CORRECTION TO: “ON EQUISINGULAR FAMILIES OF ISOLATED SINGULARITIES”

Augusto Nobile
Proof. By Theorem 2.8 of [4] it suffices to show \(Q \otimes_R R e \) is a Q protective. Now we have \(0 \to R e \to Q \) exact and Q is flat over R, so \(0 \to Q \otimes R e \to Q \otimes Q \) is exact. The isomorphism \(Q \otimes Q \cong Q \) gives \(Q \otimes R e \cong Q e \), and hence is Q projective.

COROLLARY. For any idempotent \(e \in Q \), \(R e \cap R \) is a summand of R.

Proof. The sequence \(0 \to R e \cap R \to R \to R(1 - e) \to 0 \) splits.

We can now prove Proposition 3 of [2] for regular FPF rings. If \(L \) is a left ideal of \(R \), then \(L \) is essential in a summand \(Q e \) of \(Q \). Hence \(L \) is essential in \(R e \), hence essential in \(R e \cap R \), a summand of \(R \).

REFERENCES

Correction to

ON EQUISINGULAR FAMILIES OF ISOLATED SINGULARITIES

A. NOBILE

Volume 89 (1980), 151–161

Theorem 3.1 is incorrect. There are families of plane curves which are Zariski equisingular but do not satisfy condition \(\mathcal{E} \). The error is in the proof of Lemma 3.5. In fact, as the example below shows, there are parametrized families of space curves, where the special fiber is not obtained by specializing the values of the parameters, but has embedded points. The arguments of the rest of the section are correct, and they give the following weaker result (we use the notations of the paper).

THEOREM. Let \((X_o, 0)\) be a germ of a reduced plane curve, with the following property: there is a representative \(\mathcal{Y} = (\zeta, X_\mu, D_\mu, \sigma) \) of the versal \(\mu \)-constant deformation of \(X_o \) such that for all \(u \in D_\mu \), \(f^{-1}(u) \) coincides with the \(H \)-transform of \(\zeta^{-1}(u) \) where \(Z^* \to X_\mu \) is the
H-transform of Y and \(f \) is the composition \(S \circ \pi \). Then, any deformation \((\rho, X, Y, s)\) of \(X_0 \) (with \(Y \) reduced) which is Zariski equisingular satisfies condition \(\mathcal{E} \).

Example. Consider the family of plane curves \(\mathcal{F} = (\rho, X, Y, \sigma) \) where \(X \subset \mathbb{C}^3 \) is given parametrically by \(x = t^3, y = t^7 + ut^8, u \in Y = \mathbb{C} \) and \(\rho, \sigma \) are projection and trivial section respectively. If \(f = 0 \) is an equation of \(X \), by using the relation \(f_x x' + f_y y' = 0 \) on \(X \) it is easy to verify that the \(H \)-transform \(Z \) of \(X \) is given parametrically (in \(\mathbb{C}^4 \)) by \(x = t^3, y = t^4 + ut^5, w = t^4 + (8/7)ut^5, u \in \mathbb{C} \). Hence \(\mathcal{O} = \mathcal{O}_{Z,0} \cong \mathbb{C}(t^3, t^4, ut^5) \) and \((q: Z \to Y \text{ being the canonical morphism and} \ Z_0 = q^{-1}(0)) \mathcal{O}_{Z_0,0} \cong \mathcal{O}(t^3, t^4ut^5)u\mathcal{C}(t^3, t^4, ut^5) \). But this local ring has depth zero: \(ut^5 \) induces a nonzero divisor \(b \in \mathcal{O}_{Z_0,0} \), such that \(b \cdot \max(\mathcal{O}_{Z_0,0}) = 0 \) (in fact, \(ut^5 \cdot t^5 = ut^8 = u(t^5)^2, ut^5 \cdot t^4 = u(t^5)^3, (ut^5)^2 = u^2(t^5)^2t^4 \), all these have image zero in \(\mathcal{O}_{Z_0,0} \)). Now the family \(\mathcal{F} \) is Zariski equisingular (all fibers have (3; 7) as characteristic) but it does not satisfy condition \(\mathcal{E} \); if it did, by Theorem 2.4 \(Z_0 \) should be the \(M \)-transform of \(X_0 \), in particular reduced.

Remark. For certain singularities of plane curves, Zariski equisingularity implies condition \(\mathcal{E} \cdot B \cdot g \). This is the case for families of germs of curves of characteristic \((n, n + 1)\). In this case the \(H \)-transform is nonsingular, and it is easy to verify our assertion. It would be interesting to characterize those characteristics for which both concepts agree.
PACIFIC JOURNAL OF MATHEMATICS

EDITORS

DONALD BABBITT (Managing Editor)
University of California
Los Angeles, CA 90024

J. DUGUNDJI
Department of Mathematics
University of Southern California
Los Angeles, CA 90007

HUGO ROSSI
University of Utah
Salt Lake City, UT 84112

R. FINN and J. MILGRAM
Stanford University
Stanford, CA 94305

C. C. MOORE and ANDREW OGG
University of California
Berkeley, CA 94720

ASSOCIATE EDITORS

E. F. BECKENBACH
B. H. NEUMANN
F. WOLF
K. YOSHIDA

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA
CALIFORNIA INSTITUTE OF TECHNOLOGY
UNIVERSITY OF CALIFORNIA
MONTANA STATE UNIVERSITY
UNIVERSITY OF NEVADA, RENO
NEW MEXICO STATE UNIVERSITY
OREGON STATE UNIVERSITY
UNIVERSITY OF OREGON

UNIVERSITY OF SOUTHERN CALIFORNIA
STANFORD UNIVERSITY
UNIVERSITY OF HAWAII
UNIVERSITY OF TOKYO
UNIVERSITY OF UTAH
WASHINGTON STATE UNIVERSITY
UNIVERSITY OF WASHINGTON

The Supporting Institutions listed above contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its content or policies.

Mathematical papers intended for publication in the Pacific Journal of Mathematics should be in typed form or offset-reproduced, (not dittoed), double spaced with large margins. Please do not use built up fractions in the text of the manuscript. However, you may use them in the displayed equations. Underline Greek letters in red, German in green, and script in blue. The first paragraph or two must be capable of being used separately as a synopsis of the entire paper. Please propose a heading for the odd numbered pages of less than 35 characters. Manuscripts, in triplicate, may be sent to any one of the editors. Please classify according to the scheme of Math. Reviews, Index to Vol. 39. Supply name and address of author to whom proofs should be sent. All other communications should be addressed to the managing editor, or Elaine Barth, University of California, Los Angeles, California, 90024.

50 reprints to each author are provided free for each article, only if page charges have been substantially paid. Additional copies may be obtained at cost in multiples of 50.

The Pacific Journal of Mathematics is issued monthly as of January 1966. Regular subscription rate: $84.00 a year (6 Vols., 12 issues). Special rate: $42.00 a year to individual members of supporting institutions.

Subscriptions, orders for numbers issued in the last three calendar years, and changes of address should be sent to Pacific Journal of Mathematics, P.O. Box 969, Carmel Valley, CA 93924, U.S.A. Old back numbers obtainable from Kraus Periodicals Co., Route 100, Millwood, NY 10546.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION

Printed at Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.).
8-8, 3-chome, Takadanobaba, Shinjuku-ku, Tokyo 160, Japan.

Copyright © 1980 by Pacific Journal of Mathematics
Manufactured and first issued in Japan
Pacific Journal of Mathematics
Vol. 91, No. 2 December, 1980

Victor P. Camillo and Julius Martin Zelmanowitz, *Dimension modules* 249
Yonina S. Cooper, *Stable sequences in pre-abelian categories* 263
Chandrakant Mahadeorao Deo and H. Ship-Fah Wong, *On Berry-Esseen approximation and a functional LIL for a class of dependent random fields* 269
M. Edelstein, *On the homomorphic and isomorphic embeddings of a semiflow into a radial flow* 281
Gilles Godefroy, *Compacts de Rosenthal* ... 293
James Guyker, *Commuting hyponormal operators* 307
Thomas Eric Hall and Peter R. Jones, *On the lattice of varieties of bands of groups* 327
V. K. Jain, *Some expansions involving basic hypergeometric functions of two variables* 349
Joe W. Jenkins, *On group actions with nonzero fixed points* 363
Michael Ellsworth Mays, *Groups of square-free order are scarce* 373
Michael John McAsey, *Canonical models for invariant subspaces* 377
Peter A. McCoy, *Singularities of solutions to linear second order elliptic partial differential equations with analytic coefficients by approximation methods* 397
Terrence Millar, *Homogeneous models and decidability* 407
Stephen Carl Milne, *A multiple series transformation of the very well poised 2k+4Ψ2k+4* 419
Robert Olin and James E. Thomson, *Irreducible operators whose spectra are spectral sets* 431
Robert John Piacenza, *Cohomology of diagrams and equivariant singular theory* 435
Louis Jackson Ratliff, Jr., *Integrally closed ideals and asymptotic prime divisors* 445
Robert Breckenridge Warfield, Jr., *Cancellation of modules and groups and stable range of endomorphism rings* 457
Stanley Stephen Page, *Correction to: “Regular FPF rings”* 487
Augusto Nobile, *Correction to: “On equisingular families of isolated singularities”* 489