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Let G be a locally compact group that acts continuously
by linear transformations on a locally convex space £ and
let K be a compact convex subset of E that is invariant
under this action. In order to conclude that K has a non-
zero fixed point, it is necessary that both G and K satisfy
certain conditions. With these assumptions on K, it is
shown that the existence of nonzero fixed points is equiv-
alent to polynomial growth on G, provided G is connected
or discrete, finitely generated and solvable.

A locally compact group G is said to have the fixed point property
if whenever @ acts continuously and linearly on a compact, convex
subset K of a locally convex space F there is an element of K
invariant under the action of G. A well known result states that
the fixed point property is equivalent to amenability (see [1]). If
zero is an element of K, then, by the linearity of the action on G,
it will be a fixed point, and amenability of G does not gurantee the
existence of any other fixed point. Of course, there may not be a
nonzero fixed point. Consider, for example, R acting on C by multi-
plication by e*. The unit disk is a compact, convex, invariant subset
and 0 is the only fixed point. Thus, in order to conclude the existence
of a nonzero fixed point for a group action, it is clearly necessary
to restrict the nature of the action. One such restriction, that ex-
clude the example just cited, is to require that some half-space be
invariant under the action. This is the essence of the first condition
in Definition 1. This restriction alone, however, is still not sufficient
to imply the existence of a nonzero fixed point. We consider another
example. Let C.(R) denote the space of continuous functions on R
that vanish at infinity equipped with the sup norm topology, and let
E be its dual space with the w*-topology. Then R acts on E by
the contragradient to translation on C.(R). K, the set of positive
linear functionals in £ of norm less than or equal one is compact,
convex and lies in an invariant half-space. However, K has no non-
zero fixed point. In fact, one easily sees that for any pe K

w*—zliin t-p=0,
i.e., 0 is in the closure of every orbit in K. If we were to ignore
this faet for a moment and try to construct a fixed point by the
usual scheme, we would fix a nonzero element p of K. Define a
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sequence of elements p, in K by

1 (3
pn—%s_nt pdt ,
note that the p,’s are “nearly invariant”, and use the compactness
of K to get an invariant cluster point of {p,}. The difficulty, of
course, is that w*-lim p, = 0. But even more critical is the fact that
the entire orbits of the p,’s are “w*-convergent to zero”, i.e., for
all p e E*,

lim sup K@, t-p,)| = 0.
n—oo tER

Hence, arbitrarily small neighborhoods of zero contain orbits of ele-
ments in K. The second condition in the following definition excludes
such actions.

DEFINITION 1. A locally compact group G is said to have the
nonzero fixed point property if whenever G acts continuously and
linearly on a locally convex space E having an invariant, compact,
convex subset K, and K satisfies

(i) there is a @€ E* so that (@, 2) > 0 for all 0 = 2 ¢ K, and

(ii) for all 0 = xc K, x/sup,; (@, s x) K,
then K has a nonzero fixed point.

The main result of this paper is the following characterization
theorem.

THEOREM 2. Suppose G is a connected, locally compact group
or a discrete, finitely genmerated, solvable group. Then G has the
nonzero fixed point property if, and only if, G has polynomial
growth.

The proof will be given in a series of propositions, but first we
recall some facts about groups with polynomial growth.

Given a locally compact group G, and measurable subset U,
denote by |U| the left Haar measure of U, and for a positive integer
n set U= {uu, - - u,|u; €U, 1 £i=<n}. G is said to have poly-
nomial growth if for any compact neighborhood U of the identity
in G, there is a polynomial » such that |[U"| < p(n) for all
n=12 ---.

Milnor [7] and Wolf [9] showed that a discrete, finitely generated,
solvable group G has polynomial growth if, and only if, it contains
a nilpotent subgroup with finite index. Rosenblatt [8] added to the
characterization by showing that for such G, polynomial growth is
equivalent to G not having a free noncommutative subsemigroup on
two generators.
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For a Lie group G, let t — Ad ¢ denote the adjoint representation
of G on its Lie algebra. G is said to be type R if the eigenvalues
of Adt are of modulus one for all t€G. A connected, locally com-
pact group G is said to be type R if for some compact, normal sub-
group K, G/K is a type R Lie group.

A subset S of a locally compact group G is said to be uniformly
discrete if there is a neighborhood U of the identity in G such that
sUnNtU = @ for s,t€S, s+ t.

It is shown in Jenkins [5] that for a connected group, G, poly-
nomial growth is equivalent to G being type R, and also equivalent
to G not having a uniformly discrete free subsemigroup on two
generators. (The first equivalence was also proven by Guivarc’h
(219

The following lemma was first proved in Guivarc’h [2]. We
include a proof here for the convenience of the reader.

LEMMA 3. Suppose G is a conncted, locally compact group or
a discrete, finitely gemerated, solvable group. If G has polynomial
growth, then there s a normal series {¢} = G,CcG,cC---C@G, =G
such that every element of G;.,/G; is contained tn a compact neigh-
borhood of the identity that is invariant under the imner-automor-
phisms from G/G,.

Proof. If G contains a normal, nilpotent subgroup of finite index,
N, then the lower central series of N will give the desired normal
series of G.

Suppose G is a connected Lie group with polynomial growth. Let
S be the solv-radical of G, LS its Lie algebra, and LS., the com-
plexification of LS. By Lie’s theorem, there is an ordered basis for
LS., {X, ---, X,} so that the matrix representation for Ads with
respect to this basis is upper triangular for all seS. Let V; be
the subspace spanned by {X, ---, X;}. Then, because of polynomial
growth, S is type R, and the action of Ads on V,,/V; is multipli-
cation by a complex number of modulus one, i.e., Ads acts by rota-
tion on V,.,/V;. Thus we can find subspaces {0} = W, Cc W, C--- C
W. = LS, the real Lie algebra of S, each invariant under Ads, for
all se S, with dim (W,+,/W;) £ 2, and with Ads actaing by rotation
of W;y,/W;. Thus W; is an ideal in LS and if S; is the corresponding
closed, normal subgroup of S, each element of S;.,/S; is in a com-
pact neighborhood that is invariant under the inner-automorphisms
from S/S;. Since G has polynomial growth, the semisimple part of
G, G/S, is compact. Hence, the S;’s give the desired normal series
for G.

If G is a connected group with polynomial growth, there is a
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compact, normal subgroup K so that G/K is a Lie group with poly-
nomial growth. The above argument applied to G/K completes the
proof.

The following proposition, which is the keystone in the proof of
Theorem 2, was inspired by Ludwig [6].

PROPOSITION 4. Let G be a locally compact group with poly-
nomial growth, and suppose G acts continuwously and linearly on a
locally convex space E. Let K be a compact, convex subset of E that
satisfies the conditions inm Definition 1. Let L, H be mormal sub-
groups of G with L C H, and suppose every element of H/L is con-
tained in a compact, G/L invariant neighborhood. If K has a non-
zero point fixed by L, it has a nonzero point fixed by H.

Proof. Let ¢ >0 and U, a compact, symmetric neighborhood of
the identity in H/L that is invariant under the inner-automorphisms
from G/L, be given. We define a function f.; on H/L by f.;(8) =
L+e)tif seU, f,58) =0 +¢e) ™ if §e U* ~ U** for n = 2, and
Foo(8) = 0 if §¢ (U, the subgroup generated by U. Since H/L has
polynomial growth

1t li= @+ 9N T+ 50+ T~ T <
Also note that for se U and {e(U)

| fe,i(88) — Feo(D)] = efi(d) -

Let 0 == x,€ K such that s-x, = #, for all se L. Then H/L acts
on z, and we can define «!; € E** by setting

@iy vy =\ i@, vds

H/

for each +y € E*. Since K is compact and convex, . ; is in the canoni-
cal image of K in E**. We denote its preimage in K also by ! ;.

Let @ € E* as in Definition 1, i.e., (@, 2> >0 and z/sup,.; (@, s-2) € K
for all 0 == x € K. Define

Aoy = SUPLP, §-@05)
and pick a € G so that

<¢y a'x:,ﬂ'> g (1 - s)as,ff .
Finally, define

—1
T = Q.50 T5 .



ON GROUP ACTIONS WITH NONZERO FIXED POINTS 367

Note that by condition (ii) of Definition 1, z.;€ K, since a real

multiple of #! ;€ K. ]
Let € E* and be U.

| .5, bas-w) — G, as-wp)ds

-1
[ap, b2 — eyl = Ay

< azp | 1£0(5709) — £,0) || G, 450 1d8
< caz | £o®)] Gy, a0 1ds

Thus, in particular,
|<¢: B'xs,if - xs,f]>‘ =e.

We consider the net {x.;} ordered by (¢, U) < (¢, U") if ¢ < &' and
U'< U, and pick a cluster point x... Note that z.. € K, that s-2. = @
for all se L, and that <@, z-x.) =1 for all se L. Thus we may
assume that the original x», had its orbit in the hyperplane
{y|{p, y> = 1}. But then a.; = | f.s|,, and we have that for all
veE* and be U

[, b — @50 ] < esUD [(, 5203 | -
Thus, for all s€ H and € E*

<"t’/\, 8 Beo) = <¢"7 Leo) -

Hence s .. = x.. for all se H.

Lemma 3 and Proposition 4 combine to prove that polynomial
growth is sufficient to give the nonzero fixed point property for the
class of groups given in Theorem 2. In order to prove the converse
we need the following proposition which has some interesting con-
sequences of its own.

PROPOSITION 5. Let G be a locally compact, o-compact group that
has the nonzero fixed point property. Let 6 ¢ BC(G), the bounded,
continuous functions on G, with 060 =0 and 0 < f,x0 for some
foe L(G).

Let

L) = {y € L2(G) ||| = f+0 some fe L'(G)}
and set

[l = inf {[| £l ]| = F=6} .

Then there is a continuous, positive linear functional on Ly, p, such
that {p, s-v) = {(p, ¥y all s€G and + € Ly, and such that {p, 6) = 1.
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Proof. First note that we may assume that 6 < f,+6 where
fo(s) > 0 for almost all seG.
Let

Lj = {f+=0]f e L(G)}
and let E denote the dual of L% with the w*-topology. G acts on
E by
(8D, fx0) = {p, 8f*0)

where sf(t) = f(st) for all s,t€G and f e L}G). This action is con-
tinuous since

182, f*0) —<p, f*0)| = [{p, (8f — f)*0)|
= llolllsf = £l
where ||p|| is the norm of p induced by |||, restricted to Lj.
Let
K={peElpz0,|pl=1}.

Then K is compact, convex and satisfies the two conditions of Defi-
nition 1.

The first condition is satisfied by the linear funectional f,+6, for
if peK and (p, f,*6) =0 then for all ge LYG) with 0 g < f,,
{p, gx6) = 0. Thus, for all bounded, compactly supported ¢ in L'G),
{p, gx8) = 0. By denseness of the set of all such g0 in L}, p = 0.
For the second condition, let € Lj and pe K. Then, if |4| <
S0
Ko, v | = <o, [¥ > = <o, f*fox6)

= | 7)<, sfi0>ds

Thus, setting
a = Su;) <p$ Sf0*0> ’

we have that for || < fx4,

Ko, vy S all fl:.
Hence

ol = sup Kp, )| = a,
11¥p=1

and so p/lac K.

An application of the nonzero fixed point property gives a
0 = p' € K that is fixed by G.

Let Z be a neighborhood basis of ¢ in G consisting of open sets
with compact closures. For each Ue %, let @, denote the normalized
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characteristic function of U. Assume lim inf, {p’, ¢,*60> = 0. Then,
by relabeling, we may assume lim, {p’, ¢,*0)> = 0. Fix a U,e %.
Given ¢ > 0 there exists s, ---,s,€G, U, ---, U, € % such that
(i) s,U;Ns;U; = @ for 4+ 3.
(ii) XUO =i Sk'@z'kl U,
(iii) HXUO -2 3k'¢Ukl Uil = e.
(iv) (P, Py, x0) < e.
Thus,

0 ', %y 20 S <0, S| Uy < ¢ 331U S oo+ | Ui -

Since ¢ > 0 was arbitrary, {p’, X;,*0) = 0. It follows immediately
that »' = 0. This contradiction implies that liminf, {(p’, 9,+6) =
0 > 0, and from this, one easily sees that

@', f0) =5 | f&)ds
for all f e LY(@G).

To get the desired element in L}, we note first that by the
nonzero fixed point property G is amenable. Pick a left invariant
mean m on L~(G), extend p’ to a continuous, positive linear functional
P on L, by the Krein Extension Theorem, and define p on L, by
{p, ¥y = {m, Fy) where Fy(s) = (P, sv). One easily checks that, up
to normalization, p is the desired functional.

REMARK. In [8], Rosenblatt defined a group G to be superame-
nable if for any measurable subset A C G there is a translation
invariant, positive linear functional p defined on the space spanned
by the left-translates of ¥, with {p, ¥,) =1. He showed that a
discrete group with polynomial growth is superamenable. In [4],
this was generalized by showing that for any locally compact group
G with polynomial growth and 0 == § € L=(G@), 6 = 0, there is a trans-
lation invariant, positive linear functional p defined on the space
spanned by the left-translates of 4 with {(p, 8> = 1. However, this
funetional p, in general, can not be extended to the larger space L,
(see the remark after Corollary 6.).

A Banach *-algebra A is said to be symmetric if for all ac A,
sp (aa*) £[0, ). Ludwig [6] proved that if G is a connected locally
compact group or a discrete, finitely generated, solvable group and
G has polynomial growth then L'(G) is symmetric. Essentially, the
same proof gives

COROLLARY 6. If G has the nonzero fixed point property then
LNG) 18 symmetric.
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Proof. Suppose f,e€ L(G) such that —1esp (f,*/:*). Then there
is an 0 = @ € BC(G) such that f,*ff*@ = —@. Let

0=|p.
Note that

0 =P = [for P[P = | fox L fox F5 [0 .

Hence, by Proposition 5, there is a positive continuous linear func-
tion p on L, that is invariant and has {p, ) = 1.
Define a form B on LY(G) by

B(f, 9) = {p, (f =PNg=P)) .
This makes sense, for if f, g € L,(G) then

(f <) ar)| < -;—{lg*w +|frpllel,.

Clearly B(f, f) =z 0for all fe L(G) and B(f,+f*, fi* f&*) = (p, P[> = 1.
Also B is bounded, since for g e LXG)

B(g, 9) = <, lg*2|> = llglllp, 191%6> = [lg]li .

Finally, by the invariance of p, B(sf, sg) = B(f, g) for all f, g€ L'(G)
and s€G. Thus B(fxg, h) = B(g, f*«h). Hence

0 < B(f&*, ) = —B(f* = fo* « fo*, f*) = —1.
This contradiction implies that —1 ¢ sp (f,*f%).

REMARK. Hulanicki [3] has shown that there is a discrete, solv-
able group (not finitely generated) with polynomial growth that has
a nonsymmetric group algebra. Hence not every group with poly-
nomial growth enjoys the nonzero fixed point property.

PROPOSITION 7. Suppose G is a connected locally compact group
or a discrete, finitely generated, solvable group. If G does mot have
polynomial growth it does mot have the nonzero fixed point property.

Proof. With the assumptions on @, failure of polynomial growth
implies the existence of elements a, b€ G and a compact neighborhood
of the identity U such that the semigroup generated by a and b,
S, is free and for s, t€ S, s+ t, sUNtU = @. Let 4 be the charac-
teristic function of S-U. Let V be a compact neighborhood of the
identity and « > 0 such that X, < aX,*X,. Then, with f = aX, and
0 = X, =+, we have § < fx6. Hence, if G has the nonzero fixed point
property, Proposition 5 gives a positive linear function p e L} that
is invariant and such that (p, ) = 1. Now € L, and
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{p, ) = §V<p8, s-apyd = |V [{p, 4y > 0.

Since S is free and uniformly discrete, aSUNOSU = @. Hence
W — a4 —b-4p = 0. Thus, since p = 0and invariant, {p, 4> = 2{p, ).
This contradiction shows that G does not have the nonzero fixed point
property.
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