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Topological algebras with Schauder orthogonal bases are
studied. Radicals, closed ideals and closed maximal ideals of
such algebras are described. It turns out that a locally m-
convex algebra with identity and having an orthogonal basis
is metrizable. This implies that a complete locally m-convex
algebra with an orthogonal basis and identity is algebraically
and topologically isomorphic with the Fréchet algebra of all
complex sequences.

Introduction. Let A be a topological algebra. A (Schauder)
basis {x,} in A is called an orthogonal (Schauder) basis if z,x, =
Owm®u, W, Mm =12 --- where 0,, denotes the Kronecker delta.
Algebras with such bases (actually a variation of this definition
which we will discuss below) were first studied by Husain. In [3]
Husain and Liang proved that every multiplicative linear functional
on a Fréchet algebra (i.e., complete metrizable locally m-convex
algebra) with an unconditional orthogonal basis is continuous. This
result answers Michael’s question [5] (as to whether every multipli-
cative linear functional on a Fréchet algebra is continuous) in the
affirmative for such Fréchet algebras.

In this paper we study the structure of topological algebras
having an orthogonal Schauder basis. In §1 we discuss some pro-
perties of bases in topological algebras which we will use later. In
§ 2 we describe the closed ideals and show that each closed ideal is
the closure of the linear span of the basis elements it contains. In
§3 we give a characterization of complete locally m-convex algebras
with identity having an orthogonal basis. In another paper [4] we
study topological algebras having unconditional orthogonal bases.

For definitions and results concerning bases in Banach spaces
see [1], [7]. For general notions regarding topological algebras see
Michael [5] and Zelazko [8]. A sequence {x,} in a topological vector
space K is a basis if for each xc E there is a unique sequence of
scalars {«,} such that x = >7_, a,x,. Each linear functional z}(x) =
«, is called a coefficient functional. If each z} is continuous then
{x,} is called a Schauder basis. It is well known that each basis in
a complete metrizable vector space is a Schauder basis. We show
that each orthogonal basis in a locally m-convex algebra is a Schauder
basis (Prop. 3.1) and each unital locally m-convex algebra A with
an orthogonal basis is metrizable (Theorem 38.3) and if, in addition
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A is complete, then it is isomorphic and homeomorphic with the
Fréchet algebra s of all complex sequences (Theorem 8.4). These
results generalize results in [3] proved for Fréchet algebras.

The authors are very grateful to the referee for pointing out
an error and suggesting many improvements.

1. Orthogonal bases. In this section we consider the following
conditions on a topological algebra A with a Schauder basis {x,}:

(i) z,x, =0 for n #* m;

(ii) &, =0 for » # m and % # 0;

(iii) z,x, = 0 for n = m and 2% = ¢,x,, ¢, # 0;

(iv) 2,%m = 0unTa-

In the sequel a basis satisfying the condition (iv) will be called
an orthogonal basts. We start with some elementary results.

It is obvious that (iv) = (iii) = (ii) = (i). (ii) and (iii) are trivial-
ly equivalent. (iii) implies that one can replace {x,} by another base
{y,} satisfying (iv). If A has an identity, then (i)= (ii). Thus for
a topological algebra with an identity for a base {x,} to be orthogo-
nal, it is enough to assume that {x,} satisfies (i) because we can
always replace {x,} by another basis {y,} which satisfies (iv). The
proofs of these statements as well as that of the following are easy
and therefore omitted.

LEMMA 1.1. Let A be a topological algebra satisfying (i).

(@) If x = amx, y= 2 B, then xy = >, a,fx:.
Hence A is commutative.

(o) If 22 = x, then the corresponding coefficient functional =}
18 multiplicative.

To describe the radical of a topological algebra with a basis
satisfying (i), we first have the following:

LEMMA 1.2. Let A be a topological algebra with a Schauder
basis {x,} satisfying (i) and let D be any subset of {x,}. Then, x=
S ax, belongs to SpD (closure of the linear span SpD of D) iff
a, = 0 whenever x, ¢ D.

Proof. Suppose that for some neN, a,+ 0 and z,¢D. Let
ze€SpD, then there is a net {x;} in SpD such that z;—z. Since
each coordinate functional z¥ is continuous, we have 0=Ilim; x}(x;)=
x¥(x) = a, # 0, a contradiction. Conversely, if 2 = >, a;z; and a, =
0 whenever z,¢ D, then clearly S,(x) = >k, ax; € SpD for all k € N.
Whenee we have z = lim,_.. S,(z) € SpD.
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LEMMA 1.3, Let A be a topological algebra with a Schauder
basis {x,} satisfying (i). The following are equivalent:

(a) =«,<Rad A.

(b) a2 e Spiw,: ai = 0}.

(e) wi(an) = 0.

(d) x5=0.

Proof. Let 22 = >, a,x,, then 0= z22 = a2} and so a, =0
whenever 2z 0. Thus, by Lemma 1.2, «,= 2} =0 iff 22¢
Sp{z,: @3 = 0}. This proves (b) = (c). For (c) = (d), note that

Xy = @, = xn< > xé‘(%i)m) = i (@))w, = 0.

Sinee (d) = (a) is obvious, it remains to show that (a) = (b). Sup-
pose a2 ¢ Sp{w,: #3 = 0}, then by Lemma 1.2, there exists %k, such
that a;, = 0 and x} # 0. By the first sentence in this proof k, = n.
Thus a, # 0, whence the sequence {y,} where y, = x,, k¥ %= n, and
Yo = X,/0,, is a basis for A, and y,=a%/a} =37, (a./al)a,, so yi(ys)=
1 and y*(%) = 0 for & + n. Now, for

x, y €A, yi(xy)
= y:f( ki;l yif(x)yi‘(y)y%) = Y @)Y Wys(Ys) = yn@)yiy) .

Thus % is a continuous multiplicative linear functional and ¥} (y,)=
1= 0. It follows that y, ¢ Rad 4, hence the same is true for z,.

REMARK. From the above proof we note that in general, for
a basis element x,, either x = 0 or z} = ¢,2%, «e€C. By a suitable
transformation {x,} can be “normalized” to a basis {y,} so that y? =
y2 and by the above proof %} is then multiplicative.

THEOREM 1.4. Rad A = Sp{x,: x, satisfies one of the equivalent
conditions in Lemma 1.3}. In particular, Rad A = {x e A: 2* = 0}.

Proof. Let D = {x,: a3 = 0}. We show Rad A = SpD. To this
end let xeSpD, = = 3, a,x,. By Lemma 1.2, a, #0 iff 2{ =0, so
2=, ajxi =0, hence xcRad A. Conversely, if ¢ SpD, then
there exists %k, such that a,, # 0 and 2} +# 0. By choosing a basis
as in (a) = (b) of Lemma 1.3, we show that x ¢ Rad A.

COROLLARY 1.5. A topological algebra with an orthogonal
Schauder basis is semisimple.
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COROLLARY 1.6. An F-algebra with an unconditional (see [1])
orthogonal basis has unique F-algebra topology.

Proof. By Theorem 4 of [3], A is functionally continuous, com-
mutative (Lemma 1.1) and semisimple (Corollary 1.5). By a Theorem
of Michael [5, p. 62], A has unique F-algebra topology.

PROPOSITION 1.7. If A is a topological algebra with a Schauder
basis satisfying (i), then A/Rad A has an orthogonal basis.

Proof. If D is any subset of {x;} and {x,} is the sequence of
basis elements complementary to D, then the sequence {7(x,)}, where
7: A— A/SpD is the canonical map, is a basis for A/SpD. (This is
proved in [7, Prop. 4.1] for Banach spaces but the theorem is true
for Schauder bases in any TVS by a slight modification of the proof
there). Now, if D is as in the proof of Theorem 1.4, then Rad A =
SpD and a simple verification shows that the basis {n(x;,)} can be
modified to yield an orthogonal basis for A/Rad A.

We end this section by showing that an orthogonal basis in a
topological algebra A is “essentially unique”. Precisely we have:

THEOREM 1.8. If {x,} and {y,} are orthogonal bases in a topo-
logical algebra A, them {x} = {y.}.

Proof. Let x,€{x;}. There exists y,¢€{y;} such that z,y, = 0.
For, otherwise it follows that z, = 0, which is impossible. Now
writing x, = >, a,y, and multiplying it by v,., we obtain 2,¥,=®.Y.
whieh, if multiplied by x,, yvields z,¥. = @2 Y,. This implies that
a,=1 and so z,¥, = Y.. Now writing ¥, = >, 8x;, by similar
arguments we get 2.y, = ,, Whence 2, = ¥,. This proves that
{x} c{y.} and the result follows by symmetry.

2. Closed ideals. Throughout this section A will denote a
topological algebra with an orthogonal Schauder basis {x,}. Also for
each z}, let M, = {x e A: x}(x) = 0} be its kernel.

THEOREM 2.1. If I is a closed ideal in A, then there exists n €
N such that IS M,. In particular, {M,:neN} is the set of all
closed maximal ideals of A and this set with the Gelfand Topology
18 homeomorphic to N.

Proof. If IC M, n =1, then for each n<c N, there exists xel
with 2*(x) # 0. Since 2¥(x)™'z,x = x, we have z,¢1 for all n = 1.
Thus I is dense in A, contradicting the assumption that I is closed.
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To see that this set is discrete, consider the subbasic neigh-
borhood V of z¥,

V= V(_;. &, x;’:) = {x;’i lat@,) — zi@,)| = %} = {=3},

the last equality being true because zj(x,) = 0.
For I A, set Z(I) ={neN:xi(x) =0 for all x€I} and write
Z(x) for Z({x}). Also let K = {n:x,c1}. With this notation Lemma

1.2 says that < Splx,: ne K}iff N\K < Z(x).

THEOREM 2.2. Let I be a closed ideal in A. Then
(a) Z(I) = N\K.
() I= Spix,:nekK}

= N{M,: neZ()}

={xeA: Z(I) < Z(x)}.

Proof. (a) If meZ(I), then xi(x) = 0 for all xel. Thus «,¢1
and so n¢ K. Conversely, if n¢ Z(I), then z¥(x) # 0 for some z ¢ I.
Now 2,2 = zX(x)x,, so x,€ I, whence nec K.

(b) Since I is closed, Sp{z,:neK}cI. If xel, then by (a),
N\K < Z(x) and so by Lemma 1.2, x ¢ Sp{x,: n€ K}. The other two
equalities follow from this and Lemma 1.2.

REMARK. In view of the proof of Proposition 1.7, the first
equality of part (b) of the above proposition shows that for any
closed ideal I of A, A/I has an orthogonal basis.

COROLLARY 2.3. Let xc A and let I = (xy, the closure of the
principle ideal generated by x. Then
(@) Z(I) = {n: z;(x) = 0}.
(b) I= Spfx,: neN\Z(I)
= N{M,: ne Z(I)}
= {y e A: Z(») < Z(y)}.

Proof. The ideal {x) contains exactly those basis elements z,
for which z7(x) = 0. Whence (2> contains exactly those same basis
elements also. Now (a) follows from part (a) of Theorem 2.2. Part
(b) follows directly from Theorem 2.2(b).

3. Locally M-convex algebras. In this section we generalize
gsome results in [3]. In particular we give a characterization of
complete locally m-convex algebras with an orthogonal basis.
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ProposiTION 3.1. FEach orthogonal basis in a locally m-convex
algebre (¢f:[5]) A is a Schauder basis.

Proof. Let {x,} be an orthogonal basis in A and let {p,} be a
family of submultiplicative seminorms generating the topology of A.
For z€ A, x = >, z}(x)x, we have zx, = 2} (x)x: = 2} (x)x,(n = 1) and
so for each p, and =, |z}x)|p(z,) = p,(x)p(2,). Since A is
Hausdorff, there exists p, such that p,(x,) # 0, with this p, from
the above inequality we get |2}(x)| < ps(x), x€ A, which proves
the continuity of z} for each n = 1.

REMARK. Note that if f is any multiplicative linear functional
on A with f(z,) # 0 for some n =1, then by the arguments used
in the proof of Theorem 2.1 we get that f = x¥. Hence f is con-
tinuous by the above proposition. This is known for Fréchet
algebras [3].

Let E be a topological vector space with a basis {z,}. We
define a map ¢ from FE into the space s of all complex sequences by
o(x) = {wi(@)}-., zeA.

LemMa 3.2. Let A be a locally m-convexr algebra with an
orthogonal basis {x,} and let P be a family of submultiplicative
seminorms generating the topology of A. Comsider the following
statements:

(a) o0: A—s is surjective.

(b) A has an identity.

(e¢) For each pe P there exists Ne N such that p(x,) = 0 when-
ever n > N.

Then (1): (a) implies each of (b) and (c), and (b) implies (c);
(2): if A is complete, these statements are equivalent.

Proof. The proof of this lemma follows from the proofs of
Propositions 1 and 3 of [3] if one replaces the sequence of seminorms
by a family of seminorms.

THEOREM 3.3. Let A be a locally m-convex algebra with an
orthogonal basis {x,}. If A has an identity, then A is metrizable.

Proof. For peP, let K, = {n: n(z,) = 0} and for p, ge P define
pRqiff K, = K,. Note that R is an equivalence relation and since
each set K, is cofinite in N (Lemma 3.2) there can be at most a
countable number of R-classes. Let pRq. Clearly kerp = {x € A:
p(x) = 0} is a closed ideal in A and so by Theorem 2.2(b), kerp =
Splx,: ne K,} from which it follows that ker p = kerq and is of
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finite codimension in A. Thus A/ker p = A/ker ¢ is finite dimensional
so p and ¢ induce equivalent norms on it. Hence p and ¢ are
equivalent seminorms on A.

We have the following theorem which generalizes Theorem 1
of [3].

THEOREM 3.4. Let A be a complete locally m-convex algebra with
an orthogonal basis {x,} and let P be a family of seminorms gener-
ating the topology of A. The following are equivalent:

(a) A has an identity.

(b) o is onto s.

(e) for every pe P, p(x,) = 0 for all sufficiently large n.

(d) A is algebraically and topologically isomorphic to s.

4. Examples. We conclude this paper by giving several ex-
amples.

ExAMPLE 1. The Banach algebras I?(N) = {{a;} €s: 3| a;|? < o}
1< p< ; ¢, the algebra of complex sequences converging to 0,
and the Fréchet algebra s of all complex sequences (all with point-
wise operations) have the sequence e, = (6,.)5- 7 =1 as a basis.
Clearly this basis is orthogonal in our sense.

ExamMpLE 2. The space L*(T), 1 < p < - is a Banach algebra
with convolution multiplication (see [8]). The sequence of trigono-
metric polynomials ¢,(f) =t* te T, n =1, is an orthogonal basis for
L*(T), where T is the circle group.

ExaMPLE 3. The Hardy spaces H?(D), 1 < » < e, where D is
the open unit dise in C are Banach algebras with the product

1
(f*g)@) = —2—;—§

f(z)g(xz"")z7"dz ,
1 Jlzl=r

where f, g€ H? and || < r <1 [6]. The sequence e,(x) = 2", € D,
is a basis for H? and a simple computation shows that it is an
orthogonal basis with respeet to the above product.

Let E be a Banach space with an unconditional basis {x;}. For
z,ye B, ¢ =, ax, y = >, Ba; define zxy = a,Bx,. This defini-
tion makes sense because, without loss of generality, assume that
the basis {z,} is normalized (i.e., ||;|| =1, 2 = 1). Then lim, ., =
0 [6]. Thus the sequence {a,} is bounded and therefore, since 3By,
converges unconditionally (hence is bounded multiplier convergent
[1]), it follows that 3 a,8; converges in E. Thus 2*y is a well
defined element of E for z, yc E. Moreover, it is clear that A is
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an algebra with this product. More is true:

ProposiTION 4.1. If E is a Banach space with an unconditional
basis, then E is a Bamnach algebra (in an equivalent morm) with
xproduct and the basis is orthogonal.

Proof. Without loss of generality assume that the basis is
normalized and let ||--||, be the norm on E given by |[|z], =
Sup,.y (Z¥(x)]. Then with the map o: E— m (the Banach space of
bounded sequence with the sup norm ||---|l.) defined by o(x) =
{x(x)}r-;, we have for each f,, the kth coefficient functional on m,

(freo)(@) = filo(@) = fillex(@)}i-) = (@) .

Since E is a Banach space, the functionals x} are continuous [7].
Hence each fio0 is continuous on E for each % = 1. Since the family
{f.} is a separating family of continuous linear functionals on m, it
follows by the closed graph theorem [2] that ¢ is continuous.
Therefore, there exists ¢, > 0 such that ||o@)|l- = ellzll, e k.
Since ||z]|, = ||0(®)||~, We have ||z{l, < ¢||2|. Now define

el = sup [ Slsi@Ilr@) |,
feEL|flIST =1

where E’ is the topological dual of E. It is easy to show [7, Dp.

463] that |[|---||| is a norm on E equivalent to the original norm of

E. Hence, there is a constant ¢, > 0 such that ||z]|| < ¢]||z]l], €

E. Now

lla=olll = sup [ lat@azw)]| £ ]

feEL|ISflIst L »=

<ol sup | Sler@)llfw)] |

feELNfl=

= ol [yl
= ac|ll=]ll Iyl .

This shows that E is a Banach algebra in a norm equivalent to
M---lll [8]. Finally, it is clear that the basis {x,} has the property:
L Ly = Opnny, W, M =1,

REMARK. We note here that an infinite dimensional normed
algebra A with an orthogonal basis {x,} cannot have an identity e.
For, if ec A, e = >, x, converges, hence ||z,|| <1 for sufficiently
large ». Thus, ||z,|| = ||z < ||=.||* for all £k =1. So, ||z.|]|=10
which is impossible since 2, = 0.

We now give an example of a topological algebra with an
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orthogonal basis which is not a Banach algebra.

ExampPLE 4. Let H(D) be the F-space (with the compact-open
topology) of all functions holomorphic in the open unit dise D. H(D)
is a topological algebra with identity 1 with the product

()@ =S| @@,
T =7

izl
where 2 € D, and |2| <7 <1 [6]. The sequence of functions £,(z)=
2", z€D, n =0 is a basis for H(D). A simple computation shows
that this basis is an orthogonal basis. Note that H(D) cannot be
locally m-convex in view of Theorem 3.4, since it is not s.

Finally, we note that if A and B are topological algebras with
orthogonal bases then the product basis [7, p. 28] in A X B is an
orthogonal basis as can easily be checked (note that the construction
of product bases for Banach spaces given in [7] has a natural
extension to topological vector spaces and the proofs are similar to
the Banach space case). Also, if A and B are Banach algebras with
orthogonal bases then it is easy to check that the tensor product
of these bases {7, p. 173] in A @, B, the projective tensor product
of A and B, is an orthogonal basis for the Banach algebra A @, B.
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