LINEAR OPERATORS FOR WHICH T^*T AND TT^* COMMUTE. III

Stephen LaVern Campbell
Let T be a bounded linear operator on a Hilbert space H. Let $[T] = T^*T - TT^*$. The structure of operators such that T^*T and TT^* commute and rank $[T] < \infty$ is studied.

1. Introduction. Let T be a bounded linear operator acting on a separable Hilbert space H. Let $[T] = T^*T - TT^*$ and $(BN) = \{ T | T^*T$ and TT^* commute $\}$. As in [1] let $(BN)^+ = \{ T | T \in (BN) \text{ and } T \text{ is hyponormal} \}$.

In [2] it is shown that if $T \in (BN)$ and rank $[T] = 1$, (hence either T or T^* is in $(BN)^+$), then $T = T_1 \oplus T_2$ where T_1 is normal and T_2 is a special type of weighted bilateral shift.

The purpose of this note is to examine the extension of this result to those $T \in (BN)$ for which rank $[T] < \infty$. The simple example [1]

$$
T = \begin{bmatrix} 0 & 0 & 1 \\
1 & 1 & 0 \\
1 & -1 & 0
\end{bmatrix}, \quad TT^* = \begin{bmatrix} 1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 2
\end{bmatrix}, \quad T^*T = \begin{bmatrix} 2 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 1
\end{bmatrix}
$$

of a $T \in (BN)$, $T^2 \not\in (BN)$, shows that if rank $[T] = 2$, then different behavior is possible.

2. Notation and preliminary results. The notation of this section will be kept throughout the paper. Suppose that $T \in (BN)$ and rank $[T] = r$. Then, for the correct choice of orthonormal basis we have

$$
T^*T = \begin{bmatrix} D_1 & 0 \\
0 & P
\end{bmatrix}, \quad TT^* = \begin{bmatrix} D_2 & 0 \\
0 & P
\end{bmatrix}
$$

where $D_1 = \text{Diag} \{ \alpha_1, \ldots, \alpha_r \}$, $D_2 = \text{Diag} \{ \beta_1, \ldots, \beta_r \}$ with $\alpha_i \neq \beta_i$ for all i. Let $T = U(T^*T)^{1/2}$ be the polar factorization of T. Thus U is a partial isometry with $R(U) = R(T)$, $N(U) = N(T)$. Note that $U(T^*T)^{1/2} = (TT^*)^{1/2}U = T$ and T^*T and TT^* have identical spectrum except for zero eigenvalues. Also UU^* is the orthogonal projection onto $R(T) = N(T^*)^\perp$ while U^*U is the orthogonal projection onto $R(T^*) = N(T)^\perp$. Now $(T^*T)^{1/2} = U^*(TT^*)^{1/2}U$. Thus for any polynomial $p(\lambda)$,

$$
p((T^*T)^{1/2}) = U^*p((TT^*)^{1/2})U + p(0)(I - U^*U),
$$

39
(3) \[p((TT^*)^{1/2}) = Up((T^*T)^{1/2})U^* + p(0)(I - UU^*) \].

Taking uniform limits shows that (2), (3) hold for any \(p \in C[0, \| T \| ^2] \).

Let \(p \) be such that \(p(0) = p(\alpha_i) = p(\beta_i) = 0, p(x) > 0 \) otherwise. By construction and (1)

(4) \[p(T^*T) = \begin{bmatrix} 0 & 0 \\ 0 & p(P) \end{bmatrix} \.

But then from (1), \(Up(T^*T) = p(TT^*)U \). Thus we have the following.

Proposition 1. If \(T \in (BN) \) and \(T \) is completely nonnormal, \(\text{rank } [T] = r \) and \(T^*T \) and \(TT^* \) are written as in (1) then \(\sigma(T^*T) \subseteq \sigma(D_1) \cup \sigma(D_2) \).

Proof. Proposition 1 follows immediately from the observation that for the \(p \) of (4), \(\mathcal{M} = R(p(T^*T)) \) is a reducing subspace for \(T \) on which \(T \) is normal and \(\sigma((T^*T)\mathcal{M}^{-1}) \subseteq \{ \alpha_1, \cdots, \beta_r, 0 \} \), \(\sigma((TT^*)\mathcal{M}^{-1}) \subseteq \{ \beta_1, \cdots, \beta_r, 0 \} \). If \(0 \neq \alpha_i \) for all \(i \), and \(0 \neq \beta_i \) for all \(i \), then \(N(T^*T) = N(TT^*) \) and \(0 \notin \sigma(T^*T) \), \(0 \notin \sigma(TT^*) \) by the complete nonnormality of \(T \). \(\square \)

For a self-adjoint operator \(C \), let \(E_\xi(\cdot) \) denote its spectral measure. We shall say \(\alpha \sim \beta \) if \(\alpha_i = \beta_i \) for some \(i \). A **web** is a lattice of relations, for example

\[\begin{align*}
\kappa & \sim \beta \\
\alpha & \sim \gamma.
\end{align*} \]

The relation \(\sim \) is not an equivalence relation. A web is maximal if there is no larger web (larger in the sense of cardinality of elements or relations) that contains it as a subweb.

Proposition 2. Suppose that \(T \in (BN) \), \(T \) is completely nonnormal, and \(\text{rank } [T] = r \). Suppose that \(W \) is a maximal web. Let \(\Delta \) be the set of all \(\alpha_i \) and \(\beta_i \) that are elements of the web. Then

(i) \(E_{TT^*}(\Delta) = E_{TT^*}(\Delta) \), and

(ii) \(R(E_{TT^*}(\Delta)) \) is a reducing subspace for \(T \).

Proof. If \(\Delta = \sigma(T^*T) \cup \sigma(TT^*) \), then the result is trivial. So suppose not. Rearranging the basis in (1) we get

\[T^*T = \begin{bmatrix} D'_1 & 0 & 0 & 0 \\ 0 & P_1 & 0 & 0 \\ 0 & 0 & D''_i & 0 \\ 0 & 0 & 0 & P_2 \end{bmatrix} \quad TT^* = \begin{bmatrix} D'_2 & 0 & 0 & 0 \\ 0 & P_1 & 0 & 0 \\ 0 & 0 & D''_i & 0 \\ 0 & 0 & 0 & P_2 \end{bmatrix} \]
where

\[
\begin{bmatrix}
0 & 0 & 0 & 0 \\
0 & P_1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & P_2
\end{bmatrix}
\]

is the P of (1), \(D_1', D_1''\) make up the \(D_1\) of (1) and \(D_2', D_2''\) make up
the \(D_2\) of (1). Furthermore, \(\sigma(P_1) \subseteq \Delta_1, \sigma(P_2) \subseteq \Delta_2, \sigma(D_1') \cup \sigma(D_2') \subseteq \Delta, \)
and \(\sigma(D_1'') \cup \sigma(D_2'') \subseteq \Delta'.\) Now only one of \(\Delta\) or \(\Delta'\) can contain zero.
Let \(\Sigma\) be the one that does not contain zero. We shall show that
the range of \(E_{TT}(\Sigma) = E_{TT\ast}(\Sigma)\) is a reducing subspace for \(T.\) Note
that either

\[
E_{TT}(\Sigma) = E_{TT\ast}(\Sigma) = \begin{bmatrix}
I & 0 & 0 & 0 \\
0 & I & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{bmatrix}
\]
or they equal \[
\begin{bmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & I & 0 \\
0 & 0 & 0 & I
\end{bmatrix}.
\]
In either case, the fact that \(E_{TT}(\Sigma) = E_{TT\ast}(\Sigma)\) and \(0 \notin \Sigma,\) implies from
(2) that \(R(E_{TT}(\Sigma))\) reduces \(U\) and hence \(T.\)

From Proposition 2, we now get the following.

Theorem 1. If \(T \in (BN),\) rank \([T] < \infty,\) and \(T^\ast T, TT^\ast\) have
distinct eigenvalues on the reducing subspace \(R([T]),\) then \(T\) is a
sum of rank \([T]\) copies of the weighted shift in [2]. In particular
\(T = S_1 \oplus S_2 \oplus N\) where \(S_1\) is hyponormal, \(S_2\) is cohyponormal, and
\(N\) is normal.

3. An example. In some sense Theorem 1 is the strongest
general result possible. Recall that an operator \(T\) is centered if
\(\{T^mT^*\}, T^mT^* T^m\}\) is commutative. Centered operators have been studied
in [3]. All weighted shifts are centered. A consequence of Del
Valle’s result is that if \(T \in (BN)\) and rank \([T] = 1,\) then \(T\) is cen-
tered. (Actually, this is essentially equivalent to it.) We shall now
given an example of an operator \(T,\) such that \(T \in (BN)^\ast\) (hence \(T^2\)
is hyponormal), \(T\) is invertible, rank \([T] = 2,\) but \(T^2 \notin (BN).\) Hence
\(T\) is not centered. That \(T \in (BN)^\ast\) does not imply \(T^2 \notin (BN)\) is known
[1]. However, the example of [1] has a self-commutator of infinite
rank.

First we need a proposition.

Proposition 3. Let \(P = (T^*T)^{1/2}, Q = (TT^*)^{1/2}, T = UP\) be the
polar decomposition of \(T.\) Assume \(U\) is unitary. If \(T \in (BN),\) then
$T^2 \in (BN)$ if and only if P^2Q^2 commutes with $U^2P^2Q^2U^*2$.

Proof. For operators X, Y. let $[X, Y] = XY - YX$. Assume that T satisfies the assumptions of Proposition 3. Note that $U^2P^2Q^2U^*2$. Now $T^2 = UP^2Q^2U^*2 = U^2P^2Q^2U^*2$. Hence $T^2 \in (BN)$

$$\iff [T^2T^*, T^*T^2] = 0$$
$$\iff [UP^2Q^2U^*, U^*P^2Q^2U] = 0$$
$$\iff [U^2P^2Q^2U^*, P^2Q^2] = 0.$$

Example. Let $H = C \oplus H \oplus C \oplus H \oplus H$ where H is a separable Hilbert space. Let P, Q be the operators $P = \text{Diag}\{3, 3I, 2, 2I, I\}$, $Q = \text{Diag}\{2, 3I, 1, 2I, I\}$. Define the unitary operator U as follows, $U(C \oplus H \oplus 0 \oplus 0 \oplus 0) = 0 \oplus H \oplus 0 \oplus 0 \oplus 0, U(0 \oplus 0 \oplus 0 \oplus 0 \oplus H) = 0 \oplus 0 \oplus C \oplus 0 \oplus H$. Let ϕ be a vector in H. Let $U[0, 0, 1/\sqrt{2}, \phi/\sqrt{2}, 0] = [1, 0, 0, 0, 0]$. If M is the orthogonal complement of $[0, 0, 1/\sqrt{2}, 1/\sqrt{2}\phi, 0]$ in $0 \oplus 0 \oplus C \oplus H \oplus 0$, let $UM = 0 \oplus 0 \oplus 0 \oplus H \oplus 0$. Now let $T = U^2P^2Q^2$. It is easy to verify that $P = T^*T, Q = TT^*$, and rank $[T] = 2$.

To show that $T^2 \in (BN)$ we shall use Proposition 3 and show that $[PQ, U^2P^2Q^2U^*2] \neq 0$. Suppose that $[U^2P^2Q^2U^*2, PQ] = 0$. Then every spectral projection of PQ must be a reducing subspace of $U^2P^2Q^2U^*2$. Now $PQ = \text{Diag}\{6, 9I, 2, 4I, I\}$. Thus $H = C \oplus 0 \oplus 0 \oplus 0 \oplus 0$ must be a reducing subspace. But

$$U^2P^2Q^2U^*2[1, 0, 0, 0, 0] = U^2P^2Q^2U^*2[0, 0, 1/\sqrt{2}, 1/\sqrt{2}\phi, 0]$$

$$= U^2P^2Q[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4\psi_1, \psi_2]$$

$$= U[0, 0, 0, 4/\sqrt{2}, 1/\sqrt{2}\phi, 0] = U[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]$$

$$+ 3/2[0, 0, 0, 1/\sqrt{2}, -1/\sqrt{2}\phi, 0]$$

$$= 5/2[1, 0, 0, 0, 0] + 3/2[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]$$

where $\|\psi_3\| = 1/\sqrt{2}$. Which contradicts the fact that H is reducing.

In a certain sense, Example 1 is a canonical example. We shall conclude by showing how to construct all $T \in (BN)^+$ such that rank $[T] = 2$. The generalization to rank $[T] < \infty$ is straightforward. A similar argument works for $T \in (BN)$, rank $[T] < \infty$, but the large number of cases would make the statement of the theorem unreasonably messy. Suffice it to say that the same type of analysis will handle $T \in (BN)$, rank $[T] < \infty$.

Suppose that $T \in (BN)^+$, rank $[T] = 2$, T is completely non-normal, and there is a single maximal web. The possibilities are then $(\sigma(T^*T) = \sigma(T^*T|R([T])), \sigma(TT^*) = \sigma(TT^*|(R[T])))$
(I) $\hat{\sigma}(T^*T) = \{\alpha\}, \hat{\sigma}(TT^*) = \{\beta\}, \alpha > \beta \geq 0$

(II) $\hat{\sigma}(T^*T) = \{\alpha_1, \beta_1\}, \hat{\sigma}(TT^*) = \{\beta_2\}, \alpha > \beta_1 > \beta_2 \geq 0$

(III) $\hat{\sigma}(T^*T) = \{\alpha_i, \beta_i\}, \hat{\sigma}(TT^*) = \{\beta_i\}, \alpha_i > \beta_i \geq 0, \alpha_i > \alpha_2 > 0$

(IV) $\hat{\sigma}(T^*T) = \{\alpha_1, \alpha_2\}, \hat{\sigma}(TT^*) = \{\beta, \beta_i\}, \alpha_1 > \alpha_2 > \beta \geq 0$.

By assumption U is an isometry.

Case I. By the correct choice of orthonormal basis we have if $\beta \neq 0$, $H = C^2 \oplus H_2 \oplus H_3$,

\[(5) \quad T^*T = \begin{bmatrix} \alpha I_1 & 0 & 0 \\ 0 & \alpha I_2 & 0 \\ 0 & 0 & \beta I_3 \end{bmatrix}, \quad TT^* = \begin{bmatrix} \beta I_1 & 0 & 0 \\ 0 & \alpha I_2 & 0 \\ 0 & 0 & \beta I_3 \end{bmatrix}\]

where I_i is a 2×2 identity. Both I_2, I_3 must operate on an infinite dimensional space since there exists an isometry of $C^2 \oplus H_2$ onto H_2 and on isometry of H_3 onto $C^2 \oplus H_3$.

Pick an orthonormal basis for C^2. Forward iteration under V gives an orthonormal basis for H_2. Iteration under $V^* = V^{-1}$ gives an orthonormal basis for H_3. Thus V is just two copies of the bilateral shift and $T = T_1 \oplus T_2$ where $T_i \in (BN)^+$, Rank $[T_i] = 1$.

If $\beta = 0$, then

\[(6) \quad T^*T = \begin{bmatrix} \alpha I_1 & 0 \\ 0 & \alpha I_2 \end{bmatrix}, \quad TT^* = \begin{bmatrix} 0 & 0 \\ 0 & \alpha I_2 \end{bmatrix},\]

and $T = \sqrt{\alpha}(S \oplus S)$, S the unilateral shift.

Case II. In this case, if $\beta_2 \neq 0$ on $C \oplus C \oplus H_1 \oplus H_2 \oplus H_3$.

\[(6) \quad T^*T = \begin{bmatrix} \alpha & 0 & 0 & 0 & 0 \\ 0 & \alpha & 0 & 0 & 0 \\ 0 & 0 & \beta I_1 & 0 & 0 \\ 0 & 0 & 0 & \beta I_2 & 0 \\ 0 & 0 & 0 & 0 & \alpha I_3 \end{bmatrix}, \quad TT^* = \begin{bmatrix} \beta_1 & 0 & 0 & 0 & 0 \\ 0 & \beta_2 & 0 & 0 & 0 \\ 0 & 0 & \beta I_1 & 0 & 0 \\ 0 & 0 & 0 & \beta I_2 & 0 \\ 0 & 0 & 0 & 0 & \alpha I_3 \end{bmatrix}.\]

\[(7) \quad U = \begin{bmatrix} 0 & 0 & U_{13} & 0 & 0 \\ 0 & 0 & 0 & U_{24} & 0 \\ 0 & 0 & U_{33} & 0 & 0 \\ U_{31} & U_{32} & 0 & 0 & U_{53} \end{bmatrix},\]

where
STEPHEN L. CAMPBELL

\[
\begin{bmatrix}
U_{15} \\
U_{25} \\
U_{55}
\end{bmatrix}
\] is an isometry of \(H_1\) onto \(C \oplus H_1\)

\[
\begin{bmatrix}
U_{26} \\
U_{46}
\end{bmatrix}
\] is an isometry of \(H_2\) onto \(C \oplus H_2\)

\[
\begin{bmatrix}
U_{51} & U_{52} & U_{53}\end{bmatrix}
\] is an isometry of \(C \oplus C \oplus H_3\) onto \(H_3\).

If \(\beta_2 = 0\), the fourth row and column are deleted from both matrices in (6) and \(H = C \oplus C \oplus H_1 \oplus H_2 \oplus H_3\). The essential difference is that whereas (7) is unitary, \(U\) is only an isometry if \(\beta_2 = 0\).

Case III. In this case, we have for \(\beta \neq 0\), \(H = C \oplus C \oplus H_1 \oplus H_2 \oplus H_3\)

\[
T^*T = \begin{bmatrix}
\alpha_1 I_1 & 0 & 0 & 0 & 0 \\
0 & \alpha_2 I_2 & 0 & 0 & 0 \\
0 & 0 & \alpha_3 I_3 & 0 & 0 \\
0 & 0 & 0 & \alpha_4 I_4 & 0 \\
0 & 0 & 0 & 0 & \beta I_5
\end{bmatrix}, \quad TT^* = \begin{bmatrix}
\beta I_1 & 0 & 0 & 0 & 0 \\
0 & \beta I_2 & 0 & 0 & 0 \\
0 & 0 & \alpha_3 I_3 & 0 & 0 \\
0 & 0 & 0 & \alpha_4 I_4 & 0 \\
0 & 0 & 0 & 0 & \beta I_5
\end{bmatrix}.
\]

Then

\[
U = \begin{bmatrix}
0 & 0 & 0 & 0 & U_{15} \\
0 & 0 & 0 & 0 & U_{25} \\
U_{31} & 0 & U_{33} & 0 & 0 \\
0 & U_{42} & 0 & U_{44} & 0 \\
0 & 0 & 0 & 0 & U_{55}
\end{bmatrix}
\]

where

\[
\begin{bmatrix}
U_{15} \\
U_{25} \\
U_{55}
\end{bmatrix}
\] is an isometry of \(H_3\) onto \(C \oplus C \oplus H_3\)

\[
\begin{bmatrix}
U_{31} & U_{33}
\end{bmatrix}
\] is an isometry of \(C \oplus H_1\) onto \(H_1\)

\[
\begin{bmatrix}
U_{42} & U_{43}
\end{bmatrix}
\] is an isometry of \(C \oplus H_2\) onto \(H_2\).

If \(\beta = 0\), then the fifth column and row of the matrices in (9) are deleted and \(T = T_1 \oplus T_2\) where \(T_i \in (BN)^+\), rank \([T_i] = 1\).

Case IV. In this case if \(\beta \neq 0\).
on $C \oplus C \oplus H_1 \oplus H_2 \oplus H_3$. If $\beta = 0$, of course, $H_3 = 0$. However, there is no restriction at all on H_3. It may be zero, finite, or infinite dimensional. Suppose $\beta \neq 0$. Then

$$U = \begin{bmatrix}
0 & U_{12} & 0 & U_{14} & 0 \\
0 & 0 & 0 & 0 & U_{23} \\
0 & U_{31} & 0 & U_{33} & 0 \\
0 & U_{41} & 0 & U_{44} & 0 \\
0 & 0 & 0 & 0 & U_{55}
\end{bmatrix}$$

where

$$\begin{bmatrix} U_{12} & U_{14} \\
U_{41} & U_{44} \end{bmatrix}$$

is an isometric map of $C \oplus H_2$ onto $C \oplus H_2$.

$$\begin{bmatrix} U_{31} & U_{33} \\
U_{51} & U_{55} \end{bmatrix}$$

is an isometric map of $C \oplus H_1$ onto H_1.

$$\begin{bmatrix} U_{51} \\
U_{55} \end{bmatrix}$$

is an isometric map of H_3 onto $C \oplus H_3$.

If $\beta = 0$, then the fifth row and column is deleted from the matrices in (10), (11). ($H_3 = 0$).

If one is interested in constructing a particular example then in (7), (9), (11), the indicated isometries are completely arbitrary as long as they have the correct initial and final spaces. The example was constructed in this way from (11).

References

Received October 18, 1978.

North Carolina State University
Raleigh, NC 27607
Harvey Leslie Abbott, *Extremal problems on nonaveraging and nondividing sets* .. 1

Marine Bruce Abrahamse and Stephen D. Fisher, *Mapping intervals to intervals* ... 13

William Wells Adams, *The best two-dimensional Diophantine approximation constant for cubic irrationals* 29

Marilyn Breen, *A quantitative version of Krasnosel'skiî 's theorem in \(R^2 \) .. 31

Stephen LaVern Campbell, *Linear operators for which \(T^*T \) and \(TT^* \) commute. III* .. 39

Zvonko Cerin, *On cellular decompositions of Hilbert cube manifolds* .. 47

J. R. Choice, Ignacy I. Kotlarski and V. M. Smith, *On a characterization using random sums* ... 71

Karl-Theodor Eisele, *Direct factorizations of measures* 79

Douglas Harris, *Every space is a path component space* 95

John P. Holmes and Arthur Argyle Sagle, *Analytic H-spaces, Campbell-Hausdorff formula, and alternative algebras* 105

Richard Howard Hudson and Kenneth S. Williams, *Some new residuacity criteria* .. 135

V. Karunakaran and Michael Robert Ziegler, *The radius of starlikeness for a class of regular functions defined by an integral* 145

Ka-Sing Lau, *On the Banach spaces of functions with bounded upper means* .. 153

Daniel Paul Maki, *On determining regular behavior from the recurrence formula for orthogonal polynomials* 173

Stephen Joseph McAdam, *Asymptotic prime divisors and going down* 179

Douglas Edward Miller, *Borel selectors for separated quotients* 187

Kent Morrison, *The scheme of finite-dimensional representations of an algebra* .. 199

Donald P. Story, *A characterization of the local Radon-Nikodým property by tensor products* ... 219

Arne Stray, *Two applications of the Schur-Nevanlinna algorithm* 223

N. B. Tinberg, *The Levi decomposition of a split \((B, N)\)-pair* 233

Charles Irvin Vinsonhaler and William Jennings Wickless, *A theorem on quasi-pure-projective torsion free abelian groups of finite rank* .. 239

Yitzhak Weit, *Spectral analysis in spaces of vector valued functions* 243