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Let the linear second-order elliptic partial differential equa-
tion be given in the normal form

A + a(x, Y, + b(x, v, + c(x, v =0,  (x,))EE?

with real-valued coeflicients that are entire funections on =2
and whose coefficient c(x, y)<0 on the disk D: x*43*<1. Let
the initial domain of definition of the real-valued regular
solution v=v(x, y) be D. A local Chebyshey approximation
scheme is given by which global information is determined con-
cerning the location of the singularities of the principal branch
of the analytic continuation of ». This follows from an error
analysis of best approximates taken over certain families of
regular solutions whose singularities are in comp (D). The
Bergman and Gilbert Integral Operator Method is utilized in
this function-theoretic extension of the theorems of S. N.
Bernstein and E. B. Saff; these theorems classify the singular-
ities of analytic functions of one complex-variable via the
growth in the error of Chebyshev approximations taken over
rational functions of type (», v).

1. Introduction. The singularities of the real-valued regular
(classical) solutions of the linear second-order elliptic partial
differential equation

v |, o™

(1) FW=35+20

+ a(z, 12 + bz, 1)L + o, y)v = 0
ox o0y

are considered here. The real analytic coefficients continue analyti-
cally as entire functions on &* when x and y continue as independent
complex variables; also, the coefficient ¢(x, ¥) < 0 on «* + y* < 1.
Properties of the singularities of solutions to linear elliptie
partial differential equations stir special interest in several areas of
mathematical physics [5, 7], for example, in potential seattering.
Using function theoretic methods, R. P. Gilbert and D. L. Colton
[8] determined necessary and sufficient conditions concerning the
location of singularities of regular solutions v in terms of cor-
responding information for a unique associated analytic function f
of one complex-variable. Our principle interest is in global informa-
tion concerning the singularities of v independent of the associate.
This information appears by approximation methods that determine
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global relationships between the singularities on » and the growth
of the errors in solutions that approximate v locally.

The basis for this analysis is the Bergman and Gilbert Integral
Operator Method [1, 3, 5, 6] which extends the classical theorems
of S. N. Bernstein [2, 14] and E. B. Saff [13] from analytic func-
tion theory. Those classical results analyze the polar singularities
of analytic f via approximation methods in much the same way
that the Hadamard and Mandelbrojt theorems [4] analyze the polar
singularities of f via its Taylor’s coefficients.

The Hadamard and Mandelbrojt coefficient theorems have been
extended to solutions of various classes of partial differential equa-
tions [3, 5, 6] via the Integral Operator Method. The ideas of
Bernstein and Saff have been applied [9-11] along with these methods
to study the singularities of certain second-order elliptic equations
with singular coefficients, i.e., the generalized axisymmetric and
biaxisymmetric potential equations. Those results also contain
calculations of the order and type of entire function potentials
from the convergence rates of the errors in the best local harmonic
polynomial approximates. Similar calculations are not considered
here for the equation (1) with entire function coefficients due to the
lack of a suitable inverse operator. Next are introduced the

2. Preliminary results. Following standard procedure [See 1,
5, 8], the functions a(z, ¥), b(z, ¥) and c¢(x, ¥) analytically continue
as a(z, 2%), b(z, z*) and ¢(z, 2*) by the change to the hyper-complex
coordinates z = x + iy, 2* = ¢ — iy for (z, y) € ¥*% reducing eqn. (1)
to a complex-valued hyperbolic equation
U *)8U
ozoz*
Uz, 2*) = v[(z + 2%)/2, (z — 2*)/21]
Az, 2*) = [a(z, 2*) + b(z, 2*)]/4
B(z, z*) = [a(z, 2*) — ib(z, 2*)]/4
C(z, 2*) = c(z, 2%)/4 .

(2) L(U) = + B(z, z*)————l— Clz,2*)U=0,

+ Az, z

A change of dependent variables
Viz, 2*) = UGz, 2*) exp {80 Az, OdC — h(z)}

for an arbitrary entire function h gives the Bergman canonical
form of egn. (2) [1, 8],

*V
0z0z*

(3) Z(V) =

*) + F(z, 25V =0,
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F=A +AB—C, D:h'—SZ*Ach—%B.
0

It is known [8] that regular V has a local representation V = b,[f]
about the origin that is defined from a unique b,-associated analytic
funetion f = f(2) by the integral operator b,[f],

(4) oz, 2%) = blf0)] = | Bz, 2, Of@)dutt)
o=21—t)2, dult)=dtjL — )

where & is the contour ¢ = ¢ from —1 to +1. The Bergman E-
function follows:

Bz, 2% t) = 1 + 3 g S”P““’(z, 0de,
n=1 0

P = —2F, (n+DP* = —2 Pe 4 P 4 BT pevac ],
0

n =1,2, .... The principal branch of the function element V(z, 2*)
continues analytically from its initial domain of definition by contour
deformation to a (larger) domain of associated as described in the
“Envelope Method” [see 5, 6]. Using this method, Gilbert and
Colton [Theorem 1; [8]] show that the (principal branch) of V{(z, Z)
is singular at z = « if, and only if, the b,-associate f is singular at
z = af2.

The b,-associates in this paper are approximated by real rational
functions of type (n, v),

7",,,,,(2) = pn(z)/qv(z) ’ n, Yy = 0, 1; Tty

the ratio of real-valued relatively prime polynomials of degrees n
and v. The functions 7,,(2) are simply the polynomials »,(z). Cor-
responding to these b,-associates we find multi-valued function ele-
ments

V,.(2, 2%) = b[p.(0)/q,(0)]
and
?,(z, 2*) = b)[p,(0)]

n, v = 0,1, ... whose principal branches are selected to approximate
V(z, z*). These approximates may be viewed as “rational” functions
under the quasi-multiplication

Wn,v = wn,o*wo,v = b2[/r'n,0 * (1/7‘14,0)] .

The sets %, and &, = .Z2,, compose respectively the sets of all
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rational functions of type (n,v) and all polynomials of degree m.
The sets corresponding to the images of .<Z,, and &%, under b, are

(@n,u = {wn,v: w‘n,v = bZ[Tn,u]’ Irn,v € %n,v}
and
ﬁ“ = {@%: @n [S] «%n,g} )

n,v=20,12, .... The essential measures become the growth of the
errors in the (mini-max) best “rational” approximates defined by the
Chebyshev norms

e (f) = inf {l| f — 7, ([: 70 € 0}
If — 7l = sup {| f(2) — 7..(2)|: € D},
where the disk D, = {ze€%: |2| < p} with D, = D and
E, (V) =mf{||V -V, [:¥..e .},
WV = ..l = sup {|V(z, 2*) — ¥.,..(2, 2")|: (2, 2%) e D%},

n,v=20,1,..., D= D x D and the errors in the best “polynomial”
appropriates

e(f) = e (), E(V)=E.(V), n=01,.

This brings us to the main objective.

3. The singularities of V(z,2z): <#(V) = 0. The study of the
singularities of ¥V and U reveals equivalence because V{(z, z*) is
singular at (z,, 2¢) € € if, and only if, U(z, 2*) is singular at (z,, z5).
Furthermore, z* =z if, and only if, (x, ¥) € E* so the singularities
of v may be studied by noting those of V{(z, z).

The first objective recognizes those entire function elements V
whose analytic continuations from their initial domains of definition
have no singularities located at finite distances from the origin.
This is accomplished via a function-theoretic extension of the
Bernstein theorem so that we naturally select a polydisk as the
initial domain of definition in the following theorem.

THEOREM 1. Let V(z, 2*) be a regular solution of <Z(V) =10 on
the polydisk D*. Then the function element V(z, Z) has an analytic
continuation as an entire function solution if, and only if,

(5) lim [E. (V)] =0.

Proof. For V(z, z*) a regular solution of <Z(V) =0 on the
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polydisk D? we need to establish the necessity of condition (5) by
assuming the function element V(z, Z) has analytic continuation as
an entire function. By [Theorem 1 [8]], the same holds true of the
b,-associate f = f(z) so that the equation

V(z, z) = bl f(0)]
is global as is the equation
V(z, 2) — 0.(2,2) = b[f(6) — p.(0)], n=0,1,...

for each p, € &, and @, = b,[<,]. Because the functions V — @, are
regular on D? the contour & is homologous to & = {t = ¢": 0
decreases from 7 to 0} and |o| =1 if (2, t)eD X 4. We find the
estimates

Ve, 2% — 0.z, 2| = | B, %, 011 /0) — p,(0)1d] 2] 1)
Sd@®If-mll, n=012..,

o(B) = sup {|_ | B, =%, 0)ld|¢l@): |2, 12| < 1}

on D®. The constant ¢(%) is finite knowing that E(z, z*, t) is con-
tinuous on D* X &, a consequence of the entire function coefficients
in eqn. (5). The appraisals

(6) NV = @,]ll = e(E)If— 2.l
and
En(V)gc(E)en<f)’ 'n=0, 1’2,"' ’

follow.

We now estimate the norme,(f). Let »} be the mini-max poly-
nomial for e,(f) and @} = b,[p}]. The entire function f — p} expands
on [—1, +1] in a series of Chebyshev polynomials

w2l q (fn,—— k

1
(1) L@ =g B

N — >(2z)”‘2", n=20,12,...

that is analytically continued to the ellipse &, ={ze&:|z — 1] +
|z + 1| < 20}, p >4 as

f@) = i@ =2 3 ahl®), =) .

The bounds |a,| < Sup {| f(2)]: 2€ &,}o7*, k=0,1,2, ... establish as
in [12], leading to the estimate
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e(f) = Ilf— oxll = K(0)2/0)*, n=0,1,...,
similar to that in [9]. Then eqn. (6) gives
E(V) = |lV=0xll = e(E)I f —pxll = c(B)E(0)(2/0)", n=0,1,....
Thus lim,.. [E,(V)]'" < 2/p for all p >4 establishing eqn. (5) as

p —> 0O,

For the sufficiency, let V(z, 2*) be regular on D* and assume
that the Bernstein limit eqn. (5) is satisfied. The funetion V
satisfies the Goursat data [1, 8],

V(z, 0) = 9) = | flodpt), V(0,7 =9(0), #eD.

Moreover, the analytic ¢ is singular at z = 2a if, and only if, f is
singular at z = o (see [8]). Because of the result just referenced,
we then sufficiently establish that V(z,Z) is an entire function by
establishing the same for g(z). To that end we observe the identities

9(2) — pu(2) = V(2,0) — D,(2,0), zeD
. €%, n=0,1 2 --- and the inequalities
(8) lg — p.ll = |V = @, = [[IV — &.]ll
from which the bounds

wh) = sup{|h(x)|: -1 =2 < +1}

n=20,1, --- follow. The classical Bernstein theorem proves that if
&.(9) = inf {(g — p,): . € F,} and [e.(9)]" — 0 as n — oo, g = ¢(2) is
entire. This conclusion follows becauseof eqgn. (8) we have an esti-
mate

(@1 = [ELV)}™, n=12,--.

whose larger member satisfies the Bernstein limit.

Prior to considering the second problem where at least one of
the singularities of V is located at a finite distance from the origin,
we observe that when n >,

w‘n,u(zy E) = ¢n(v)(z, 5) + ww,u(zy E) 1

and the principal branch ¥, ,(z, 7) =3 9,,,(?, 7) (uniformly) on compacta
of & as the poles of ¥,, receed to infinity. In this case the
“rational” approximates interpret as reducing to “polynomial” ap-
proximates. We further note that the initial domain on which the
principal branch of the “meromorphic” function element V is regular,
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in analogy with the corresponding results in funection theory, is the
polydisk D2 The principal branch of V analytically continues via
contour deformation. Moreover, this function element is said to
have a pole-like singularity of order v at z = a if the b,-associate
f has a pole of order v counted with multiplicity at z = a/2; the
element also has a pole-like singularity of infinite-order at z = a
if f has an essential singularity at z = a/2. We now consider the
general results.

THEOREM 2. Let V(z, 2*) be a regular solution of <Z(V) =0 on
the polydisk D* and let the principal branch of V(z, Z) analytically
continue as o solution with atmost v pole-like singularities in the
disk D*. Then there exists a ‘“rational”’ approximating sequence
(T, oo for which

limsup [[|[V — T,.[[["" = 1/ (<D).

Proof. Let V(z,2*) =b[f(0)] on D* and ¥, , = bfr,,], n =0,
1,2 --- where the ¥, (2, 2*) are regular on D*. Then

| V(z, 2*) — ¥, (2, 2*)| < ¢(E)|| f— 7.l

and
(9) NV =Ll Sc @) Sf—raslly, n==0,1,---
so that

lim sup |[|V — @, [||Y" < limsup || f — 7., /", y=20,1, --
To establish the reverse estimate, the Goursat data is utilized to
give
(10) ”f_/rmvll §[||V*wn,u||| ’ ’I’LZO, 1’ tt
and

lim sup || f — 7,,[["" < lim sup |||V — &, |||’

so that
(11) limsup |V — T, [[["* = lim sup || f — 7,,.[[""

(v-fixed). By the Gilbert-Colton result, the b,-associate of V{(z, z), f
regular on D, has v-singularities in D,. Applying a result of J. L.
Walsh [15, 16] demonstrates the existence of a sequence {r,, )y, for
which
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(12) limsup | f— 7., [["=1p  (<1).

Combining eqn. (11) and eqn. (12) with the image of this sequence
under b, completes the proof.
We next secure the converse of this result in

THEOREM 3. Let V(z, 2*) be a regular solution of <& (V) =0 on
the polydisk D*. If {¥,., )7, 1s a sequence (v-fixed) of regular ap-
proximates ¥, (z, %) on D* for which

limsup ||V -7, lII"" = 1/p (1),

then the principal branch of V(z,Z) may be analytically continued
to D,, with atmost v pole-like singularities.

Proof. According to reasoning in the previous theorem which
leads to eqn. (10), the following appraisal is valid

lim sup [| f— 7., [ = 1o (<1)

for r,.(2) =¥, (2, 0) on zeD. By Saff’s converse [13] to Walsh’s
result, the associate f analytically continues to D, with atmost v-
poles. Applying, once again, the Gilbert-Colton result shows that
the principal branch of V(z, z) has analytic continuation to D,, with
atmost v pole-like singularities.

Arriving at the main result, we characterize the singularities,
located at a given distance from the origin, of the analytic continua-
tions of V from its initial domain of definition. This is an extension
of Saff’s mini-max characterization of the analytic continuation
properties of analytic functions.

THEOREM 4. Let V(z, z*) be regular on the polydisk D* and for
each v let the minimum error in the approximation of V over sets
¥, )5, of approximates ¥, (2, 2*) be given by

lim sup [E,,M,< V)]l/ﬂ = (2(011)“1 3 v = 0’ 1? .

Then the sequence {0,};=, is nondecreasing and

(i) D, is the maximal disk with the property that the principal
branch of V(z,z) has analytic continuation D, with atmost v pole-
like simgularities.

(ii) if p, > 0.1, the principal branch of V(z,z) has analytic
continuation to D, with precisely v pole-like singularities.

(iii) p = lim,.., o, is the radius of the maximal disk D, to which
the principal branch V(z,z) has analytic continuation.

(iv) the analytic continuation of the principal branch of V(z, %)
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has infinitely many pole-like singularities in the disk D, if, and
only if, o, >0, v=20,1,2, ---.

Proof. Let V(z, 2z*) be regular on the polydisk D? and for each
v let {¥,.}7,-, be a sequence of regular solutions on D?. It may be
established as in egns. (10) and (11) that

Hf— ’rn,v“ = IHV'— wn,»”] = C(E)”f_ Tn,u” ’ n, Yy = 09 17

from which we see that

[e. (O = [E, (V)] < [e(E)] e, (O™
n =1, v=0 from which it follows that
lim sup [e,,,(/)]"* = lim sup [E,,, (V)]

and
lim sup [e,,.()]'" = (20.)", v=0,1,---.

Then by the Saff Theorem [13], {0.}-, is nondecreasing and

(i-ii) D, is the largest disk for which f has atmost (precisely
if p, > p,_,) v-poles. Apply Gilbert-Colton [Theorem 1, [8]] to obtain
the corresponding information for V{(z, z).

(iii) D,,, p = lim,_p, is the largest disk in which f is meromor-
phic. Thus again by [8] V(z, z) has analytic continuation to D, and
no farther.

(iv) the b,-associate f has infinitely many poles in D, if, and
only if, o,>p, v=0, 1,---. Reason as above to complete the analysis.

4. Remarks and generalizations. It is an easy matter to
interpret the preceeding results when the analytic continuations of
the coefficients of eqn. (1) have singularities in the domain of associa-
tion of V that are not located at infinity. In the event that the
domain of association contains singularities of either the coefficients,
or their analytie continuations, or if the singularities of the coefficients
are located in the initial domain of definition, the preceeding results
may apply to give information concerning the singularities of w.
Such an example is given by the equation with singular coefficient

o ow —
Fw) = —— + P + (2»/?J)——— + a(x)—- + e(@)w = 0
py > 0 that extends the generalized axisymmetric potential equation
(@ = ¢ = 0) and in part eqn. (1). The coefficients a and ¢ are entire
functions on &. In [5] an extension of the Vekua Method is given
which presents w = w(x, y) as the integral transform of v = v(w, ¥),
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a regular solution of

__11 _2 =
() Pl + (x) +el@v =20

with Goursat condition: w(z, 0) = »(x, 0) for all v > 0 and all real
2z in the common simply-connected domain of regularity. Using this
information, extensions of §3 are readily suggested. The literature
[1, 3, 5-7] in the references also gives methods of reformulation of
the operators on conformally equivalent domains.
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