Vol. 91, No. 2, 1980

Recent Issues
Vol. 322: 1  2
Vol. 321: 1  2
Vol. 320: 1  2
Vol. 319: 1  2
Vol. 318: 1  2
Vol. 317: 1  2
Vol. 316: 1  2
Vol. 315: 1  2
Online Archive
Volume:
Issue:
     
The Journal
Subscriptions
Editorial Board
Officers
Contacts
 
Submission Guidelines
Submission Form
Policies for Authors
 
ISSN: 1945-5844 (e-only)
ISSN: 0030-8730 (print)
Special Issues
Author Index
To Appear
 
Other MSP Journals
Dimension modules

Victor P. Camillo and Julius Martin Zelmanowitz

Vol. 91 (1980), No. 2, 249–261
Abstract

M is called a dimension module if d(A + B) = d(A) + d(B) d(A B) holds for all submodules A and B of M, where d(M) denotes the Goldie (uniform) dimension of a module M. We characterize these modules as the modules which have no submodules of the form X X∕Y with Y an essential submodule of X. As a test, the structure of a completely decomposable injective dimension module is determined.

Mathematical Subject Classification
Primary: 16A53, 16A53
Milestones
Received: 28 November 1978
Revised: 12 November 1979
Published: 1 December 1980
Authors
Victor P. Camillo
Julius Martin Zelmanowitz