Vol. 91, No. 2, 1980

Recent Issues
Vol. 332: 1  2
Vol. 331: 1  2
Vol. 330: 1  2
Vol. 329: 1  2
Vol. 328: 1  2
Vol. 327: 1  2
Vol. 326: 1  2
Vol. 325: 1  2
Online Archive
Volume:
Issue:
     
The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Officers
 
Subscriptions
 
ISSN 1945-5844 (electronic)
ISSN 0030-8730 (print)
 
Special Issues
Author index
To appear
 
Other MSP journals
Dimension modules

Victor P. Camillo and Julius Martin Zelmanowitz

Vol. 91 (1980), No. 2, 249–261
Abstract

M is called a dimension module if d(A + B) = d(A) + d(B) d(A B) holds for all submodules A and B of M, where d(M) denotes the Goldie (uniform) dimension of a module M. We characterize these modules as the modules which have no submodules of the form X X∕Y with Y an essential submodule of X. As a test, the structure of a completely decomposable injective dimension module is determined.

Mathematical Subject Classification
Primary: 16A53, 16A53
Milestones
Received: 28 November 1978
Revised: 12 November 1979
Published: 1 December 1980
Authors
Victor P. Camillo
Julius Martin Zelmanowitz