CORRECTION TO: “REGULAR FPF RINGS”

STANLEY STEPHEN PAGE
ERRATA

Correction to

LOCALE GEOMETRY

B. J. DAY

Volume 83 (1979), 333-339

As regards [1] §4 (examples), the categories Lc and Lpc are not correctly defined. The equality on page 334 (line 4) should read $X'(fx, fy) \geq X(x, y)$. The equality on page 334 (line 9) should read $(fx, fy, fz) \geq (x, y, z)$. The equality in axiom C5 should read:

$$C5. \quad \sup_{w}(x, y, w) \wedge (x, z, w) \leq X(y, z) \vee (x, y, z) \vee (x, z, y),$$

with appropriate alterations to the lemmas. With this larger class of geometries the results of the article remain valid. Moreover, the new category inclusion $Lc \subset Lpc$ satisfies the colimit claims of §4 and, consequently, has a right adjoint (whose counit is a set bijection). It can be shown (using the above C5) that $E_n \cong E^*_n$ in Lc when $L = 2$ and E_n denotes n-dimensional Euclidean space with the usual 2-valued convexity structure.

Correction to

REGULAR FPF RINGS

S. PAGE

Volume 79 (1978), 169-176

In [2] Proposition 3 states that for a left FPF left nonsingular ring any left ideal is essential in a direct summand of the ring. Unfortunately the proof is lacking as was pointed out by E. P. Armendarie. The proof given only works for two sided ideals. The final results of the paper are in fact valid. The arguments of [2] do characterize the left self-injective left FPF regular rings. It is also easy to see (as is pointed out in [2]) that a strongly regular left FPF is left-injective. In [3] it is shown that if R is nonsingular and left FPF, then $Q(R)$, the maximal left quotient ring is also left FPF. So we know the structure of the maximal quotient ring. We will show that, if R is a left EPF regular ring, Proposition 3 does hold.
In what follows \(R \) is a ring with zero singular left ideal and maximal left quotient ring \(Q \). We first show that \(Q \otimes_R Q \cong Q \) by establishing the following lemma:

Lemma A. Let \(R \) be a left nonsingular left \(\text{FPF} \) ring and let \(q \in Q \). Then \(R + Rq \) embeds in a finitely generated free module.

Proof. An idempotent \(e \) in \(Q \) is called abelian if for \(R \)-submodules \(I \) and \(J \) of \(Qe \) such that \(I \cap J = 0 \), \(\text{Hom}_R(I, J) = 0 \). Next look at \(Re + Rqe \subset Qe \). We will show that \(Re + Rqe \) embeds in a free module for each \(i \). To this end, for convenience, we will assume \(e \) is abelian. Now we can reduce to the case where \(Re \) is faithful. To do this note that the left annihilator of \(Re + Rqe \), \(\lambda((Re + Rqe)R) \), is a two sided ideal. The two sided version of Proposition 3 of [2] implies that \(R \cong R_1 \times R_2 \) where \((Re + Rqe)R \) is essential in \(R \). We can, therefore, assume without loss of generality that \(R \cong R_1 \). This makes \(Re \) faithful and so \(Re + Rqe \) is a generator. This gives the existence of functions \(f_1, \ldots, f_K \), to \(R \) so that \(R = \sum_{i=1}^K \text{Image} f_i \). Let \(W = \bigcap_{i=1}^K \ker f_i \). Let \(f \) be the sum of \(K \) copies of \(R \), and \(Q(F) \) the canonical hull of \(F \). Let \(f \) be the map of \(Re + Rqe \) to \(F \) given by \(f \), on the \(i \)th coordinate. We have \(W = \ker f \). Since everything in sight is nonsingular, \(W \) is not essential in \(Re + Rqe \). Let \(W \oplus U \) be essential in \(Re + Rqe \). Since \(1 \in \sum_{i=1}^K \text{Im} f_i \), there exists \(r_i, r_2 \) in \(R \) so that for \(w \neq 0 \) in \(W \), \(wf_i(r_1e + r_2q) \neq 0 \) for some \(i \). Also since the image of \(U \) is essential in \(\text{im} f \), we see that \(Wf(U) \neq 0 \), in \(Q(F) \). It follows, because all modules under consideration are nonsingular, that for some nonzero submodule \(W_i \subset W \), \(\text{Hom}_R(W_i, U) \neq 0 \), which contradicts the fact that \(e \) was abelian, unless \(W = 0 \). The fact that \(W = 0 \) implies that \(f_i \)'s give rise to an embedding. Finally, treat \(R(1 - e) \) in the same way.

Theorem. Let \(R \) be a left nonsingular left \(\text{FPF} \) ring. Then \(Q \) is flat as a left \(R \) module and \(Q \otimes Q \cong Q \).

Proof. Lemma A gives the essential ingredients to apply the proof of Theorem 5.17 [1].

Proposition. Let \(R \) be a regular left \(\text{FPF} \) ring. Let \(e = e^2 \in Q \). Then \(Re \) is a projective \(R \) module.
Proof. By Theorem 2.8 of [4] it suffices to show $Q \otimes_R R e$ is a Q protective. Now we have $0 \rightarrow R e \rightarrow Q$ exact and Q is flat over R, so $0 \rightarrow Q \otimes R e \rightarrow Q \otimes Q$ is exact. The isomorphism $Q \otimes Q \cong Q$ gives $Q \otimes R e \cong Q e$, and hence is Q projective.

Corollary. For any idempotent $e \in Q$, $R e \cap R$ is a summand of R.

Proof. The sequence $0 \rightarrow R e \cap R \rightarrow R \rightarrow R(1 - e) \rightarrow 0$ splits.

We can now prove Proposition 3 of [2] for regular FPF rings. If L is a left ideal of R, then L is essential in a summand $Q e$ of Q. Hence L is essential in $R e$, hence essential in $R e \cap R$, a summand of R.

References

Correction to

ON EQUISINGULAR FAMILIES OF ISOLATED SINGULARITIES

A. NOBILE

Volume 89 (1980), 151–161

Theorem 3.1 is incorrect. There are families of plane curves which are Zariski equisingular but do not satisfy condition \mathcal{E}. The error is in the proof of Lemma 3.5. In fact, as the example below shows, there are parametrized families of space curves, where the special fiber is not obtained by specializing the values of the parameters, but has embedded points. The arguments of the rest of the section are correct, and they give the following weaker result (we use the notations of the paper).

Theorem. Let $(X_o, 0)$ be a germ of a reduced plane curve, with the following property: there is a representative $\mathcal{V} = (\zeta, X_o, D_o, \sigma)$ of the versal μ-constant deformation of X_o such that for all $u \in D_o$, $f^{-1}(u)$ coincides with the H-transform of $\zeta^{-1}(u)$ where $Z^* \rightarrow X_o$ is the
Victor P. Camillo and Julius Martin Zelmanowitz, *Dimension modules* 249
Yonina S. Cooper, *Stable sequences in pre-abelian categories* 263
Chandrakant Mahadeorao Deo and H. Ship-Fah Wong, *On Berry-Esseen approximation and a functional LIL for a class of dependent random fields* ... 269
H. P. Dikshit and S. N. Dubey, |C, 1| summability of series associated with Fourier series ... 277
M. Edelstein, *On the homomorphic and isomorphic embeddings of a semiflow into a radial flow* ... 281
Gilles Godefroy, *Compacts de Rosenthal* .. 293
James Guyker, *Commuting hyponormal operators* 307
Thomas Eric Hall and Peter R. Jones, *On the lattice of varieties of bands of groups* ... 327
Taqdir Husain and Saleem H. Watson, *Topological algebras with orthogonal Schauder bases* ... 339
V. K. Jain, *Some expansions involving basic hypergeometric functions of two variables* ... 349
Joe W. Jenkins, *On group actions with nonzero fixed points* 363
Michael Ellsworth Mays, *Groups of square-free order are scarce* 373
Michael John McAsey, *Canonical models for invariant subspaces* 377
Peter A. McCoy, *Singularities of solutions to linear second order elliptic partial differential equations with analytic coefficients by approximation methods* ... 397
Terrence Millar, *Homogeneous models and decidability* 407
Stephen Carl Milne, *A multiple series transformation of the very well poised 2k+4Ψ2k+4* ... 419
Robert Olin and James E. Thomson, *Irreducible operators whose spectra are spectral sets* ... 431
Robert John Piacenza, *Cohomology of diagrams and equivariant singular theory* ... 435
Louis Jackson Ratliff, Jr., *Integrally closed ideals and asymptotic prime divisors* ... 445
Robert Breckenridge Warfield, Jr., *Cancellation of modules and groups and stable range of endomorphism rings* ... 457
B. J. Day, *Correction to: “Locale geometry”* ... 487
Stanley Stephen Page, *Correction to: “Regular FPF rings”* 487
Augusto Nobile, *Correction to: “On equisingular families of isolated singularities”* ... 489