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LATTICES WITH UNIQUE COMPLEMENTATION

M. E. ApDAMS AND J. SICHLER

R. P. Dilworth’s theorem that every lattice is a sublattice
of a uniquely complemented lattice is shown to hold in 2%
varieties of lattices.

1. Introduction. After E. V. Huntington [11], it was conjec-
tured that every uniquely complemented lattice was a distributive
lattice; since a uniquely complemented distributive lattice is a
Boolean lattice and every Boolean lattice is uniquely complemented,
the verification of such a conjecture would have provided a charae-
terization of Boolean lattices. For a uniquely complemented lattice
L, G. Birkhoff and J. von Neumann showed that if L is modular
or relatively complemented then L is distributive. Subsequently,
G. Birkhoff and M. Ward [4] showed that if L is complete, atomie,
and dually atomic then L is distributive. Further, R. P. Dilworth [6]
verified that if L is finite dimensional then it is distributive. Finally,
the conjecture was refuted in, the now famous paper, [7]; R. P.
Dilworth proved that every lattice is a sublattice of a uniquely
complemented lattice (see also C. C. Chen and G. Gratzer [5]). Since
then a number of other sufficient conditions for distributivity of a
uniquely complemented lattice have been discovered. For example,
if a uniquely complemented lattice I is either atomic (T. Ogasawara
and U. Sasaki [15], and J. E. McLaughlin [14]), algebraic (V. N.
Salii [17]), or if the function that sends ! e L to the unique comple-
ment of ! is order inverting (G. Birkhoff [3]), then L is dis-
tributive.

The lattices constructed by R. P. Dilworth in [7] contain the
free lattice on countably many generators as a sublattice. Hence,
in particular, any nontrivial lattice identity fails to hold in any of
Dilworth’s lattices. (By a nontrivial identity, we mean an identity
that does not follow from the lattice axioms.) A growing conjec-
ture has been that any uniquely complemented lattice that satisfies
a nontrivial lattice identity is distributive. In this connection (see
G. Griatzer [9]), R. Padmanabhan [16] has shown ‘that a uniquely
complemented lattice in the variety MV N,, or in the variety
generated by a finite lattice satisfying one of two implications
(namely, (SD,) or an implication due to E. Fried and G. Gritzer, [9]}
is distributive. However, we will show that this is not indicative
of the general situation; that is to say, we will show that there
are 2% varieties of lattices for which Dilworth’s theorem holds.
Thus, we will prove:
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THEOREM 1. There is a system 7° of 2% varieties of lattices
such that, for Ve 7; every LeV is a sublattice of a uniquely com-
plemented lattice L' e V.

Clearly, Theorem 1 refutes the aforementioned conjecture.
Choose a proper variety Ve 7 which is not the variety of distribu-
tive lattices. Let L€ V be a nondistributive lattice. By Theorem
1, the uniquely complemented lattice L’ satisfies a nontrivial lattice
identity (since L’e€ V) and is a nondistributive lattice (since L is a
sublattice of L/).

In fact, rather than proving Theorem 1, we will prove the
following stronger result:

THEOREM 2. There is a system 7" of 2% varieties of lattices such
that, for Ve 7; i+f LeV is a (0, 1)-lattice, each element of which
has at most one complement, then L is a (0, 1)-sublattice of a uni-
quely completed (0, 1)-lattice L' e V.

Since, for example, G. Birkhoff and J. von Neumann have shown
that every uniquely complemented modular lattice is distributive, it
follows that not every lattice satisfying a nontrivial identity can
be embedded in a uniquely complemented lattice that satisfies the
same nontrivial identity. However, we will show that every lattice
L that satisfies a nontrivial identity is a sublattice of a uniquely
complemented lattice L’ that satisfies a (not necessarily the same)
nontrivial identity. Furthermore, the construction presented is such
that if L is a locally finite lattice then L’ is also a locally finite
lattice. (A lattice is called locally finite if every finite subset
generates a finite sublattice.) Thus, we prove:

THEOREM 3. FEwery lattice L that satisfies a non-trivial identity
I is a sublattice of a uniquely complemented lattice L’ that satisfies
a (not mecessarily the same) montrivial identity I'. Moreover, if
L is a locally finite lattice then L' may also be chosen to be a locally
Jinite lattice.

We remark that, since the free lattice on three generators is
infinite, none of Dilworth’s lattices are locally finite. Moreover,
every variety Ve 7" referred to above contains the variety of modular
lattices as a subvariety and, as such, is not a locally finite variety.
(A variety of lattices is locally finite if every lattice in the variety
is locally finite.)

Once again we will, in fact, prove a stronger result:
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THEOREM 4. Let L be a (0, 1)-lattice each element of which has
at most one complement. If L satisfies a nontrivial identity I then
L is a (0, 1)-sublattice of a unmiquely complemented (0, 1)-lattice L’
that satisfies a (not mecessarily the same) montrivial identity I'.
Furthermore, if L is a locally finite lattice then L' may also be chosen
to be a locally finite lattice.

We remark that the proofs of the above theorems yield an
essentially new method of constructing nondistributive uniquely
complemented lattices.

For all lattice theoretic terms not defined here the reader is
referred to G. Gratzer [9]. (We observe that, in particular, Theorem
1 provides a solution to several of the research problems stated in
[9])

We would like to acknowledge fruitful discussions with G. Gratzer
and to thank J. Berman and A. Day for their comments concerning
our earlier version of this article.

2. Preliminaries. Let & denote the finite lattice of Figure 1.
Further, let &4, denote the partial lattice (see Figure 2) obtained
from the lattice & by excluding its least element and its greatest
element.

Lo

FIGURE 1 FIGURE 2

A bounded lattice is a lattice with a least element 0 and a
greatest element 1. A bounded lattice in which the zero and unit
elements are considered as distinguished elements is called a (0, 1)-
lattice.

For an arbitrary (0, 1)-lattice K, <°(K) denotes the lattice
obtained by inserting the lattice K in the interval [z, y] of & (see
Figure 3). Formally, let < be a relation defined on & U (K\{0, 1})
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by the following:

(i) For a,be <%, a <b if and only if ¢ < b in <

(ii) For a,be K\{0, 1}, a =< b if and only if ¢ < b in K,

(iii) For a e K\{0,1}, 2 < a < ¥.
(K) is the lattice whose order relation is the transitive closure
of . Let &(K) denote the partial lattice obtained from the
lattice 2 (K) by excluding its least element and its greatest element
(see Figure 4). Observe that, in our notation, < and .&©, are < (2)
and .&,(2), respectively, where 2 denotes the two-element chain.

FIGURE 3 FI1GURE 4

LEMMA 5. If, for any (0, 1)-lattice K, <%,(K) 1s a relative sub-
lattice of a lattice L then the sublattice of L generated by <, (K)
18 1somorphic to LK (K).

Proof. The undefined joins of Z(K) are w Vv, wV (¥ V v),
(wVy)Vo,and (uVy)V(y Vo). Observethat u VouV(y Vo)
Vy)VyVe) and uVr=wVy) Ve=(uVy)V(y\Vv) must hold in any
lattice containing <7,(K). However, u Vo =(u Ax)V (& A V) = 2.
Thus, u Vo=@V 2 VEVY)=wVYyVHVv). Hence, the join
of each pair of elements of &,(K) that is undefined in equal to
(wV YV V), the largest element of the sublattice of L
generated by <, (K). A dual argument shows that the meet of
each pair of elements of &~,(K) that is undefined is equal to (wAz) A
(x A\ v), the smallest element of the sublattice generated by &,(K)
in L. It follows that the sublattice of L generated by &,(K) is
isomorphic to &(K). Thus, the proof of Lemma 5 is complete.

Let I be a lattice identity in % variables. Then I is of the
form p(Y,, ***, Ynr) = @Yo, **+, Yu—1), Where p, q are polynomial
symbols and, for ¢ < m, ¥, is a variable. For i < n, let

y: = (yz V ((L’o A (xx \Y 0(/'2)) V (wl VAN (xo \Y xz)))
A @ V(@ A (@ V) A @ V(@ A @ V) .
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I’ will denote the lattice identity p(ys, ---, ¥no) = @Ws, ++*, Ynr)-
Observe that I’ is an identity in % + 3 variables (namely, 2z, x,, @,
and y,, for ¢ < m).

Before proceeding to the next lemma some motivation of the
definition I’ is in order.

For a lattice L, let x,, x, x,€ L. Eight elements of the lattice
L will be specified and then shown, under the assumption that a
certain pair of them are distinct, to form a relative sublattice of
L isomorphic to &,. Consider the elements x, x, x, A (X, V %),
2, N (2, V x,), o V (X, A (2 V %2))y X1 V (% A (2, V 22)), (@ A (0, V 2,)) V
(0, A\ (2 V 35)), and (0, V (@, A (@ V @) A (@ V (@ A (2 V 7). (It
will be shown that these elements correspond to the elements u, v,
wuANx, AV, VY YV, xand y of &, respectively.) Suppose
that (x, A (@, V 2,)) V (@, A (@ V %)) and (@, V (@ A (2 V 2))) A (@, V
(x, A\ (2, V 2,))) are distinet elements of L (see the definition of I').
Certainly, o, A (0, V ) S 2, S 2, V (X, A (8, V 2,) and x, A (&6, V %) =
x =Za V(@ A (@ V). Further, since z, A (x, V 2,) <2, V (2, A
(@, V) and o, A (2, V 2,) 2, V (2, A (2, V 2,), it follows that
@ A @, V) V@A@YV r) =@V @A@YV ) A @V @A
(x, V x,))). Hence, in order to show that the elements listed form
a relative sublattice of L isomorphic to &7, it is sufficient to show
that the elements are distinct, the meet of #, and z, V (2, A (x, V 2.)
is equal to z, A (¢, VV %,), and, equivalently, the meet of x, and x, VV
(2, A (x, V 2,)) is equal to =, A (x, V 2,). Consider the meet of x, and
z, V (@, A (@, V @,)). Clearly, z, A (&, V 2,) < 2, V (&, A (2, V 2,)) and,
hence, 2z, A (&, V 2,) < 2, A (2, V (@, A (2, V 2,))). Moreover, =z, V
(@, A\ (0, V 25)) < o, V 2, and, whence, 2, A (@, V (@ A (2, V ) =
o A (& V 2,). Thus, x, A (@, V (2, A (@, V 2,))) = 2 A (2, V 2,); that
is to say, the meet of z, and =z, V (x, A (x, V %,)) is equal to z, A
(2, V z,). It remains, therefore, to show that these eight elements
are distinct; however, it is easily verified that if any two of the
above elements are equal then it follows, contrary to assumption,
that (x, A (., V 2,)) V (2, A (&, V 2,)) is equal to (2, V (&, A (z, V 2.))) A
(, V (2, A (¢, V 2,))). In conclusion, L has a relative sublattice
isomorphic to &~,.

LEMMA 6. Let L be a lattice and I a lattice identity. Then L
satisfies the lattice identity I' if and only if whenever £ (K), for
any bounded lattice K, is a sublattice of L them K satisfies the
identity I.

Proof. Let L be a lattice such that whenever &(K), for any
bounded lattice K, is a sublattice of L then K satisfies the identity
I. It will be shown that L satisfies the identity I’.
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Consider a substitution in L for the variables x,, z,, «,, and ¥,,
for 7 < m.

If the elements (2, A (2, V 2,) V (&, A (@ V @,) and (z, V (x, A
(@ V&) A (2, V (2 A (2, V @,))) are equal, then y; = y; for all 4, j < m.
Hence, p(yo, * ) Yu-) = @, ***, Yuy).

Assume, therefore, that (x, A (2, V 2,) V (&, A (2, V 2,)) and
(@ V (@, A (0, V 2))) A (8, V (2 A (2, V @,) are distinet. By the
remarks preceding the lemma, L has a relative sublattice isomorphic
to 4,. Thus, by Lemma 5, there is an embedding +: & — L such
that y(x) = (@, A (1 V 22)) V (@, A (% V 2,)) and 4(y) = (2, V (€, A
(%, V 2)) A (2, V (@ A (2, V 2,))). By definition, for 7 <mn, y; is an
element of the interval [y(x), v(y)]. By hypothesis, the interval
[v(x), v(y)] satisfies the identity I; that is to say, p(¥:, -+, Yn_t) =
a(Yo, ** 5 Yno)-

Either way, it follows that L satisfies the identity I'.

To prove the converse, suppose, to the contrary, that L satisfies
the identity I’ and, for some bounded lattice K that fails to satisfy
the identity I, there exists an isomorphism «: & (K)— L. Thus, by
assumption, there exist, for 7+ < m, elements y, of the interval [(z),
y(@)] in L, such that p(y, -+, Yu-s) # q¥s, -+, Yur). Consider the
substitution r(u), +(®), ¥(y) for x, x,, x,, respectively. It is easily
checked that (2) = (2 A (@, V 23)) V (@, A (2 V 2,)) and ¥(y) = (@, V
(2, A (o V 2))) A (2, V (2 A (2, V 2,))). Henece, in this instance,
Y, = ¥yi, for © <m. Thus, p(ys, -+, Yn_t) # @5, -+, Yu_y); that is to
say, since L satisfies I’, the above assumption leads to a contradic-
tion. The proof of the lemma is complete.

A substantial part of the preceding lemma shows, in essence,
that & is a finite subdirectly irreducible projective lattice; in other
words, & is a splitting lattice. This is a known result due to R.
McKenzie [13] (see also B. Jonsson and J. B. Nation [12]). Since .&¥
is a splitting lattice the collection of those lattices .9 that do not
contain & as a sublattice is closed under the operations H, S, P.
Thus, HSP( %) = %" that is to say, .%  is a variety. This variety
has also been studied in E. Gedeonova [8], where such lattices are
called p-modular. The conversion, presented here, of one identity
to another is a generalization of a transformation (using the eritical
edge of a five element non-modular lattice) due to G. Gratzer and
D. Kelly (unpublished)—see also R. McKenzie [13].

For a variety of lattices V let _# denote the collection of all
those identities that are satisfied in V. Let V’ denote the variety
of lattices defined by the identities {I': e _#}.

LEMMA 7. Let L be a bounded lattice and V a variety of
lattices. Then Le V if and only if L (L)e V.
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Proof. If Lg V then there exists an identity Ie.# such that
L does not satisfy I. That is to say, there exist, for 1 <mn, y,eL
such that p(%,, -+, Yu1) # @Yy, +* -, Yu_). Consider the substitution
u, v, y for x,, x,, x,, respectively, in < (L). It is easily seen that
Yoy -y Ynr) Fq(Yo, **+, Yuy); Iin other words, <“(L) fails to satisfy
the identity I’. Hence, &£ (L)g V.

It remains to show that L € V implies <~ (L)€ V’. Observe that,
since Le V, L satisfies I, for all Ie.Z Consider the identity I’,
for some Ie..“~ By Lemma 6, (L) satisfies I’ if the existence of
an embedding «: £ (K) — £ (L), for any bounded lattice K, always
implies that K satisfies the identity I. However, since 4 is one-to-
one, both (x) and (y) are elements of L. Thus, K is isomorphic
to a sublattice of L and, therefore, satisfies I. Hence, (L) satisfies
I', for all Ie_#, whence, <©(L)e V'. The proof is complete.

COROLLARY 8. If lattice varieties V., V, are distinct, then V,,
V; are distinct.

Proof. With no loss of generality, choose L€ V,\V,. Since the
lattice obtained by adding a new zero and a new unit to the lattice
L is also an element of V,\V,, it may be assumed that L is bounded.
By Lemma 7, &< (L)e V\V,.

We now proceed to the main section of the paper. The construc-
tions presented will be closely related to those in [1] and [2] (see
also [10]); however, the proofs will be direct.

3. The main result. In order to deduce the theorems of §1,
we will prove the following:

THEOREM 9. Let L be a (0, V)-lattice for which each element has
at most one complement. Then there exists a (0, 1)-lattice L+ such
that

(i) L is isomorphic to a (0, 1)-sublattice of L™,

(ii) If aeL then a has a complement in L™,

(iii) If aeL* then a has at most one complement in L+,

(iv) For a lattice identity I, if L satisfies I' then L* satisfies
r,

(v) If L is locally finite then L* is also locally finite.

We remark, as will become apparent from the construction, that
if L is a finite lattice then L+ will also be finite and if L is an
infinite lattice then L and L* will have the same cardinality.

To describe the lattice Lt associated with a given lattice L,
some definitions and notation are necessary.



8 M. E. ADAMS AND J. SICHLER

Let S & L be the set of all elements of L with no complements
in L. Clearly, 0¢S and thus 7' = S U {0} is a disjoint union. For
seS,let L, =C = {0, %, 1} be a three-element chain; set L, = L and
consider the lower direct product I7.(L,:teT), i.e., the sublattice
of the direct product I7I(L,.teT) of those sequences p for which
p@) = 0 for all but finitely many ¢te 7. Similarly, let I*(L,:te T)
denote the upper weak direct product, in other words, the set of
all elements qelI(L,;teT) such that ¢q(¢) =1 for all but finitely
many teT.

For seS, let p,ell (L,:teT) denote the element for which
2,0) =8, p.(8) =2, and p,(¢t) =0 for all te T\{0, s}; similarly, let
q.€IllI*(L,:teT) be defined by ¢,(0) = s, ¢q,(s) =z, and g¢,(¢) =1 for
t e T\{0, s}.

Let R, & I (L,:tcT) consist of all those p for which at least
one of the following holds:

(1) op@) =1 for some teT,

(ii) p = p, for some seS.

Similarly, let R* & [T*(L,:t € T) be the set of all those sequences g
that satisfy one of the conditions below:

(i) q() =0 for some teT,

(ii) q = q, for some s€S.

Let I', denote the bounded lattice obtained by adding a new
unit 1 to the poset I7.(L, te T)\R,; the zero of I', is the constant
sequence 0 defined by 0(t) = 0 for all ¢t T. Further, I'* will denote
the bounded lattice derived by adding a new zero 0 to II*(L,:
te T)\R*. The unit 1 of I'* is the constant sequence with 1(¢f) =1
for all teT. For aeL\{0, 1} define @,.(a)cl’, as the sequence whose
only nonzero value is ¢ = [@,(a)](0); set ®,.(0) =0 and ¢, (1) =1. If
seS, let s,el', be the sequence whose only nonzero value is z =
s.(s). Analogously, for aeL\{0,1} let @*(a)el* be given by
[*(@)}(0) = a, [®*(@)](s) = 1 for all seS; set *(0) = 0 and *(1) = 1.
Similarly to the above, s* € I'* is the sequence defined by s*(s) = =,
s*(t) = 1 for te T\{s}.

The lattice L* can now be defined as the sublattice of I' =
I', x I'* generated by all pairs (@.(a), »*(a)) for acL, by all
elements (s, s*) with seS, and by (0,1). It is easy to see that
(0,0) and (1,1) are the least and the largest element of L*, re-
spectively.

Clearly, #, and ®* are one-to-one (0, 1)-homomorphisms of L
into the lattices I',, and I'*, respectively. The one-to-one homomor-
phism @: L — L* defined by @(a) = (@.(a), #*(a)) yields the following
claim.

LEMMA 10. L s isomorphic to a (0, 1)-sublattice of L.
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If {a,b} S L is a complemented pair, then, by Lemma 10,
{p(a), p(b)} S L+ is a complemented pair as well. If seL lacks a
complement, then s S, and @.(s) V s, =11in I', since @,(s) V 8, = 0,
holds in I7,(L,:teT) and p,c R,. Moreover, it is clear that @*(s) V
s*=1in I'*. Thus P(s) V (84, 8%) = (P«(s), P*(8)) V (84, %) = (1, 1)
in L*. Similarly, @(s) A (s, 8%) = (Ps(8) A 84, P*(s) A s¥) = (0, 0)
because P*(s) A s* < q,c R*. Hence @(s) has a complement (s,, s*)
in L*. Where convenient, L will be identified with its isomorphic
copy determined by @ in L*. Following is a consequence of these
remarks.

LEMMA 11. Ewery a €L has a complement in L*.

It remains to be shown that all complemented pairs of L* have
been accounted for.

LevMMmA 12. If (p, q)eL*, then at least one of the following
hold:

(i) (@, @) = (P«(a), *(b)) for some a < b in L\{0, 1},

(ii) (p, @) = (84, 8¥) for some se8S,

(iii) » =0 or g = 1.

Proof. By definition, all generators of L* satisfy the claim of
the lemma. We proceed, therefore, inductively by the polynomial
rank of an element of L*; thus, we assume that (p,q), (u, v)eL*
satisfy the conclusion of the lemma and show that (p, ) A (4, v)
satisfy one of the conditions (i), (ii), or (iii). The inductive step for
(p, @) V (u, v) is dual to that presented below and is, therefore,
omitted.

Two observations are useful. First that, for every uwelrl,,
% A 84(a) > 0 implies u = s,. Furthermore, if ue",\{1}, then u A
@,(a) >0 yields u(0) Aa >0 in L; hence u(0) = ce L\{0} and u A
Pu(@) = Pyle N a).

Let (4, B) = (p, 9) A (4, v), and assume the lemma to be valid
for (p, q) and (w, v). Thus, in particular, ¥ = 1 implies » = 1 and
the case # = 1 need not be considered.

If (p, @) = (P«(a), #*(b)) falls under (i), then (A4, B) satisfies (iii)
unless @,(a) A u>0. It follows that @.(a) A u = @, (a Ae);if v =1,
then (4, B) = (@.(a A ¢), *(b)) satisfies (i). If v <1, then, by the
induction hypothesis, (u, v) = (P.(c), *(d)) satisfies the condition (i)
and (4, B) = (p.(a A ¢), *(b A d)) is an element of type (i).

Secondly, let (v, @) = (s, s*) for some seS. If s, A =0, then
(A, B) satisfies (iii); for s, A v >0 we obtain u = s, and, by the
induction hypothesis, » =1 or (u, v) = (s4, s*). In either case,



10 M. E. ADAMS AND J. SICHLER

(4, B) = (s4, s*) satisfies (ii).

If p =0, then (4, B) = (0,qg A v) is described by (iii). Hence
g =1 and (4, B) = (p A\ u,v) falls under (iii) unless » A v > 0 and
v < 1. By the inductive hypothesis, it follows that either (u, v) =
(84, s*) for some s€ S, or (u, v) = (P.(a), #*(b)) must satisfy (i). The
above arguments, applied to (u, v) this time, complete the proof of
the lemma.

LEMMA 13. Ewery (p, q) € L* has at most one complement in L+.

Proof. If (w,w) is a complement of (p, 1), then » A w = 0 and
v=0. Lemma 12 yields w = 0 and this, in turn, implies p = 1.
Arguing dually for (0, ¢), we conclude that (0, 0) and (1, 1) form the
only complemented pair of L* involving at least one element satisfy-
ing (iii). From now on, we may assume that wel',\{0,1} and ve
r+\{0, 1}.

Let (4, v) be a complement of (p, @) = (s4, s*) for se€S. Observe
that % A s, =0 1implies u(s) =0; hence (uV s,)(s) =, and
(u V 8,)(&) = u(t) for t € T\{s}. Since u V s, = 1, the sequence u V s,
considered as an element of I7.(L,:teT), belongs to R,. Hence
U\ s, = p, for some tcS, since (u Vs,)({¢) <1 for all teT. If
t # s, then u(0) = (u V 8,)(0) = ¢ and u(t) = (u V 8,)(t) = x and these
imply w = 9o, in M, (L,:teT); thus v =1 in I',—a contradiction.
Hence u V s, = v, and, in particular, 1 > u(0) =a =s >0 in L. By
Lemma 12, (u, v) = (@4(a), P*(b)) for some b = a in L. On the other
hand, @*(d) A s* = 0 yields @*(®) A s* < q, in I*(L,;: te T); that is,
b = (@*() A s*)(0) = q,(0) =s. Altogether, o =b = s; thus @(s) =
(@.(s), *(s)) is the only complement of (s, s*) in L*.

Let (u, v) be a complement of (p, ¢) = (P.(a), P*(b)) with a <b
in L\{0, 1}. If (u, v) = (P4(c), #*(d)) and ¢ < d, then {a, ¢} and {b, d}
are complemented pairs of L. However, o < b and ¢ < d imply that
{b, ¢} and {a, d} are complemented pairs. Since every element of L
has at most one complement, we conclude a =b, ¢ =d. Thus
(u, v) = @(¢) and (p, q) = P(a), where ¢ is the unique complement of
ain L. If (u, v) = (s, s*), for some s€ S, is a complement of (p, q)
then—as shown above—(p, q) = @(s); in particular, (p, ¢) has no com-
plements in L. By Lemma 13 and from the previous arguments it
follows that all complements of @(s) must satisfy (ii); thus, any such
complement is the form (¢,, t*) for some teS. However, since @(t)
is the only complement of (¢,, t*) satisfying (i), we conclude that
s =t. Thus every element of type (i) has at most one complement
in L+,

LEMMA 14. Let K be a bounded lattice. If £ (K) s isomorphic
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to a sublattice of I'y, or I'*, then £ (K) is isomorphic to a sublattice
of L.

Proof. Suppose that . (K) is isomorphic to a sublattice of I',.
Recall that I', = (IT (Lt e T)\R,)U{1}; hence, &, (K) is isomorphic
to a relative sublattice of 7. (L,;teT). By Lemma 5, &(K) is
isomorphic to a sublattice of 7, (I,:te T). For seS, L, is a three-
element chain. Whence, the subdirectly irreducible lattice & is
isomorphic to a sublattice of L, = L. In particular, 2(0) # %(0) and,
for s€ S, x(s) = y(s). Thus, for p, g € &, p(0) # q(0). Furthermore,
it follows that if p, ¢ € K, then p(s) = q(s) for all s € S; hence p(0) #
q(0) and <(K) is isomorphic to a sublattice of L, = L. A dual
argument shows that if &2(K) is isomorphic to a sublattice of I'*
then &(K) is isomorphic to a sublattice of L, = L.

LeMMA 15, For o lattice identity I, if L satisfies I' then L+
also satisfies I'.

Proof. Let L satisfy the identity I’. Since L+ is a sublattice of
I, it is sufficient to show that I', and I'* satisfy the identity I’. By
Lemma 6, I', satisfies I’ if whenever, for any bounded lattice K,
SA(K) is a sublattice of I', then K satisfies the identity I. By
Lemma 14, if &2(K) is a sublattice of I', then &°(K) is isomorphic
to a sublattice of L. Since L satisfies I’, it follows, again by
Lemma 6, that K satisfies I. Hence, I', satisfies I'. A dual argu-
ment shows that I'* also satisfies the identity I’.

LEMMA 16. If L is locally finite then L* is locally finite.

Proof. Let L be a locally finite lattice. Since the direct product
of two locally finite lattices is locally finite, in order to show that
L~ is loeally finite it is sufficient to show that I', and I'* are locally
finite. Choose a finite subset of I', = (Il (L,: t e T\R,)U{1}. Clearly,
the sublattice generated is a subset of the sublattice of I/ (L,:teT)
generated by those elements together with the element 1. Since
L, = L is a locally finite lattice and, for se¢ S, L, is a three-element
chain, the sublattice generated in I7,.(L, teT) is finite. Thus, I,
is locally finite; by a dual argument, I'* is also locally finite.

Lemmas 10, 11, 13, 15, and 16 combine to prove Theorem 9.

4, The proof of Theorems 2 and 4. Let L be a (0, 1)-lattice,
each element of which has at most one complement. By Theorem
9, L is a (0, 1)-sublattice of a lattice L+* such that every element of
L has a complement in L*, yet every element of L* has at most
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one complement. Let L, = L and inductively define, for »n < w,
L., = L,)*. Let L' = U(L,:new). Clearly, L is a (0, 1)-sublattice
of L', and L’ is uniquely complemented.

Let 7” denote the set of all those varieties V' associated with
a lattice variety V. Let V'e # Then Le V' if and only if L
satisfies I’ for every identity I holding in V. By Theorem 9, if L
satisfies I' then L+ satisfies I'. Therefore, arguing inductively for
n < w, L, also satisfies I’. Since any finite subset of L’ is contained
in L, for some N < w, it follows that L’ also satisfies the identity
I'. Thus, for We 7; if Le W then L’e W. Furthermore, since
there are 2% varieties of lattices it follows, by Corollary 8, that
the cardinality of 7" is 2%, The proof of Theorem 2 is complete.
We remark that 7° has a smallest element: the variety associated
with the splitting lattice &~

Let L satisfy a nontrivial identity I. Then, by Lemma 6, L
also satisfies the identity I’. By Corollary 8, I’ is also a non-trivial
identity. Thus, arguing as above, L' also satisfies the nontrivial
lattice identity I'. Moreover, if L is locally finite it follows, by
Theorem 9, that L, is locally finite, for » < w. Observe, once more,
that any finite subset of L’ is contained in L, for some N < w.
Hence, L' is locally finite. Whence, Theorem 4 has been verified.

5. Concluding remarks. A number of questions arise naturally
from the above. The most obvious one, although possibly rather
ridiculous question, is to ask for a characterization of those varieties
V for which Theorem 1 is valid. A more realistic problem is to
ask whether there exists a locally finite variety for which Theorem
1 holds.

In conclusion, it should be pointed out that Theorems 2 and 4
can be generalized (see C. C. Chen and G. Gratzer [5]), using the
method presented here to the following:

THEOREM 17. There exist 2% wvarieties of lattices 7 such that,
Jor Ve7 and every cardinal o = 1, if Le V is a (0, 1)-lattice, each
element of which has =a distinct complements, there is a lattice
L,eV containing L as a (0, 1)-sublattice and such that every element
of L) has exactly a distinet complements.

THEOREM 18. Let L be a (0, 1)-lattice each element of which has
=a distinct complements, where a 18 a cardinal such that o = 1.
If L satisfies a nontrivial identity I thew L is a (0, 1)-sublattice
of a lattice L. such that every element of L. has exactly a distinct
complements and L, satisfies a (not necessarily the same) nontrivial
lattice identity I’
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