes p0, plf ---, pteP such t h a t p0 < px < < pt and p0 + pλ -\ j-

Pt~i = mPt- Let pt e Pk. If pt-ι & Pk we get p0 + px + + p ^ <
tPt-i < tnk_x ^ wj_i < nk — [^fc/(1+α)] ^ Pί, which is a contradiction.
Thus pt_! e Pk. Determine r, l<ar^Lt — 1 such that p r , 3?r+1, , pt_x e Pk

and p0, plf , p r_! g Pfc. It then follows easily that m = t — r and
hence that

(15) p0 + px + + p r_ x = (ί - r)pt - (pr + pr+ί + + pt_λ) .

Since pr, pr+u — ,pt all belong to the same residue class modulo
nl-u the right side of (15) is divisible by nl^. However,
Po + + Pr-i < rnk-i < nl-i 3-n(i this is a contradiction. Thus P is
quasi-non-dividing. Furthermore, one may easily check that P(x) >
xa2/8U+a)2/(log x)\ The details we suppress. This completes the proof
of the theorem.
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