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MICHAEL EDELSTEIN

It is the main purpose of this paper 1o prove the follow-
ing two theorems.

TueoreM I. (Isomorphism) Let (X, R*, f) be a semiflow
on a separable metric space (X, d), having the properties:

(i) there is an we X such that, for each neighborhood
U of w, there is a Te R* with f[X,tlc U for all t=T;

(ii) for each teR*, f(-,{) is a homeomorphism of X
onto a closed subspace of X.
Then (X, R*, f) is isomorphic to a radial semiflow on a
subset of the Hilbert Cube in [°.

TueoreMm II. (Homomorphism) If (X, R*, f) satisfies the
hypotheses of Theorem I, with (i) replaced by

@) N{flX, t]: t=0}={w} for some w<e X, then {X,R’,f)
is homomorphic to a radial semifiow on a subset of the
Hilbert Cube C and the subsemiflow induced on X/{w} is
isomorphic to a radial semiflow in C.

1. Introduction. Let X be a nonempty subset of a normed
linear space and suppose that, with 0 < x < 1,

(1) flx, t) =72 ((x,t)eX X R) .

The triple (X, R, f), with f as above, determines a dynamical
system or a flow (cf. [4], [5]) on X such that the semitrajectory
of each « = 0 is a line segment joining 2 with the origin 0. The
terms “a radial flow” or “a radial dynamical system” seem appro-
priate. Similarly, with R replaced by R*, the nonnegative reals,
we refer to (X, R*, f) as a radial semiflow, or a radial semidynamical
system. By a homomorphic (isomorphic) embedding of (X, R, f)
into (Y, R, g) we understand a one-one continuous mapping (a
homeomorphism) % of X into Y such that

h(f(x, 8)) = g(h(x), 1) (2, 1) e X X R) .

A similar definition applies to semiflows. Thus, to say that (X, Rt,
f) is isomorphic to a radial semiflow means that a homeomorphism
h of X into a normed linear space exists such that

(2) R(f(x, 8)) = Nh(x) ((x, §) e X X R*).
In a recent paper L. Janos [3] proved that a semiflow (X, R*, f)
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on a compact metric space X is isomorphic to a radial semiflow on
a subset X of the Hilbert Cube in [, if the transition map f is one-
one and N {f[X, t]:t = 0} is a singleton.

It is the main purpose of this paper to establish the extensions
of the above result to the setting of semiflows on a separable
metric space which were stated in the opening paragraph.

As can be readily verified, conditions (i) and (i") are equivalent
if X is compact metric. Since (ii) is automatically satisfied for a
one-one continuous transition map on a compact metric space, the
above mentioned result of Janos follows as a corollary. On the
other hand it is quite easy to show that the conclusion of Theorem
I cannot be obtained with (i) replaced by (@’).

An analog for discrete semiflows on a compact metric space
was used by Janos [3] in the proof of his result. While such an
analog was available before (cf. [1], [2]), the corresponding one for
separable metric spaces given here (Theorems 2 and 3) is new and
of independent interest. Also of some interest is the result assert-
ing that the property of radiality is passed on to a flow by the
corresponding property of its disecrete subflows (Theorem 1). This
result parallels the “Embedding Lemma” of [3].

2. Inheritance of radiality.

THEOREM 1. Let (X, R, f) be a dynamical system on a nonempty
subset X of I, with the property that for some \, 0 < ) <1, all
nonnegative integers n and all (x,t)e X X R,

(3) S, t+n) =\Nfx,1).
Then (X, R, f) is isomorphic to a radial flow in I,.

Proof. Applying an idea of M. Bebutov (cf., e.g., [4], p. 333),
we consider the integral

(4) (17 e
This improper integral converges since
o m+1 o 1
3@ vl = 5 (5@ e+ mlar

by (8) then

(5) s bl = =2 115w, b)) at
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proving convergence. Thus s, (T) = Sm]]f(ac, t)i|dt defines a function
T

from R to R*.

Clearly, this funection is continuous and decreasing for x distinct
from the origin 0. Its range for all z == 0 contains {1} as it con-
sists of all positive reals. [Indeed lim,..s,(T) = 0 by convergence
of the integral in (4) and, on the other hand

s.=m) > |l 7@ llde z 3 {1, v1lat ;

so that s,(T)—o as T ——co.]

To each z ¢ X\{0} there corresponds a unique ¢, such that s,(¢,)=
1. The correspondence x — t, which arises in this manner is clearly
one-one on trajectories lying in X\{0}. Also, if y = f(=, t) then, as
can be readily seen

(6) t,=t,—t.

To prove that ¢, is continuous in % — a fact needed in the sequel—
let {x,} be a sequence in X\{0} with 2, — x = 0. Then, we claim,

(1) tim | £, )1t =1

Indeed,

s, pllde = | 1@, dllde + 217 ., 01t

1
— A

= |, 7@, ol + 2 15, Dlidt

As f(x,, t) — f(x, t) uniformly on compact intervals ([4], p. 827), we
obtain in the limit, as n — oo,

(8) NECTILESS
Thus
|17 lde =1 = {711 £, Dlids— 0 as n— = .

However this is only possible if ¢, — ¢,.
Let S be the set of all x in X such that ¢, = 0; i.e.,

S = {xeX: S:Hf(x, £l dt = 1} .

In view of the preceding discussion S is a closed subset of X\{0}
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and each trajectory, lying in that subset, meets S at exactly one
point. (In the usual terminology S is a section in X\{0}.)

Let 6:S— 3, be a homeomorphism onto a subset of HNC
where H is the hyperplane {xel,;: (x, ¢ =1}, and C denotes the
Hilbert Cube in I,. [That such a homeomorphism exists follows
from the facts that (x, =, ---)—(, &, 2., ---) sets up an isometry
in I, and that any separable metric space is homeomorphic with a
subset of the Hilbert Cube.] The desired isomorphism is now defined
as the mapping ¢ of X into R D obtained by setting

o(x) =N "a(f(x, t,) (& +0)
(9) and if 0e X, 0(0) =0.

On X\{0} o is continuous as the composition of ¢,, f and &. If » >
0 and yerY then y = AMa(x) = '(A'y) = x for some teR; hence
(the existence and) continuity of the inverse. To prove continuity
at 0 of both ¢ and o' it suffices, in view of the definition (9), to
show that a sequence {x,} in X\{0} converges to 0 if, and only if,
t,, — — oo,

Suppose, first, that ¢, — —c. If {z,} fails to converge to 0
then we may assume that ||z,]] = ¢ for some ¢ > 0. As a result,

M =inf{[f(@, O)l:n=1,2---; 0=¢t=1}>0.

[Otherwise a sequence {¢;} in [0, 1] and a subsequence {x,} would
have to exist such that ¢, —¢*¢[0, 1] and f(w,, ¢;) — 0. But then
S @,y 1) = (f(®, t* — &, + 1)) = f(f@,, ), ¥ —t)—0, implying
z,, — 0.] Hence by (8), (cf. also (5)),

1
> (1 — NN M, i —m—15t, < -m.

1= 1 olide = | ", 0llde+ 22 117, ) ae

However, for sufficiently large n, »™M > 1 — A, leading to a con-

tradiction.
Next, let x, — 0 and assume, for a contradiction, that ¢, — —co.

Then we may assume that ¢, = —m, where m is a fixed positive
integer. Hence,

1= {7 1@, ollde = {7 17, llat

=@ — v, e

However, as already observed, z, —» 0= Slllf(xn, t)|ldt — 0 which is

impossible.
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Finally, with f(x, t) = 9, and by a repeated application of (6),

o(f(x, ) = N""6(f(y, t,)) = V=" (f(x, t + 1))
= MATG(f(x, t,)) = No(x)

showing that (X, R, f) is isomorphic with the radial flow (RY, R, g),
where g(z, t) = \a.

3. Discrete semiflows. In analogy with the definition of a
(continuous) radial semiflow we define a discrete radial semiflow
(X, N*, f) on a nonempty set X in a normed linear space as one
in which

1) (@, m) =\'w

for some )\, 0 <A< 1, and all (x, n)e X x N™.

A continuous mapping f of a metric space M into itself deter-
mines a discrete semiflow (M, N+, f) by setting f(ac, n) = f(x).
Hence a homeomorphism (a one-one continuous mapping) h: M — [,
satisfying

") h(f (%)) = Nh(x)

with 0 < A < 1, determines an isomorphic (a homomorphic) embedd-
ing into a radial semiflow in [,; namely one for which A(f(x, n)) =
Nh(x).

For a mapping & to satisfy (*) it is clearly necessary and suffi-
cient that the “coordinate functions” +,(x)= (h(x), ¢,>, (=1, 2, ---),
where ¢, is a member of the standard orthonormal basis, do like-
wise; i.e.,

(10) P (@)) = M) -

Further, for i to be one-one it is necessary and sufficient that the
family {v,} distinguishes points; i.e., if 2/, " are distinct members
of X then 4, (") # 9,(z") for some ne N*.

By means of such a family of functions it was shown in [1]
that a homeomorphism h: X — I, exists satisfying (*) if X is com-
pact metrie, f: X — X is one-one continuous, and

11) N{f1Xlkn =12, .-} = {w}

where w € X.

If compactness is removed from the hypotheses of the above
result then, as simple examples show, the conclusions may no longer
be true even if f is a homeomorphism (onto f[X]). This is due to
the faet that in general 7 may fail to have a continuous inverse
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at some points of A[X]. Furthermore, the construction of a homeo-
morphism h such that A~! is continuous at some points, e.g., on
R[X]\{0}, as in the next theorem, seems inadequate. Hence the need
for the more refined construction which we produce in the proofs
of the following theorems.

3.1. Homomorphisms.

THEOREM 2. Let X be a separable metric space and f a homeo-
morphism of X, onto a closed proper subset of X, satisfying (11).
Then there is a one-one continuous mapping h of X into the
Hilbert Cube C in 1, such that h™* is continuous on h[X]\{0} and
(*) holds.

Proof. Let <# be a countable base for the topology of X\f[X]
and let {(U,, V,): » =1,2, ---} be an enumeration of those pairs
(U, V)e &# x & for which Uc V. Set

Brik) = U {B(x, ’I"(ZI))): r efk[ Vn]} s
(n :1,2, S k:(): 17 "')9
where B(x, r(x)) denotes the open ball about z, of radius #(x) =
2-d(x, FIXN\FYV,]D; (with this choice of () we have B N BY =
@ for 1 = j).

For k=0,1, --- let ¥, be a continuous mapping into [0, 1]
such that

ol [X\U{B: i=0,1,---,Kk}] =0
oAU U fIUIU--- U fFUl =1.
Since B" is disjoint from f*[X] for ¢ < k we have

k k —
af  fFr=0.

To define agm.._., for integers m # 0 pick, for m >0, an arbitrary
continuous extension of @jm-14,_,, Where

— (k) {aé]’c")“'l(zrb—l)f—l on f[X]

Aom=1gp—1) = lon U
n

and, for other subsecripts

(k) )
Qpmpn—1) = Qg=mriga-f «

Thus

) ) oy —
(12) Qmn—nf = Cgm—tgy—yy (M =0, £1, ---; 0 =12 -..).
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A countable family of coordinate functions +¥: X — [0, 1] is now
obtained by setting

® = (1 — \) 2 N ns) -

m=—5

By (12), and the fact that aZie._,f = ai  f** =0, we have

Pyl f =0 - 7‘1) Z 7\*m+ka2m(2n vf
=1 -N) Z 7\:m+k smian1)

m=—k

=x1— ) 2 Ay = Aap®

m=—k+1

showing that (10) holds for all coordinate funections. To define h:
X—-Ccl,let {4;:9=1,2, ---} be an enumeration of {v*'} and set

o) = (H0), ) ),

A standard argument, omitted here, shows that A is continuous. To
prove that & is one-one, let x,, #, be distinet points of X and suppose
that =, = f5(y), 2, = f(y,) with k, <k, and y, e X\f[X]. Choose
n such that af () =1 and af)_.(y.) = 0. Then

PO@) = (L= 2) 3 M imenmn (@) = L= () = A4
while
. (c)(yz) =1 -2 Z Nmazgf)‘(zn—l)(yz) Sh=— ) = At

Hence Y (®,) = M () and h(x,) # h(z,).

To prove continuity of r~* at h(zx), 2 # 0, let {h(x,): n=1,2, ---}
be a sequence in A[X]\{0} converging to A(x) and suppose that x =
f¥y) for some k = 0 and y e X\f[X]. Suppose z, -~ x. Quite clearly
a subsequence {z,} and an ¢ >0 must then exist such that d(z,,
fily)y=c¢ for all 1=1,2,--- and §=0,1, ---, k. [If not, then a
subsequence {z,} exists such that x,, -« but z, — fi(y) for some
Jj #k; but then h(x,)— h(fi(y)) = N*h(x) # h(x).] Let » be such
that each B, is contained in the open ball about f%(y), of radius
¢ and yeV,. Then

iy (%) = 0 and aff(f(y) =1 (G =1,2,---, k).

Hence " (y) = 1 =¥ (x) = \*; while
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Q['/\ibk)(xnz) = (1 - )")m;kk’m+ka2(f’z(2n—l)(xﬂi)
= (1 — WA N Wy (@) S N = NP ()
m=1

Clearly then |[|h(x,,) — h(x)|| is bounded away from zero, against the
assumption that hi(x,) — h(x).

3,2, Isomorphism. In the next theorem we have the stronger
conclusion that 7 is a homeomorphism. As in the case of Theorem
I, where (i) is stronger than (i’), it is necessary to strengthen con-
dition (11) by the discrete counterpart of condition (i). Thus we
shall assume that the following hypothesis is satisfied.

There exists a we X such that for every meighborhood U of w
there is a positive integer N with the property that

(13) fXlcU

for m = N.
(A simple argument shows that in a compact metric space (11)
and (13) are equivalent.)

THEOREM 3. Let X be as in Theorem 2 with (11) replaced by
(13). Let 0 <Xx<1l. Then a homeomorphism h of X into the
Hilbert Cube C in 1, exists such that h(f(x)) = Mh(x).

Proof. Let B, be an open ball about w, of radius ¢/n with
¢ > 0 such that B, + X. By (13) there are integers N, < N, < ---
< N, < --- such that

f"[X]CB,.

Let a,,_,: X — [0, 1] be a continuous function such that a,, ,[ /[ X]]=
0 and a,,,[X\B,] = 1.

Let a,,, ., be a continuous extension of a,,_,f* to the whole of
X and, recursively, let a;mu..., be a continuous extension of
Uym—15n_,f~* to the whole of X. Define t-mpuy: X—1[0,1] (m =
1,2, --.) by setting

az—'mmn_l) = az—-m+1f .

This defines a family {a,me,_p:m =0, £1,---;2=1,2, --:} of con-
tinuous mappings into [0, 1] such that for all integers m,

(14) azm(sn—nf = Cgm—ligp—1

and
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(15) Aomzy—1) = 0 ('m/ = —Nn) .

Let now

Tul@) = L= I S A (1)

m=—N,+1

=12 ---; xzeX).
Then +,: X — [0, 1] is continuous and by (14) and (15),

FulF@) = L= N B N tymn(F@)
= (L= S N et (@)

=1 = M\ 3 N Agmigy (X)) = 7\,{!}”(.%)
~Np+1
showing that (10) is satisfied.

To define h: X—1, let {y;:5=1,2, ---} be an enumeration of
{¥.} U{pP} where {4} is as in the proof of Theorem 2. Set

h(x):(“hl(x) , “/fzz(x) %j@ )

The continuity of h, the existence of ~~' and the continuity of A
at h(x) = 0 follows, as in the proof of Theorem 2, from the relevant
properties of {+¥}. To prove continuity of A~ at 0 let {h(x,)} be
a sequence converging to 0 and suppose that {x,} fails to converge
to 0. Then a subsequence {x,} and a positive integer n exist such
that {x,} is in X\B,. Hence a, ,(,)=1. (=12 --), and
therefore ,(x,,) = (1 — MAY»"'. It follows that ||A(x,,)|| is bounded
away from zero, against the assumption that {k(x,)} converges to
the origin.

4. Main results.

Proof of Theorem I. Fix A, 0 <A< 1, and set f(x) = flz, 1).
The mapping f: X — X satisfies the hypotheses of Theorem 3. Hence
there is a homeomorphism % of X into the Hilbert Cube with A(f(x))=
M(x) or, in terms of discrete semiflows,

h(f @, ) = W(f*(®)) = \'(h@), @eX) .

Let Y be the set of all y in I, with the property that for some
nonnegative integer %, Ay ch[X], and define ¢: Y X R— Y by
setting

(16) 9@, &) = V" "R(f(WTI(VY), E + m))
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where m and n are the smallest nonnegative integers such that
AMyeh[X] and £ + m = 0.
From the fact that

f@,t+m+m)=ff,t+m),m) @eX; t+m=0; m =0)
and
r(f(f(@, ¢ + m), m) = N"h(f(x, t + m))
it follows that
AN R(f(x, t + m o+ m) = N h(f(w, t 4+ m))

showing that (16) holds for any nonnegative integer m with m +
t =0 (and not only for the smallest one with the said property).
A similar argument, omitted here, shows that (16) remains true
with n replaced by »'.

To verify the additivity of g let

9y, t + ) = N R(F(ROY), T+ mo+ )
where My eh[X], t +m =0, t' +m' = 0. We have
h(f(h~'(\"y), t + m)) = N"**g(y, t) € A[X]
and
9(9(y, ), ¥') = N R(F (R (N9 (y, D), T + m)))
showing that
9, t +t) =90, o), 1) .

To sum up, Y is a nonempty subset of l,, (Y, R, g) is a dynamical
system and for te R, k a nonnegative integer, we obtain (by choos-
ing positive integers n, m with A"y e h[X], ¢ + m = 0) that

9, ¢ + k) = A" "R(F (T NY), €+ kB + m))
= MAT"R(F(RT Y, T+ m)) = Mg(y, B)

so that the hypotheses of Theorem 1 are satisfied. Hence (Y, R, g)
is isomorphic to a radial flow in [,. Furthermore, we may assume
that the set S, in the proof of Theorem 1, is disjoint from A[X].
(Otherwise it may be replaced by A—"S with » sufficiently large.) It
follows that (X, R*, f) is isomorphic to a radial semiflow on a subset
of the Hilbert Cube.

Proof of Theorem II. As in the pr_eceding proof fix », 0<A<1
and set f(x) = f(x,1). The mapping f: X — X satisfies the hypo-
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theses of Theorem 2. Hence there is a one-one continuous mapping
h of X into the Hilbert Cube in [, such that A(f(x)) = Mh(x) with
h~' continuous on A[X]\{0}.

The rest of the preceding proof applies verbatim with the only
change that (Y, R, g) as defined there is homomorphic (rather than
isomorphic) to a radial flow on a subset of the Hilbert Cube in I,.
Hence (X, R*, f) is homomorphic to such a semiflow.

The author wishes to record his thanks to the Weizmann Insti-
tute of Science, Rehovot, Israel and to Michigan State University,
East Lansing, Michigan, for the hospitality and assistance extended
to him while on sabbatical leave from Dalhousie University, Halifax,
N.S.
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