SOME NEW RESIDUACITY CRITERIA

RICHARD HOWARD HUDSON AND KENNETH S. WILLIAMS
SOME NEW RESIDUACITY CRITERIA

Richard H. Hudson and Kenneth S. Williams

Let \(e \) and \(k \) be integers \(\geq 2 \) with \(e \) odd and \(k \) even. Set \(2l = \text{L.C.M.} (e, k) \) and let \(p \) be a prime with \(p \equiv 1 \pmod{2l} \) having \(g \) as a primitive root. It is shown that the index of \(e \) (with respect to \(g \)) modulo \(k \) can be computed in terms of the cyclotomic numbers of order \(l \). By applying this result with \(e = 3, \ k = 4; e = 5, \ k = 4; e = 3, \ k = 8 \), new criteria are obtained for 3 and 5 to be fourth powers (mod \(p \)) and for 3 to be an eighth power (mod \(p \)).

1. Introduction. Let \(e \) and \(k \) be integers greater than or equal to 2 with \(e \) odd and \(k \) even. Let \(p \) be a prime congruent to 1 modulo \(2l \), where \(2l = \text{L.C.M.} (e, k) \). Let \(g \) be a fixed primitive root (mod \(p \)). If \(a \) is an integer not divisible by \(p \), the index of \(a \) with respect to \(g \) is denoted by \(\text{ind}(a) \) and is the least nonnegative integer \(b \) such that \(a = g^b \pmod{p} \). For \(0 \leq h, \ k \leq l - 1 \), the cyclotomic number \((h, k)\), of order \(l \) is the number of integers \(n \) (\(1 \leq n \leq p - 2 \)) such that \(\text{ind}(n) = h \pmod{l} \), \(\text{ind}(n + 1) = k \pmod{l} \).

Using an idea due to Muskat [4: 257-258], we prove the following congruence for the index of \(e \) modulo \(k \).

Theorem 1.

\[
\text{ind}(e) \equiv 2 \sum_{i=1}^{k/2-1} \sum_{j=1}^{(e-1)/2} \sum_{r=0}^{2l/k-1} \sum_{s=0}^{l/e-1} \left(i + r\frac{k}{2}, j + se \right) + \frac{(p-1)(e-1)^2}{8e} \pmod{k}.
\]

Applying Theorem 1 with \(e = 3, \ k = 4 \), we obtain the following criterion for 3 to be a fourth power (mod \(p \)).

Theorem 2. Let \(p \equiv 1 \pmod{12} \) be a prime, so that there are integers \(x \) and \(y \) satisfying

\[
p = x^2 + 3y^2, \quad x \equiv 1 \pmod{3}.
\]

Then 3 is a fourth power (mod \(p \)) if and only if \(x \equiv 1 \pmod{4} \).

This criterion should be compared with the classical result: 3 is a fourth power (mod \(p \)) if and only if

\[
\begin{align*}
&b \equiv 0 \pmod{3}, &\text{if } &p \equiv 1 \pmod{24}, \\
&a \equiv 0 \pmod{3}, &\text{if } &p \equiv 13 \pmod{24},
\end{align*}
\]

135
where
\[p = a^2 + b^2, \quad a \equiv 1 \pmod{4}, \quad b \equiv 0 \pmod{2}, \]
see for example [2: p. 24].

Next taking \(e = 5, \ k = 4 \), in Theorem 1 we obtain the following new criterion for 5 to be a fourth power \((\pmod{p})\).

Theorem 3. Let \(p \equiv 1 \pmod{20} \) be a prime, so that there are integers \(x, u, v, \) and \(w \) satisfying
\[
16p = x^2 + 50u^2 + 50v^2 + 125w^2, \quad xw = v^2 - 4uv - u^2,
\]
and
\[
x \equiv 1 \pmod{5}.
\]
Then 5 is a fourth power \((\pmod{p})\) if and only if
\[
\begin{cases}
x \equiv 4 \pmod{8}, & \text{if } x \equiv 0 \pmod{2}, \\
x \equiv \pm 3w \pmod{8}, & \text{if } x \equiv 1 \pmod{2}.
\end{cases}
\]

This criterion should be compared with the well-known result (see for example [2: p. 24]):
5 is a fourth power \((\pmod{p})\) if and only if
\[
b \equiv 0 \pmod{5}, \quad \text{where} \quad p = a^2 + b^2, \quad a \equiv 1 \pmod{4}, \quad b \equiv 0 \pmod{2}.
\]

Finally, applying Theorem 1 with \(e = 3, \ k = 8 \), we obtain the following new criterion for 3 to be an eighth power \((\pmod{p})\).

Theorem 4. Let \(p \equiv 1 \pmod{24} \) be a prime so that there are integers \(a, b, x \) and \(y \) satisfying
\[
p = a^2 + b^2 = x^2 + 3y^2,
\]
and
\[
a \equiv 1 \pmod{4}, \quad b \equiv 0 \pmod{4}, \quad x \equiv 1 \pmod{6}, \quad y \equiv 0 \pmod{2}.
\]
Assume 3 is a fourth power \((\pmod{p})\), so that
\[
b \equiv 0 \pmod{3}, \quad x \equiv 1 \pmod{4}.
\]
Then 3 is an eighth power \((\pmod{p})\) if and only if
\[
a \equiv 1 \pmod{3}, \quad y \equiv 0 \pmod{8},
\]
or
\[
a \equiv -1 \pmod{3}, \quad y \equiv 4 \pmod{8}.
\]
This criterion should be compared to that of von Lienen [3: p. 114], namely, if 3 is a fourth power \pmod{p} then 3 is an eighth power \pmod{p} if and only if

$$
\begin{cases}
 a \equiv c \pmod{3}, & \text{if } p \equiv 1 \pmod{48}, \\
 a \equiv -c \pmod{3}, & \text{if } p \equiv 25 \pmod{48},
\end{cases}
$$

where

$$p = a^2 + 6^2 = c^2 + 2d^2$$

and

$$a \equiv 1 \pmod{4}, \quad b \equiv 0 \pmod{4}, \quad c \equiv 1 \pmod{4}, \quad d \equiv 0 \pmod{2}.$$ Combining these results, we see that if $(3/p)_4 = +1$ (equivalently $b \equiv 0 \pmod{3}$ or $x \equiv 1 \pmod{4}$), we have

$$
\begin{cases}
 y \equiv 0 \pmod{8} \iff c \equiv 1 \pmod{3}, & \text{if } p \equiv 1 \pmod{48}, \\
 y \equiv 0 \pmod{8} \iff c \equiv -1 \pmod{3}, & \text{if } p \equiv 25 \pmod{48}.
\end{cases}
$$

2. Proof of Theorem 1. The roots of the congruence

$$
(2.1) \quad \frac{x^e - 1}{x - 1} = 0 \pmod{p}
$$

are

$$x \equiv g^{j\ell} \pmod{p}, \quad j = 1, 2, \ldots, e - 1,$$

where $p - 1 = ef$, so that

$$
(2.2) \quad x^{e-1} + x^{e-2} + \cdots + x + 1 \equiv \prod_{j=1}^{e-1} (x - g^{j\ell}) \pmod{p}.
$$

Taking $x = 1$ in (2.2), we obtain

$$
(2.3) \quad e \equiv \prod_{j=1}^{e-1} (1 - g^{j\ell}) \pmod{p},
$$

and so

$$
(2.4) \quad \text{ind} \ (e) \equiv \sum_{j=1}^{e-1} \text{ind} \ (1 - g^{j\ell}) \pmod{p - 1}.
$$

Next

$$
\sum_{j=\lceil (e-1)/2 \rceil}^{e-1} \text{ind} \ (1 - g^{j\ell})
= \sum_{j=1}^{\lceil (e-1)/2 \rceil} \text{ind} \ (1 - g^{(e-j-1)\ell})
$$
\[
\begin{align*}
\sum_{j=1}^{(e-1)/2} \text{ind} (1 - g^{-ij}) &= \sum_{j=1}^{(e-1)/2} \text{ind} (1 - g^{ij}) + \sum_{j=1}^{(e-1)/2} \text{ind} (-g^{-ij}) \pmod{p - 1} \\
&\equiv \sum_{j=1}^{(e-1)/2} \text{ind} (1 - g^{ij}) + \sum_{j=1}^{(e-1)/2} \left(\frac{p - 1}{2} - jf \right) \pmod{p - 1},
\end{align*}
\]

so
\[
(2.5) \quad \text{ind} (e) \equiv 2 \sum_{j=1}^{(e-1)/2} \text{ind} (1 - g^{ij}) + \frac{(p - 1)(e - 1)^2}{8e} \pmod{p - 1}.
\]

Next the roots of
\[
x^f - g^{ij} \equiv 0 \pmod{p}
\]
are
\[
x \equiv g^{e^{i+j}} \pmod{p} \quad (i = 1, 2, \ldots, f),
\]
so
\[
(2.6) \quad x^f - g^{ij} \equiv \prod_{i=1}^{f} (x - g^{e^{i+j}}) \pmod{p}.
\]

Taking \(x = 1\) in (2.6), we obtain
\[
1 - g^{ij} \equiv \prod_{i=1}^{f} (1 - g^{e^{i+j}}) \pmod{p},
\]
so
\[
(2.7) \quad \text{ind} (1 - g^{ij}) \equiv \sum_{i=1}^{f} \text{ind} (1 - g^{e^{i+j}}) \pmod{p - 1}.
\]

Further, working modulo \(k/2\), we have
\[
\sum_{i=1}^{f} \text{ind} (1 - g^{e^{i+j}})
\]
that is
\[
\sum_{i=1}^{p-1} \text{ind} (n) \pmod{p - 1}
\]
\[
\equiv \sum_{\text{ind}(n) \equiv f \pmod{k/2}} \text{ind} (n - 1) + \sum_{\text{ind}(n) \equiv f \pmod{k/2}} \text{ind} (-1)
\]
\[
\equiv \sum_{n=1}^{p-2} \text{ind} (n + 1) \pmod{p - 1}
\]
\[
\equiv \sum_{n=0}^{p-2} \text{ind} (n) - \sum_{n=1}^{p-2} \frac{p - 1}{2} \pmod{p - 1},
\]
that is
The result now follows from (2.5), (2.7) and (2.8).

3. Proof of Theorem 2. Taking \(e = 3, k = 4 \), so that \(l = 6 \), in Theorem 1, we obtain, for \(p \equiv 1 \pmod{12} \),

\[
(3.1) \quad \text{ind} (3) = 2 \sum_{r=0}^{2} \sum_{s=0}^{1} (1 + 2r, 1 + 3s) + \frac{p-1}{6} \pmod{4}.
\]

Defining \(x \) and \(y \), as in \([6: p. 68]\), by

\[
x = 6(0, 3) - 6(1, 2) + 1
\]

and

\[
y = (0, 1) - (0, 5) - (1, 3) + (1, 4),
\]

so that \(x \) and \(y \) satisfy (1.1), from the tables for the cyclotomic numbers of order 6, we obtain

\[
\sum_{r=0}^{2} \sum_{s=0}^{1} (1 + 2r, 1 + 3s) = \frac{1}{6} (p - x - 3y).
\]

Hence, from (3.1), we obtain

\[
\text{ind} (3) \equiv \frac{1}{3} (p - x) - y + \frac{p-1}{6} \pmod{4}.
\]

Now

\[
y \equiv \begin{cases} 0 \pmod{4}, & \text{if } p \equiv 1 \pmod{24}, \\ 2 \pmod{4}, & \text{if } p \equiv 13 \pmod{24}, \end{cases}
\]

that is

\[
y \equiv \frac{1}{6} (p - 1) \pmod{4},
\]

giving

\[
\text{ind} (3) \equiv \frac{1}{3} (p - x) \equiv \frac{1}{3} (1 - x) \pmod{4},
\]

which completes the proof of Theorem 2.

4. Proof of Theorem 3. Taking \(e = 5, k = 4 \), so that \(l = 10 \), in Theorem 1, we obtain for \(p \equiv 1 \pmod{20} \),
\[(4.1) \quad \text{ind} (5) = 2 \sum_{j=1}^{4} \sum_{r=0}^{4} \sum_{s=0}^{4} (1 + 2r, j + 5s)_{10} + \frac{2}{5}(p - 1) \pmod{4}.
\]

Define \(m\) by \(2 \equiv g^m \pmod{p}\). Replacing \(g\) by an appropriate power of \(g\), we may suppose that \(m \equiv 0\) or \(1 \pmod{5}\). Next we define \(x, u, v, w\) by

\[
\begin{align*}
3x &= -p + 14 + 25(0, 0)_5, \\
u &= (0, 2)_5 - (0, 3)_5, \\
v &= (0, 1)_5 - (0, 4)_5, \\
w &= (1, 3)_5 - (1, 2)_5,
\end{align*}
\]

so that \(x, u, v, w\) is a solution of \((1.2)\) satisfying \((1.3)\) (see for example [5: p. 100]). From the tables of Whiteman [5: pp. 107-109] for the cyclotomic numbers of order 10, we obtain in the case \(m \equiv 0 \pmod{5}\), that is, 2 is a fifth power \((\pmod{p})\) or equivalently, \(x \equiv 0 \pmod{2}\) [1: p. 13]:

\[
\sum_{j=1}^{4} \sum_{r=0}^{4} \sum_{s=0}^{4} (1 + 2r, j + 5s)_{10}
= \frac{1}{20} \{4p + x - 15u + 15v - 30w\},
\]

so

\[
\text{ind} (5) \equiv \frac{1}{10} \{4p + x - 15u + 15v - 30w\} \pmod{4}
\equiv \frac{1}{10} (x + 4) - \frac{3}{2} (u - v) + w \pmod{4}.
\]

Emma Lehmer [1: p. 13] has shown in this case that

\[
x \equiv u \equiv v \equiv w \equiv 0 \pmod{4}, \quad u \equiv v \pmod{8},
\]

so that

\[
\text{ind} (5) \equiv \frac{1}{10} (x + 4) \equiv \frac{x}{2} + 2 \pmod{4},
\]

completing the proof of Theorem 3 in this case.

When \(m \equiv 1 \pmod{5}\), 2 is not a fifth power \((\pmod{p})\) and \(x \equiv 1 \pmod{2}\). From the tables of Whiteman [5: pp. 107-109], in this case, we obtain

\[
\sum_{j=1}^{4} \sum_{r=0}^{4} \sum_{s=0}^{4} (1 + 2r, j + 5s)_{10}
= \frac{1}{40} \{8p - 3x + 10u + 20v - 25w\},
\]
so that
\[4 \text{ind} (5) = 8p - 3x + 10u + 20v - 25 \pmod{16}, \]
which shows that \(w \equiv 1 \pmod{2} \).

Since
\[400(0, 2)_{10} = 4p - 36 + 17x + 50u - 25w, \]
we have (as \(x \equiv w \equiv 1 \pmod{2} \))
\[10u \equiv 3x + 5w \pmod{16}, \]
so that
\[\text{ind} (5) \equiv v + w \pmod{4}. \]

As
\[200(0, 9)_{10} = 2p - 18 - 4x + 25u - 25v + 25w, \]
and
\[200(1, 2)_{10} = 2p + 2 + x + 25u + 25v - 50w, \]
we have
\[\begin{cases} u - v \equiv 4 - w \pmod{8}, \\ u + v \equiv 4 + 2w - x \pmod{8}, \end{cases} \]
so
\[u \equiv \frac{1}{2}(w - x) \pmod{4}, \quad v \equiv \frac{1}{2}(3w - x) \pmod{4}. \]

Hence we have
\[(4.2) \quad \text{ind} (5) \equiv \frac{1}{2}(5w - x) \pmod{4}. \]

Since all solutions of (1.2) satisfying (1.3) are given by (see for example [1: p. 13])
\((x, u, v, w), \ (x, v, -u, -w), \ (x, -u, -v, w), \ (x, -v, u, -w), \)
(4.2) gives
\[\text{ind} (5) \equiv 0 \pmod{4} \iff x \equiv \pm 3w \pmod{8}, \]
and
\[\text{ind} (5) \equiv 2 \pmod{4} \iff x \equiv \pm w \pmod{8}, \]
which completes the proof of Theorem 3.
5. Proof of Theorem 4. Taking \(e = 3, \ k = 8 \) so that \(l = 12 \), in Theorem 1, we obtain, for \(p \equiv 1 \pmod{24} \),

\[
(5.1) \quad \text{ind} (3) \equiv 2 \sum_{i=1}^{3} \sum_{r=0}^{3} \sum_{s=0}^{3} (i + 4r, 1 + 3s)_{12} + \frac{1}{6} (p - 1) \pmod{8}.
\]

Following Whiteman [6: p. 64], we define \(m \) and \(m' \) by \(2 \equiv g^m \pmod{p} \) and \(3 \equiv g^{m'} \pmod{p} \) respectively. As \(p \equiv 1 \pmod{8} \) we have \(m \equiv 0 \pmod{2} \). Replacing \(g \) by an appropriate power of \(g \) we may suppose that \(m \equiv 0 \) or \(2 \pmod{3} \), so that \(m \equiv 0 \) or \(2 \pmod{6} \). Further, as we are assuming \(3 \) is a fourth power \(\pmod{p} \), we have \(m' \equiv 0 \pmod{4} \). Next we define \(x \) and \(y \) (as in [6: p. 68]) by

\[
x = 6(0, 3)_6 - 6(1, 2)_6 + 1,
\]
\[
y = (0, 1)_6 - (0, 5)_6 - (1, 3)_6 + (1, 4)_6,
\]

and \(a \) and \(b \) by equations (4.4) and (4.5) in [6] (\(a \) replaces Whiteman’s \(x \), \(b \) replaces Whiteman’s \(2y \)). Then \(x, \ y, \ a, \ b \) satisfy (1.4) and (1.5). Whiteman [6: pp. 69–73] gives the cyclotomic numbers of order 12 in terms of \(x, \ y, \ a \) and \(b \), as defined above. When \(m \equiv 0 \pmod{6} \), we must use Tables 9 and 10 of [6] and, when \(m \equiv 2 \pmod{6} \), we must use Tables 3 and 4. By considering the cyclotomic numbers \((3, 6)_{12}\) in Table 9; \((2.4)_{12}\) in Table 10; \((1, 2)_{12}\) in Table 3; \((2, 8)_{12}\) in Table 4; it is easy to check that Whiteman’s quantity \(c = \pm 1 \) (see [6: pp. 64–65]) satisfies

\[
(5.2) \quad \begin{cases}
\{ c = +1 & \iff a \equiv 1 \pmod{3} , \\
\{ c = -1 & \iff a \equiv 2 \pmod{3} .
\end{cases}
\]

We remark that \(a \not\equiv 0 \pmod{3} \) as \(3 \) is assumed to be a fourth power \(\pmod{p} \).

Next we set

\[
\sum_i = \sum_{r=0}^{3} \sum_{s=0}^{3} (i + 4r, 1 + 3s)_{12}, \quad (i = 1, 2, 3),
\]

so that

\[
(5.3) \quad \text{ind} (3) \equiv 2 \left(\sum_1 + 2 \sum_2 + 3 \sum_3 \right) + \frac{1}{6} (p - 1) \pmod{8}.
\]

From Whiteman’s tables, we obtain

\[
12 \sum_{1} = \begin{cases}
(p - 2b - x - 3y) , & \text{if } a \equiv 1 \pmod{3} , \\
p + 2b - x - 3y , & \text{if } a \equiv -1 \pmod{3} ,
\end{cases}
\]
\[
12 \sum_{2} = \begin{cases}
(p - 2a + x + 3y) , & \text{if } a \equiv 1 \pmod{3} , \\
p + 2a + x + 3y , & \text{if } a \equiv -1 \pmod{3} ,
\end{cases}
\]
\[
12 \sum_{3} = \begin{cases}
p - 2b - x - 3y , & \text{if } a \equiv 1 \pmod{3} , \\
p + 2b - x - 3y , & \text{if } a \equiv -1 \pmod{3} .
\end{cases}
\]
\[12 \sum_{a} = \begin{cases}
 p + 2b - x - 3y, & \text{if } a \equiv 1 \pmod{3}, \\
 p - 2b - x - 3y, & \text{if } a \equiv -1 \pmod{3}.
\end{cases} \]

From (5.3) and (5.4) we obtain

\[(5.5) \quad \text{ind}(3) = \begin{cases}
 1 - \frac{1}{3}(2a-2b+x)-y + \frac{1}{6}(p-1) \pmod{8}, & \text{if } a \equiv 1 \pmod{3}, \\
 1 + \frac{1}{3}(2a-2b-x)-y + \frac{1}{6}(p-1) \pmod{8}, & \text{if } a \equiv -1 \pmod{3}.
\end{cases} \]

Also, from Whiteman's tables, we have in every case,

\[p + 1 - 8a + 6x \equiv 0 \pmod{16}, \]

so

\[\text{ind}(3) = \begin{cases}
 1 + 2a - 2b + \frac{p+1}{2} - 4a - y + \frac{1}{6}(p-1) \pmod{8}, & \text{if } a \equiv 1 \pmod{3}, \\
 1 - 2a + 2b + \frac{p+1}{2} - 4a - y + \frac{1}{6}(p-1) \pmod{8}, & \text{if } a \equiv -1 \pmod{3}, \\
 -y \pmod{8}, & \text{if } a \equiv 1 \pmod{3}, \\
 4 - y \pmod{8}, & \text{if } a \equiv -1 \pmod{3},
\end{cases} \]

which completes the proof of Theorem 4.

References

Received October 26, 1979. Research supported by the Natural Sciences and Engineering Research Council Canada Grant No. A-7233.
Harvey Leslie Abbott, *Extremal problems on nonaveraging and nondividing sets* ... 1
Marine Bruce Abrahamse and Stephen D. Fisher, *Mapping intervals to intervals* .. 13
William Wells Adams, *The best two-dimensional Diophantine approximation constant for cubic irrationals* 29
Marilyn Breen, *A quantitative version of Krasnosel’skiǐ’s theorem in \(\mathbb{R}^2 \) ... 31
Stephen LaVern Campbell, *Linear operators for which \(T^*T \) and \(TT^* \) commute. III* ... 39
Zvonko Cerin, *On cellular decompositions of Hilbert cube manifolds* ... 47
J. R. Choike, Ignacy I. Kotlarski and V. M. Smith, *On a characterization using random sums* ... 71
Karl-Theodor Eisele, *Direct factorizations of measures* 79
Douglas Harris, *Every space is a path component space* 95
John P. Holmes and Arthur Argyle Sagle, *Analytic H-spaces, Campbell-Hausdorff formula, and alternative algebras* 105
Richard Howard Hudson and Kenneth S. Williams, *Some new residuacity criteria* .. 135
V. Karunakaran and Michael Robert Ziegler, *The radius of starlikeness for a class of regular functions defined by an integral* 145
Ka-Sing Lau, *On the Banach spaces of functions with bounded upper means* .. 153
Daniel Paul Maki, *On determining regular behavior from the recurrence formula for orthogonal polynomials* 173
Stephen Joseph McAdam, *Asymptotic prime divisors and going down* 179
Kent Morrison, *The scheme of finite-dimensional representations of an algebra* .. 199
Donald P. Story, *A characterization of the local Radon-Nikodým property by tensor products* .. 219
Arne Stray, *Two applications of the Schur-Nevanlinna algorithm* 223
N. B. Tinberg, *The Levi decomposition of a split \((B, N)\)-pair* 233
Charles Irvin Vinsonhaler and William Jennings Wickless, *A theorem on quasi-pure-projective torsion free abelian groups of finite rank* . 239
Yitzhak Weit, *Spectral analysis in spaces of vector valued functions* 243