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The space of polynomials in N variables spanned by square-
free monomials of degree r and annihilated by Σ?=ιd/dXi fur-
nishes an irreducible representation of SN, the symmetric
group on N objects. The elements of this space, which are in-
variant under permutations leaving the sets {xu •••, xa} and
{xa+u •••> Xa+b} (a + b < N) fixed, correspond to solutions of a
linear difference equation in two variables. By using ideas of
representation theory, orthogonal bases for the space of solu-
tions can be obtained. They are certain families of Hahn
polynomials in two variables. When these polynomials are
restricted to appropriate subsets of RN

9 general Hahn poly-
nomials in two variables (defined by Earlin and McGregor for
the study of populations with various types) are obtained.
Further the group theory shows there are three orthogonal
bases for the space of solutions of the difference equation,
and the connection coefficients between different bases turn
out to be balanced 4F3-sums, related to Racah's 6 — j symbols
and Wilson's four-parameter orthogonal polynomials.

The condition for invariant polynomials to be in an irreducible

representation gives rise to a difference equation for functions of

two discrete variables, which is

( 0 (x - a)f(x + lfy) + (y- b)f(x, y + 1)

= (c — r + 1 + x + y)f(x, y) ,

where a, b, c, r are nonnegative integers, a + 6 + c = N, and / is

defined on

0<^x<.a, 0 ^ 7/<: 6 , r — e ^ x + y ^ r .

By using two stages of decomposition of the representation one can

find a basis of solutions for (0.1) which is orthogonal with respect

to the weight ( ; χ » χ r _ ; _ „ ) .

1* Outline and notation* In §2 we describe the appropriate
representations of the symmetric group and the invariant vectors
in them, and derive the difference equation (0.1) and some elementary
solutions. The branching theorem for the symmetric groups is used
to find the dimension of the space of solutions. Orthogonality rela-
tions coming from the Peter-Weyl theorem are found in §3. The
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relevant properties of Hahn polynomials (in one variable) are also
stated therein, and then used to find orthogonal bases for the solu-
tions of (0.1). Symmetry properties of the difference equation are
used to find two other such bases.

In §4, an identity satisfied by solutions of (0.1) is used to derive
a formula for the connection coefficients among these bases. They
are a family of orthogonal polynomials expressed as terminating,
balanced 4F3-series. Finally, in §5, families of general Hahn poly-
nomials in two variables are obtained as intertwining functions on
the symmetric group, and the connection coefficients from §4 are
shown to apply here as well.

Unless otherwise stated, all variables throughout are non-
negative integers. For integers m, n let m V n, m A n denote
max (w, %), min(m, n) respectively. For a set ς, let |£| denote the
cardinality of ζ. For a real number a, the shifted factorial (Poch-
hammer symbol) is defined by (α)0 = 1, (α)n+1 = (α)»(α + n). For
p = 1,2, real numbers alf a2, , a9+1, βlf , βp, x define the
generalized hypergeometric series

' ί ΓV ΓV ΓV i \ oo //v \ (sv ^
/ ULlf UL2f , <Λp+l \ \(Xl)n * * ' \Wp+i)n n

* 9\β»A, • , A ; Ί = ώ (βX'- (8P)nm
x •

The series is said to be balanced if (Σfίί ai) + 1 = Σf=i βi a n d it
terminates if one of the α/s is a nonpositive integer.

2* The symmetric group and the difference equation* Choose
nonnegative integers α, δ, c, N with N — a + b + c. Define subsets
of {1, 2, , N} by Ύ)x = {1, , a}, η2 = {a + 1, , α + 6}, % =
{α + 6 + 1, , iNΓ}. Consider SNf the symmetric group on JVobjects,
as acting on elements of {1, , N) (on the right) and also as a
linear group on JB^ by permuting coordinates (the ΐth coordinate of
xπ is defined to be the iπ~x coordinate of x, x (row vector) 6 RN,
πeSN).

For each r, 0 <̂  r ^ JV, let Pr = span {xh xir: 1 <£ ̂  < i2 <
ίr ^ }̂> a space of polynomial functions on RN, which is an SN-
module (i.e., Pr is invariant under right translation by SN). It is
not irreducible (unless r = 0 or N), but Vr = P r Π ker d is irreduci-
ble, where (Z = Σf=1 d/dxif an operator which commutes with SN,
(and F r ̂  {0} for r ^ iV/2) see [2]. The dimension of Vr is ( ^ ) -
( _. 1) a n d r^alizes the representation [N — r, r] of SN (correspond-
ing to the Young tableau with N — r boxes in the first row, r in
the second, see Robinson [9], p. 36). We will consider elements of
Vr which are invariant under Young subgroups with three factors.
Specifically for η c {1, , N} let S(rf) be the subgroup of SN fixing
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each point of {1, , N}\y (thus S(y) is isomorphic to the symmetric
group of η), and let H = Siy,) x S(y2) x S(yz), isomorphic to Sa x
Sb x Sc.

For η c {1, , N}f 0 ^ i ^ \η\, let σjj]) be the elementary
symmetric functions of degree i from the set of variables {xά: j e y}9

that is, t̂ O?) is the coefficient of t* in ILe?(l + toy).
The iϊ-invariant functions in Pr have the basis

{<7h(Vi)σi2(V2)σh(ys) ii + ί2 + % = r, 0 ^ ΐx ^ α, 0 ^ i2 ^ 6, 0 ^ ΐ8 ^ c} .

PROPOSITION 2.1. Lβί f be a function of two integer variables,

with domain Dr(a, b, c) = {{x, y): 0 ^ x ^ af O ^ τ / ^ 6 , r — c ^ x +

2/ ̂  r}, tΛβw p = Σ {/(ii, h^iSVi^h^^r-H-i^Vs)' (i» i*) e A(α, 6, c)} is
m F r i/ α^d only if f satisfies the difference equation

(x a)f(x + 1, y) + (y- b)f(x9 y + 1)

= (c — r + l + x + y)f(x9 y)

for O ^ x ^ α , 0 ^ y ^ b, r — c — l ^ x + y ^ r — 1, α ^ d / ( α + 1, y),

f(x, b + 1), f(x, r — c — 1 — x) taken as zero.

Proof I t is known dσt(η) = (\η\ — i + V)σ^^f[)\ the factor is
the number of i-subsets of Ύ) containing a given (ϊ — l)-subset.
Applying the product rule to dp leads to a sum of multiples of
GxtV^GyiV^r-i-x-yiVz) with (#, i/) in the stated range. These func-
tions are part of a basis for iί-invariant elements of Pr-lf so dp = 0
if and only if the coefficient of each term is zero. The term for
(x, y) comes from the coefficient of (^x+i(Vi)σy(V2)^r-i-χ-y(V3)f
(?x(yi)<7y+i(y2)(7r-i-x-y(ys) σJ7)dσv(y*)°r-*-y(yύ multiplied by (a-x), (b-y)9

(c — (r — x — y) + 1) respectively.

DEFINITION 2.2. The linear space of solutions to (2.1) will be
denoted by Wr(a, 6, c), or Wr for short.

PROPOSITION 2.3. The dimension of Wr(a, 6, c) is rΛaΛb Ac A
(α + b - r) A (6 + c - r) A (a + c - r) A (α + b + e - 2r) + 1 if a +
6 ^ r , 6 + c ^ r , α + c ^ r , α + δ + c ^ 2 r α^d is 0 otherwise (note
that Dr(a, 6, c) is nonempty provided a + b + e ^ r).

Proof The required dimension is equal to the number of times
the trivial representation of H (H—> {1}) appears in the restriction
of [N — r, r] to H. We will restrict first to Sfa) X S(y2 U yz) and
iterate the known decomposition of the representation [M — k, k] of
SM restricted to SA x SM_A, where 0 ^ A <: M, 0 <^ k <> M/2, namely
[M - k, k]\(SA X SM_A) ^ Σ Θ{[^ ~ w, m](g)[AΓ - A - w, w]: 0 ^ m ^



60 CHARLES F. DUNKL

A/2, 0 <; n ^ (Λf — A)/2, m + n ^ k, k — M+A^m — n^A~ k)
(see [9]). Note that [Λf, 0] is the trivial representation. The values
of k allowing [A, 0] (x) [Λf — A, 0] to appear (exactly once) are 0 <̂
k tίk A A (Λf — A). Thus we obtain one fZ-invariant function in Vr

for each constituent of the form [α, 0] (g) [δ + c — k, k] with 0 ^
k ^ δ Λ c (decomposing [δ + c — k, k] into irreducible representations
of Sb x Sc). The set of these functions is linearly independent
because the sum is direct. Applying the formula to [N — r, r] |
(SaxSb+c) we obtain the permitted values for k as k^r, r — b—Gί^
— k^a — r. The number of k satisfying every requirement is
(δ Λ G A r A (δ + c — r)) — (0 V (r — a)) + 1, provided a + δ ^ r,
δ + c ^ r , α + c ^ r , α + δ + c ^ 2 r (this was already assumed as
Vr Φ {0}, r ^ iV/2), else there are no nonzero ίf-invariants in Vr.
The expression for the number is equal to the original one.

There is a natural isomorphism between Wr(a, δ, c) and
Wr(a\ δ', Gf) where α'δ'c' is a permutation of α δ c; for example, if
g 6 T7r(δ, α, c) then the function (x, y) H+ #(?/, x) is in Wr(α, δ, c), and
if h 6 TFr(c, δ, α) then (a;, y)^h{r — x — y, y) is in TFr(α, δ, c).

Attempting to find a solution / of (2.1) we observe that if
c ^ r then Dr(α, δ, ό) is the union of rectangles R5 = {(x, y):0 ^, x <^ j ,
0 <; 2/ ̂  r — j} with 0 V (r ~ i) ^ i ^ r Λ α, and the value of / at
(j, r — j) is propagated by (2.1) to every point of R3, but no other.
For given j , trying to find / which is zero off R3 and 1 at (j, r — j)
we look at the values at (j — 1, r — j), (j, r — j — 1), etc., guess
at a solution and then verify it. Indeed we obtain the solution

r — x —

j - x

0 V (r — δ) ^ i ^ r Λ α. It is easy to show that this satisfies (2.1)
for x + y ^ r — G, and indeed all solutions for (2.1) have been
obtained in the form / = Σ j&ifsf with aά — f(j, r — j) arbitrary.
If G < r then /,- is not a solution but the (r — c) equations

(x — α)/(# + 1, T — G — x — l ) + (r — G — b —-1 — x)f{x, r — c — x) = 0 ,

(from (2.1)) impose conditions on the numbers aά. Note that
(α Λ r) - (0 V (r — &)) + 1 — ((r - c) V 0) = dim T7r. We will not
attempt here to find a basis for Wr when c < r; it can be done
directly. However, if fe Wr then

(2.2) / ( # , 7/) — 2-, ./W> r J/\ . I / ^\ ( -\\r-x-y
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holds (if the two sides agree for r — x — y = k, then (2.1) shows
they agree for r~x — y = k + lf 0 ^ k ^ (r Λ e) — 1).

3* Orthogonality* The fundamental result for orthogonality
related to finite (or compact) group actions is the Peter-Weyl
theorem. To apply it we need an S^-invariant "integral" for Vr9

which can be obtained by summing values over any S^-invariant
set in RN. For a subset ΩaRN define </, g)Ω = Σ e*/(&)]/(&) and
11/110= (f,f)T with /, g being functions defined at least on Ω.
One good choice for Ω is the hypercube C = {(elf c2, , cN) e RN:
Ci= ± 1 , 1 <ί i ^ N}. Then C ~ Z(2)N (a multiplicative abelian group
of order 2N) and the square-free monomials xh χtr, 1 <: ix < i 2 . . <
ir ^ N are characters, hence orthogonal with respect to < , )c
The Jϊ-invariant functions oi)L{Ύ]^σit{η^σH{η^ are mutually orthogonal

and H^^σ^y^a)!!2, - (?j( J)( j)
We recall from 2.3 that a basis for Wr can be produced by

considering different representations of Sfa) X S(η2 (J %). The inner
product over C is invariant with respect to this group, so we expect
to find an orthogonal basis for Wr, with the inner product (induced
from C) defined by

ίχ,y)er>r \ χ j \ y J \ r — X — y J

and 11/11 — </, />1/2. The previously defined correspondence between
Wr(a, b, c) and Wr(af, b', c') is isometric for this norm. The nature
of the subgroup suggests solutions which treat b and c symmetri-
cally, while the weight function suggests Hahn polynomials.

We recall some facts about the renormalized Hahn polynomials
Em{a, 6, c, x) used in [4] (temporarily α, b, c, r, x are any nonnega-
tive integers). They are defined by

» ίτϊi
(3.1) EJβ, b, c, x) = Σ (-DΊ

and are polynomial of degree m in the two variables x, c. They
are related to the usual Hahn polynomials (see Karlin and McGregor
[6]) by

Em(a, b, c, x) = (-lT(-aU-c)mQm(x; -a - 1, -b - 1, e)

(3.2) x / f — m, m — α — 6 — 1, — x \

The domain for orthogonality is (c — b) V 0 ?ί x <^ a Λ c, and Em = 0
on this set unless m ^ α Λ & Λ c Λ (α + ί) - c), The orthogonality
relation is
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Σ \ J ( )EJfl, b, c, x)E%{a, b, e, x)

la + b - 2m\
(-l)-(m - a - b - l).(-α).(-6).m! .

G ~ m J
There are several symmetry relations and difference equations (see
§3, [4]); among these:

(3.4) Em(a, δ, c, x) = ( — l)mEm(b, a, c, c — a?)

(α - x)Em(a, δ, c + 1, x + 1) + (δ - c + a?)-δ?»(α, δ, c + 1, a?)
(3.5)

= (α + δ — G — m)Em(a, b, c, x) .

(3.6) # w (α, δ, c, 0) - ( - 1 ) « ( - α ) m ( - c)m

and

(3.7) £?m(α, δ, c, c) = ( - δ ) m ( - c ) w .

Here is a transformation formula

(3.8) ,3_M{vχ~_y.^».^-(":*)^(«,M,,)
(which can be proved from (3.1) since

y\ld-y\ jy - j\(d-y-m + j\

x j\G — xj \x — 3l\G — x — m + jj

and summing over x yields ( Λ ~~ ! ? ) ( —2/)y(2/— d) by t h e Chu-
\ V^ lib J

Vandermonde sum] (the formula is due to Gasper [5], p. 180, (2.5)).

We guess at a solution to (2.1) of the form /(a?, y) —

g(x)Em(b, c, r — x, y) with m, g to be determined (suggested by the

( )( C __ /Part of the weight function). Substituting in (2.1)

and using (3.5) we obtain

(3 9) Q ^ b + c + 1 + x ~ r ~ m ) E m φ , G,T-X-1, y)
= flf(a? + l)(α - α)£?w(δ, c, r - a; - 1, y) ,

We claim nonzero solutions are possible exactly for 0 V (r — a) ̂
m ^ ίι Λ c Λ r Λ (ί> + c - r) . The .£7m term in / is zero unless
m + r — b — G^x^r — m and m ̂  ί> Λ c Λ r, The ̂ w term in
(3.9) is nontrivial for m — δ — c + r — l ^ x ^ r — m — 1 (and m ̂  δ Λ
c Λ r) . This and the rest of (3.9) show that the values of g(x),
(m + r — b — c) V 0 ̂  ^ α Λ (r - m), are either all zero or all
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nonzero. But if b + c — r <b Λ c Λ r and m > b + c — r, then put
x — m — b — c + r — 1 ^ 0 in (3.9), leading to (m + r — 1 — α —
6 — c)g(m — b — c + r)Em(b, c, b + c — m, y) = 0 forcing # = 0 (the
first factor satisfies m + r — 1 — a — b — c<>m — r — 1 <; —1). Thus
m <^b + c — r is necessary. Similarly if r — m> a, put # = α in
(3.9) leading to

(α + 6 + c + l - r - m)g(a)Em(b, c, r — a — 1, y) = 0

again forcing # = 0 (note m <; 6 Λ c Λ (r — α — 1) Λ (α + δ + c — r + 1)
so the i£m term is nonzero).

In the permitted range of m, the solution for g is given by

g(x) = (6 + c -̂  r - m + 1

We recall that for arbitrary integers α, 6, c, JSβ(α, 6, c, x) —
((6 — c + l)β/( —α),)c! ( — α)c, for α? = 0, 1, , a A c; thus we choose
g(β) = (r — m)\ ( — α) r_m and obtain a polynomial solution c/(x) =
Er-m(a<y b + c — 2m, r — m, a?). The explicit values for 0 ^ x ^ r — m
are #(#) = (r - m)! ( - l ) r - m - s ( a - r + m + l)r_m_β(δ + c + m - r + l) β .
Thus we have obtained solutions to (2.1):

(3.10) φjx, y) = £r

r_TO(α, 6 + c - 2m, r - m, a;)JSfw(6, c, r - a?, 2/) ,

0 V (r — a) <> m ^b Λ c Λ r Λ (b + c — r) and ^J>, T/) = 0 for x>r — m.
We describe the other families of solutions obtained by

permuting elements of {(α, #), (6, 2/), (c, r — a? — T/)}. TO show the
dependence, we write 0m(sc, ?/; α, δ, c) for ^m as in (3.10), (throughout
when parameters are omitted, they are understood to be (α, 6, c)).
We list the possible permutations of a b c, followed by the resulting
elements of Wr(a, b, c).

(3.11) ( i ) bac\ (x, y) I > φm(y, x; b, a, c)

= Er_m(b, a + c - 2m, r - m, y)Em(a, c, r - y, x)

denoted by ψjx, y;a,b, c) (or φjx, y)),

0 V ( r — b)<^m<^aΛcΛrΛ(a + c~r);

( i i ) cba: (x, y) \ > φm(r - x - y,y;c, 6, a)

= Er_m(c, b + a — 2m, r — m, r — & — y)Em(b, a, x + y, y)

denoted by ΘJx, y;a,b, c) (or ΘJx, y))f

0 V ( r - c ) ^ m ^ α Λ ί > Λ r Λ ( α l ί ι - r ) ;

(iii) acb: (x, y) i > φjx, r - x - y; a, c, b)

= Er_m(a, c + 6 — 2m, r — m, x)Em(c, b, r — x, r — x — y)

= (-l)»φM(x,y;a,b,c) by (3.4);
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(iv) bca: (x, y) i > φm(y, r - x - y b, c, a)

= Er_m{b, a + c-2m, r-m, y)EJc, a, r-y, r-x-y)

= (-l)mψ (α?, y; a, 6, c) by (3.4);

(v) cab: (x, y) i > φm{r - x - y,x;c, a, b)

= (-l)mθm(xfy;a,b,c) by (3.4).

Note that only two new families of solutions have been
obtained.

THEOREM 3.1. The set {φm: 0 V ( r - α ) ^ m < ; δ Λ c Λ r Λ ( & + c-r) }
is an orthogonal basis for Wr(a, 6, c) and

Σ ( ) ( ) (
\ χ l \ y j \ r — x — y

(3.12) ( * * e ~ m t _ 1 i ) ( w ™ b - β)r(-
Vfe + c — 2m + 1/

x (r - m)! (α + b + c - 2r + 2)r_TO(-l)m .

Proof. The orthogonality relation follows from

Σ ( ) ( C )Em{b, c,r-x, y)En(b, c, r - x, y) = 0 , mΦn .
y \y j \ r - x - y j

The calculation of | |^m | |2 is routine, summing over y first, then x,
using (3.3) twice. The set {φm} is a basis because it is linearly in-
dependent with cardinality = dim Wr (see Proposition 2.3).

COROLLARY 3.2. Each of {ψm}, {θm} is an orthogonal basis for
Wr. The expressions for \\ψm\\2, \\θm\\2 are obtained from (3.12) by
interchanging a and b, a and c respectively.

4* Expansions and connection coefficients* Suppose fe Wr

and it is desired to express / = χ m amφm. The orthogonality relations
holding along lines x = constant immediately show that there is a
formula of the sort

= ΣΣ
b\l c

Σ
y \y )\r - x - y

f(x, v)Em(b, c } r - xf y)

times an expression in (m, x, a, 6, c, r). Note that x <^ r — m is
necessary. The sum is actually a double sum (one more for Em). A
single sum expression can be obtained by using (2.2).

THEOREM 4.1. If fe Wr, then f= Σmamφm with
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(4.1) α m = Σ
i=0V(r-δ)

y

( — a)r_m(m — b — c)r( — c)mm\ (r — m)\ (r — j)\ (b + c —

Proof. Choose x^r-m, and form Sxm = Σί^vΊϊU-.) ( ? . \
ί c \ \y /
\ γ _ χ _ y )Λ%, y)EmQ>, C,T -X,y), thβΠ Sxm = OLm.

— 2m\x ( ^ . i r ( m _ 6 _ c _ i ) m ( _ 6 ) m ( ^

X Er_m(a, b + c — 2m, r—m, x) .

In Sxm replace f(x, y) by formula (2.2) and obtain

X V —«"• > c> r

The sum over ^ can be done if r — c — x <; 0; by finite differences

n
Σ

o

for m, % integers, 0 <^ n ^ m and any numbers β<; and we have
such an expression for 2£w in (3.2). Note m ^ c, so choose a? = 0 V
(r — c), then the sum over 7/ is

(-&).(* - ^

Now collect all the terms, and put am on one side of the equation
to get the stated formula.

This formula makes it easy to find the connection coefficients
among φm9 ψm, θm.

THEOREM 4.2. For O V ( r - i ι ) ^ B α Λ c Λ r Λ ( α + c - r )

ψk = Σ ockm(a, 6, cVm , (sum over 0V(r-α)^m^δΛcΛrΛ(5+c-r)) ,
m

where

ί " ^ - * ) ^ ~ r + l)«(̂ g)*(6 + c - 2m + 1)ry ( a h A - (
— — ———

m ! (m — 6 — c)r( — c)w(6 + c — m + 1)
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'k — r, a + c + 1 — k — r, —m,m — b — c — l

— r, — &, a — r + 1

__ ( - i r ( - r ) , ( - α ) , ( r - a - b)a_k(m - b - c - l ) r _ _ α ( - c ) r . α + f e

( r — α ) ! { — r)k{m — b — c)r( — c)m

v /& + c - 2m + 1
δ + c — m + 1

&—α, o + l — k, r — m—α, m — α — 6 — c — 1 + r \

— α, —α — δ + r, r — α + 1 / = #

Proof. The formula (3.7) shows

= Er_k(b, a + c- 2k, r - k, r - j)Ek(a, c, j , j)

= (-iy-\r -k)\ (b-r + k + ΐ)s_k(a + c-k-r + l)r_y(-c) fc(-i)Λ

(zero for j < k). Now substitute this in (4.1). The sum extends
over (r — b) V k ^ j ^ a Λ r. Change the variable in the sum,
letting i = (α Λ r) — i , doing the two cases a <? r, α ̂  r separately.

COROLLARY 4.3. If b^r then

l)r(b — r + l) r_m(r — α — & — c — l)m(& + c — 2m + 1)
a (a b c)=

(m — b — c)rm! (r — m)! (δ + c — m + 1)

/v r/y Λ ^ - ( ^ - g - & - " C ~ !)»(& + g - 2m + 1)

Proof. For both k = 0, r — b the 4F3-sums reduce to balanced

3F2-sums which are done by the Pfaff-Saalschϋtz formula (see Bailey,
[1], p. 9). The results are independent of the sign of r — a.

The /3-sums in 4.2 are balanced, and are examples of Wilson's
version of Racah's 6 - j symbols (see Racah [8]). Wilson ([10], 2.13)
defined

n, n + a + β + 1, —x, x + 7 + d + 1

with X(x) = x(x + 7 + δ + 1) and one of α + 1, β + δ + 1, 7 + 1
being a negative integer. Then Rn is a polynomial of degree n in
X(x), and the set {#J (with suitably bounded n) is a family of
orthogonal polynomials with respect to a finitely supported weight
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function—(Wilson found nondiscrete orthogonality relations for the
case when none of the denominator parameters is a negative integer).
The Racah 6 — j symbols can be expressed in terms of Rn (see
Wilson [10], Ch. II). The 4F3-sums in 4.2 can be written as

i2r_fc(λ(m); a — r, c — r, —b — 1, —c — 1) for r ^ a ,

or

Ra-k(M'ffl> — r + a);r — a, c — r, r — α — & — 1, r — α — c — 1) for r ^ a .

(λ is different in the two expressions, depending on the parameter
values.)

We get the orthogonality from {φm}, {ψk} both being orthogonal
bases for Wr.

PROPOSITION 4.4. Σ m | |^m | | 2α f e m(α, 6, c)alm(a, b9 c) = δkl \\ψk\\2, where
0 V ( r - α ) ^ m ^ δ Λ c Λ r Λ ( H c - r ) and 0 V (r - 6) <; &, Z ^
α Λ c Λ r Λ (α + c — r) (values of | |^w | |2, | | ^ | | 2 as in (3.12)).

Proof. The sum

^l\v)\r- x-

but also equals

'a\/b\f c
) m k m φ m ( , y)Σnalnφn(x, y)

χl\y)\r — x — yJ
= Σmakmalm\\φm\\2 .

The 6 — j symbols arise as the relations among the three ways
of decomposing a tensor product of three irreducible (continuous,
unitary) representations by using the product-of-two result twice
(the 3 — j symbols). In the present situation we restrict an irreduci-
ble representation of SN to Sa x Sb x Sc by two steps, passing
through Sa x Sb+C9 etc., and the coefficients akm express the relations
between the Sa x Sb+C and Sb x Sa+C methods. Further there is a
relation between representations of SN and the JV-fold tensor product
of the principal representation of SU(2) (actually, any U(n) or SU(2)).

Another relation among the 4F3-functions can be found by con-
sidering the remaining connection coefficients among {θn}, {φm}, {ψk}
which can be obtained by permuting a b c in 4.2 and using the
formulas (3.11).

PROPOSITION 4.5. The ranges of m, k are those appropriate to



68 CHARLES F. DUNKL

the domains of definition, and the parameters (α, b, c) are under-
stood in θ, φ, ψ:

( i ) 0* = Σ ( - l ) f c + m α ^ ( α , β, b)φm
m

(i i) <?» = Σ(-D"«*»(&, c ,α) f .

(iii) t * = Σ ( - l)*α*»(e, δ, a)θm

(iv) & = Σ «*»(&, α, c)fm
TO

( v ) Φk = Σ>(-l)k+makm(c,a,b)θm.

COROLLARY 4.6. ( - l)k+makm(a, c, δ) = Σ ( - !)*«*•(&» e> α)aw(α, 6, c),
0 V (r - δ) ^ % ^ α Λ c Λ r Λ (ft + c - r) .

Proof. Express 0% in terms of {ψn}, and these in {φm}.

5. Intertwining functions and general Hahn polynomials in
two variables* Recall from §2 that Vr is a space of functions on
RN. Choose any point xeRN and consider the space Vr of functions
on SN given by f(π) = f(xπ), (feVr,πeSN). Then Vr is closed
under right translation, and by Schur's lemma is either {0} or
isomorphic to Vr. Further the functions in Vr are left-invariant
for G(x) = {π eSN: xπ = x}, the stabilizer of x. Thus H = Sa x
£6 x Sc invariant functions in Vr correspond to G{x) — H-invariant
functions on SN (so-called intertwining functions, see [3]). Since we
considered only the S^-modules Vr9 0 ^ r ^ N/2, we are able to find
all G(x) — H invariant functions only if G{x) is isomorphic to SM x
SN-M for some M. It is known (see [4] or [9]) that the set of
functions on the coset space (SM x SN_M)\SN (that is, the representa-
tion of SN induced by the trivial one of SMxSN_M) is isomorphic to

r=0 \ΣP v r

We choose M ^ N and let x = (1, 1, , 1, 0, , 0), M Γs fol-
lowed by N - M 0?s. Thus G(x) = S({1, - , M}) x S({M + 1, , N}),
denoted by HM. The HM — H invariant functions in Vr will be
found by evaluating the iϊ-invariant functions in Vr at xπ.

DEFINITION 5.1. For π e SN, let ut(π) = | {1, , M}π r\

1, 2, 3 (recall ηt from §2; note ux + u2 + ^3 = Λf).

LEMMA 5.2. Γfee value of Oifo^OiJJl^Oip]^ at xπ is
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Proof. The required value is the coefficient of

in the expansion of

Π Π d + toW,

which product equals (1 + ίi)Ul(l + ί2)
W2(l + tB)

uκ

The sum over SN of an HM — H invariant function is given by

(5.1) J L Σ Λ^(τr), u2(π), ulπ)) = Σ (* )( & V Ά/Γ ° )

x f(ulf u2, M— u1— u2) ,

where

THEOREM 5.3. 27&e restriction of the H-invariant function in Vr

corresponding to φm, namely ^ivi29m{iu ^^i^V^iJJl^T-i^-iJJlz)^ is π\->
Φmi^ii^), ^(TΓ), uz{it)) = £r

r_m(α, b + c — 2m, %x + %2 + w3—m, u^)Em(Jb9 c, u2+
^3, 2̂)? 0 V (r - α) ^ m ^ ί) Λ c Λ r Λ (ί) + c - r ) . Tfeβ functions
{Φm} are orthogonal with respect to the weight from (5.1). Further-
more φm is in the Sa x Sb+c-submodule [a, 0] (x) [b + c — m, m].

Proo/. By 5.2,

^m(^i, u2, us) = Σ Er-m(a, b + c — 2m, r — m, iJE^b, c, r — ilf i2)

r - %γ- %2

- m~ %

x #m(&, c, ^ 2 + w8, w2) (by (3.8))

= Er_m(a, b + c — 2m, ^ + u2 + u3 — m, ux)

x EJJ>, c, u2 + u3, u2) .

The orthogonality relations follow from the properties of Em.
Theorem 4.2 of [4] shows that φm is in the Sfa) x S(rj2 U ^ - s u b -
module corresponding to [a, 0] (x) [6 + c — m, m].

Similarly we can produce orthogonal bases for the intertwining
functions from {ψm}, {θm}. Indeed we obtain
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ΦJul9 u2, Uι) = Er_J]b, α + c-2m, uY-\-u2 + uz-m9 u2)ΈJa9 c, u,
0V(r — b) <̂  m <; a/\c/\rf\(a + c — r), (belonging to the [a + c — m, m](x)
[b, 0] module for Sfa U ηz) x S(η2));

θm(ul9 u29 uz) = Er_m(c9 a + b — 2m, u^. + u? + us—'m, uz)

x Em(b9 a9 u1

JrU29 u2) ,

0 V ( ί ' - c ) ^ m ^ α Λ ί > Λ φ + ί>-ίt), (belonging to the [a + b — m, m] (x)
[c, 0] module for SOftU^) x S(%)).

The restriction map carries over the connection coefficients, and
a typical formula is Er_k(b9 a + c — 2k9 uγΛ u2 + uz —'&, u2)Ek(a9 c9 uλ +

%8, w2). Recall that αOm(α, 6, c), ar_biW/(a9 6, c) are in closed form, see
4.3.

Karlin and McGregor [7] studied Hahn polynomials in several
variables for use in models for the growth of populations with
several types. The functions φm, fm, θm can be expressed in their
terms, for example,

f) fii ΊI ii * π n s*\ '—:
" i i i l ^ l ί ^2» ^3) ^9 y9 ^ ) — '

Ulf U2' Us m9r - m) (formula 5.6, p. 277 [7]) .
-α — 1, —6 — 1, —c — 1 /

To extend the connection coefficients to real parameters, we
first note that if α, 6, c ^ r then the summations in 4.2, 4.3, 4.5
extend over 0 <i m ^ r, and the relations are rational in α, b, c
with poles at most at 0,1,2, . . . , r — 1. Thus the formulas hold
for any complex a, b, c with none having values in {0, 1, , r — 1}.
We state 4.2 for the Karlin-McGregor φ functions in three variables,
with alf a29 az replacing — α — 1, - 6 - 1 , - c - 1 respectively.

P R O P O S I T I O N 5.4. For k = 09l, •••, r and none of alf a2, a3

taking values in { — 1, — 2 , •••, —r)

(ul9 u39 u2

\al9 α 3 , a2

Ic, r - k =
r_fcm! (m

— r, — α x — az — k — r — 1, — m, m + a1 + a2 + 1

x

We have found the polynomials in Vr which belong to specific
i) x S()?2 U %)-submodules and are Sfa) x S(η2) x S(^3) invariant

and which, restricted to appropriate S^-orbits in RN

9 yield families
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of Hahn polynomials in two variables. Further the connection
coefficients relating different bases, coming from SOft) x S(η2 U %)
and S(η1 U %) x S(η2) (etc.) decompositions, provide a finite group
setting for the 6 — j symbols, originally calculated for the compact
group SU(2) by Racah. The techniques used here should be useful
in the more difficult problem of finding orthogonal bases for func-
tions on SN which are biinvariant for SO7O x S(η2) x S(ηs) and the
spherical functions.
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