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DuNcAN A. BUELL, PHILIP A. LEONARD AND
KENNETH S. WILLIAMS

Results are obtained concerning evaluations of the quad-
ratic character of real quadratic units of norm —1.

1. Introduction. Let m be a positive squarefree integer, and
let ¢, denote the fundamental integral unit of the real quadratic field
Q(V'm), so that ¢, = T +UV'm with positive integers T and U.
Throughout, it is assumed that ¢, has norm —1, so that m =1,5
or 2(mod 8), and all odd primes ¢ dividing m satisfy ¢ = 1(mod 4).
A number of recent papers ([1] — [3], [7], [9]-[12], [14], [16], [17])
have computed the quadratic character of such g, modulo a rational
prime p, in terms of representations of a power of » by positive-
definite binary quadratic forms of a certain discriminant associated
with m. In this note we prove a result which, among other things,
identifies the correct form-discriminant for evaluations of this type.
A number of illustrations will be given in §3 and §4, after the.
proof in §2 of the following theorem.

THEOREM. Let f =1,2 or 4 according as m = 1,5 or 2(mod 8).
Let G denote the group of primitive positive-definite binary quadratic
Jorms of discriminant —4dmf:. Then G contains a subgroup H such
that

(i) G/H 1is eyclic of order 4,
and

(ii) the prime p satisfies (—1/p) = (m/p) = (€./p) =1 if and
only if p is represented by a form from a class in H.

Before proving this result, we note that an analysis of the
equation T* + 1 = mU? in the ring of Gaussian integers gives the
following result.

LeMMA. There exist integers A, B, C, D such that 1 + Ti =
(A + Bi)(C + Di)*, m = A* + B*, A=1(mod 4), and B=0, 2 or T(mod 4)
according as m = 1,5 or 2(mod8). (Note:C — 1= D = 0 (mod 2)).

2. Proof of the theorem. The splitting field, over @, of the
polynomial #* — 2T%* —1 is M = Q(3, V'm, V'¢,), which is dihedral
over @, and cyclic of degree 4 over K = Q(VV'—m). The primes p
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satisfying (—1/p) = (m/p) = (¢./p) = 1 are precisely those which split
completely in M. It follows (see [4], especially Satz 8, proof of
sufficiency) that, for the positive integer f such that (f) is the
conductor of the abelian extension M/K, the group G of classes of
forms of discriminant —4mf* has a subgroup H with the properties
given in the theorem. It remains to show that f =1,2 or 4 ac-
cording as m =1,5 or 2(mod8). Besides M and K, we shall require
L = Q(Ve, — V'el) and its subfield & = Q(¢). For an abelian extension
EJ/F of number fields, we let d(E/F') denote the relative diseriminant,
F(EJF) denote the finite part of the conductor, and Ny, ,.(I) the re-
lative norm of the ideal I of E. Then from the work of Halter-Koch

([5], Satz 7) f(M/K) = (f) for a positive integer f. Moreover ([5],
Satz 24, (2')), we have

(2.1) Ad(L/Q) = d(K/Q)d(k/@){f(M/K)} = 16 mf* .
On the other hand (see, for example, [13], p. 148), we have
(2.2) A(L/Q) = {d(k/Q)F Ny1o(d(L[k)) = 16N,o(d(L/k)) .

Finally, as (e, — Vel ) = (1 — i)XA + Bi)(C + Di)* by the lemma,
we have L = Q(i, VA + Bi). Hence, by direct calculation (or see [8],
p. 149), we obtain

(2.3) d(L/k) = 2°(A + Bi),

where ¢ = 0,1 or 2 according as m =1,5 or 2(mod8). Appealing
to (2.1), (2.2), (2.83) we obtain the evaluation of f stated above.

3. A numerical example. We illustrate the theorem by calcu-
lating the subgroup H for the case m = 226. As 226 = 2(mod 8),
the theorem tells us that the correct diseriminant is —128.113. The
group G is of order 32, and its structure is C(8)-C(4). The 32 classes
can be represented by computing the primitive reduced forms of this
discriminant. In order for » to be represented by a class from H, p
must satisfy (—1/p) = (226/p) = +1, so by genus theory only 16 of
these forms must be examined. By considering primes represented
by these farms, and by appealing to the theorem, we find that H is
made up of the principal class, together with the classes of the forms
[5, =4, 724], [29, +6, 125], [32, 0, 113] and [25, +6, 145]. Since H
contains only two ambiguous classes, H is cyclic of order 8, and G/H
is eyelic of order 4, as indicated by the theorem.

4. Conclusion. It is difficult to give H explicitly in general.
In spite of this, we can make the theorem explicit in several cases,
by considering primitive representations of powers of p by ambiguous
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classes.

Sometimes this is possible when G has a particular structure.
For example, if m = q.q, - - - ¢, = 1(mod 8), N(¢,,) = —1 and the 2-Sylow
subgroup of G is of the type C(2")-C(2)* with t=2. G*is the princi-
pal genus in G, so that [G: G*] = 2" and G* has a unique subgroup of
index 2. This subgroup must be H N G?, for otherwise H N G* = G°,
implying G* £ H which contradicts the fact that G/H is cyclic of
order 4. Thus H N G* has order I = h/2"+', where h denotes the class-
number of Q1 —m), and consists of those classes C in G? such that
C' is the principal class. A prime p satisfying (—1/p) = (¢./p)=---=
(q./p) = -+ 1 is represented by a class from G® This class lies in H
if and only if p' is represented by the prinecipal class. Therefore,
by the theorem, (e¢,/p) = +1 if and only if »'= a* + my’. This
result is due to Parry [14] when » = 1. When » = 2, a large class
of examples is provided by choosing m = ¢q.q, -+ - ¢q,, where r» = 2 or
r is odd, each ¢, = 1(mod 8), and (g,/q;,) = —1 when ¢ % 7, since in
this situation ¢, has norm —1 [15] and the 2-Sylow subgroup is of
the required type [6].

Another example is provided by choosing m = ¢.q, - -- ¢,, Where
7 is odd, each ¢, = 5(mod 8) and (¢,/¢;) = —1 when 4=~ j. Again ¢, has
norm —1 [15] and the 2-Sylow subgroup of the group of form-classes
of diseriminant —4m has the structure C(2)". Thus the 2-Sylow
subgroup of G has the structure C(4)-C(2)", as going from discri-
minant —4m to discriminant —16m doubles the number of classes
but introduces no new genera. The “principal genus case” then
follows exactly as in the previous example. The remaining cases in
this example are covered by a result of Kaplan and Williams [7].
With h as in the previous paragraph, we set I’ = h/27, so that I’ is
odd. If p satisfies (—1/p) = (m/p) = +1 then " is represented by an
ambiguous class, and so p*" = Qx* + Q'y’, where QQ' = m, @ = 1(mod 8)
and @' = 5(mod 8). Then [7] (e,/p) = +1 if and only if % is even.
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