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THE SYMPLECTIC GROUP OVER A RING
WITH ONE IN ITS STABLE RANGE

B. KIRKwWOoOD AND B. R. McDONALD

In this paper we determine the tranmsitivity properties,
generators and commutator subgroups of the symplectic group
and its congruence subgroups over a commutative ring having
one in its stable range and 2 a unit.

1. Introduction. Much of the classical theory of the symplectic
group over a field has been generalized to symplectic groups where
the scalar ring is local. The papers [6], [8], [11], [12], [17], [18]
and [19] contain much of this literature and an introduection is
provided in the monograph [13].

When using the local ring the technique is often to either “lift”
results from the symplectic group over the residue class field or to
utilize the abundance of units in local ring and mimic the arguments
over a field.

However, the key to much of this theory is the ability to
write units in the ring in a linear or polynomial fashion. This idea
was exploited in [14] and several subsequent papers on the orthogonal
group. In this paper, we show that the basic theory of the
symplectic group over a commutative ring is available if the ring
has “one in its stable range”. This stable range condition is defined
and discussed in (II). Examples of rings with one in their stable
range include local rings, semilocal rings, von Neumann regular rings
and zero dimensional rings.

The approach which allows this generalization is the extensive
use of the “Eichler-Siegel-Dickson transvections” rather than the
more traditional “symplectic transvections”. In a sense, this
“linearizes” the theory, allowing arguments which resemble the
general linear group and elementary transvections. If R has one
in its stable range, then utilizing repeatedly the formulas (*) and
(**) we create units in desired locations. Once these units are
available, the standard results easily follow. It should be emphasized
that the theory we present is a consequence of formulas (*) and (**).

2. The symplectic group. Let R denote a commutative ring.
We let V be a free R-module of R-dimension # where n = 2. We
assume V has a nonsingular symplectic form B3: VX V— R. That
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112 B. KIRKWOOD AND B. R. MCDONALD

is, 8 is R-bilinear, B(x, ) =0 for all x in V and the R-module
morphism from V to V* = Hom,(V, R) given by 2 — g3(,x) is an
isomorphism. We call the pair (V, 8) a symplectic space. When the
context is clear, (V, B) will be denoted by V.

Recall that an element x in V is unimodular if there is an f
in V* with f(z) = 1; equivalently, if 2 = ab, + --- + a,b, where
{6, ---, b,} is a basis for V, then z is unimodular if (a,, ---, @,) = R.
If 2 is unimodular then Rx is a free R-direct summand of dimension
one. We call Rx a line. If x is unimodular and V= Rx P W, we
call the projective module W a hyperplane. Locally, W will have
dimension n — 1, but W need not be free.

A hyperbolic pair {x,y} is a pair of unimodular vectors in V
with the property that g(x, ¥) =1. The module H = Rx@ Ry is
called a hyperbolic plane and it is easy to see (for example, see [13],
pp. 150-151) that V splits as an orthogonal direet sum V = H 1 H*
where H* denotes the orthogonal complement of H.

Any unimodular vector v may be complemented to a hyperbolie
pair as follows: By the above comments, there is an f in V* with
flw) = 1. Since g is nonsingular, there is a v in V with 1 = flu) =
B(u, v). Then {u, v} is a hyperbolic pair.

A ring R is stably free if whenever V = V, @ P where V and
V, are free R-modules, then P is a free R-module. Combining this
with the above remarks on hyperbolic pairs, we have the following
proposition.

PROPOSITION 2.1. Let R be a stably free commutative ring and
V be a symplectic space over R. Then V is an orthogonal direct
sum V=H, L H,1 --- 1L H, of hyperbolic planes H, H,, ---, H,.
In particular, the dimension of V is even.

Let (V, B) and (V, B) be symplectic spaces of the same dimension.
An R-module isomorphism o: V — V is an isometry if for all « and
y in V, we have B(o(x), 0(y)) = B, y). In this case we say V and
V are isometric, denoted V ~ V. The group of isometries o: (V, 8) —

(V, B) is called the symplectic group of V and denoted by Sp (V).

Suppose V = H | W where H = Ru@ Rv is a hyperbolic plane
in V. We next define several standard isometries with respect
to H.
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(a) If xisin V with B(z, u) = 0, then the Eichler-Siegel-Dickson
transvection (denoted ESD-transvection) o, , is given by

0.:y) =y + B, y)x + B, y)u .

If gz, v) = 0, then o, is defined in a similar fashion.
(b) If ¢ is a unit in R, then define the isometry @, by

D(u) = eu , O.(v) =¢v,

and @, (w) = w for all w in W.
(e) Define the isometry 4 by 4(u) = v, 4(v) = —u and 4(w) = w
for all w in W.

It is straightforward to check that the above are isometries.
(Note that B(o(x), o(y)) = B(x, y) may be checked locally since each
of the above localize nicely at prime ideals of R and here one may
use ([13], pp. 159-161).)

A symplectic transvection 7 is an isometry satisfying any of
the following equivalent statements:

(a) There is a unimodular vector ¢ in V and a secalar A in R
such that for all « in V,

7(x) = & + AGB(a, ®)a .

(b) There is a line L = Ra satisfying z(zx) — « is in L for all
¢ in V.

(¢) There is a hyperplane P with 7|, = identity. (See Theorem
4.1, p. 191 of [13].)

The above symplectic transvection is denoted by 7, and we call
L = Ra the line of 7,; and P the hyperplane of 7, ;.

The basic calculational properties of the above isometries are
summarized in the next lemma.

LEMMA 2.2. Let R be a commutative ring. Let V be a symplectic
space over R with V= H 1 W where H= Ru @ Rv is a hyperbolic
plane. Then

(8) Gunluy = Ouisiyy (Oun)™ = Oy, and 0,, = L.

(o) If 6 is in Sp (V) then 60, 07" = Osw) o0

(€ 4'04=0,1=0", 0,40, =4, 4 =1, and 00,07 =0
when x s in W.

d Ifx=au+Z% and y=0u+ v + Yy where a, 6, 7 are in
R and Z, ¥ are in W, then

U, EX
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0..(y) = [0 + 2an + B@, P]u + nv + (¥ + 17) .

If x=av+ % and y =0u + Yv + ¥ with the same hypothesis as
above, then

0oo(y) = 0u + [17 — 200 + B, P]v + (¥ — 07) .

(@) 7ok = Taots TaiTaw = Taaru aNd, more generally, T,iT,.(r) =
z + [Ma(a, ©)a + B0, 2)b] + Mep(a, D)0, x)a.

) If 6 is in Sp(V), then 67,0 = Toua-

(g) The above isometries may be written as symplectic trans-
vections and ESD-transvections as follows:

D, = Tyee—1)To,e=Le—n)Tuto,1—¢
4= Ty, —2Tu—v,—1
Ton = Og,ume (0 2 18 @ umit) .

Thus, each of the above isometries may be written as products
of ESD-transvections if 2 is a unit in R. Also, an argument
analogous to the discussion in ([13], pp. 193-197) shows that each
ESD-transvection may be written as a product of symplectic trans-

vections.

THEOREM 2.3. Let R be a commutative ring having 2 a wunit.
Let V be a symplectic space over R with V=H { W where H =
Ru @ Rv is a hyperbolic plane. Suppose o is in Sp (V). If o(v) =
ou +06v+t @ in W) and 6 is a unit, then ¢ may be written as

0 = 0,,0,,00

where ¢ 18 in Sp (W). Further, x is in (Ru)*, y is in (Rv)*, and
x, Y, € and G are uniquely determined by o.

(Note: We identify Sp (W) as a subgroup of Sp(V) by ¢ —
I14.)

Proof. Suppose o(v) = au + é6v + t where 6 is a unit. Then
Ous—1t+s—1(au(V) =¥ + 07 + 07 'au
= 0 [au + ov + t]
= 0"'o(v) .
Thus, set

5 — -1
g = @60u,6_1t+6_1(a/2)u

and we have 6(v) = v. Suppose ¢(u) = v(u) + pv + s (s in W). Since
Bu, v) =1, we have d(u) = u + v + s. Then
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av,(#/z)vks(&(u)) = U
0v,(!‘/2)v+s<&(v>) =v.

That is,
- =
O'v,(/z/z)v+s@a(7u,a—1z~s-r1(a,/z>u =0

where &, = identity, i.e., & is in Sp(W). Thus, using 2.2, ¢ =
0,,.0,,06 for suitable z, y and e¢.

It remains to check uniqueness. Assume
04,0,,00 = 0,,4,0,,9.0, .
Apply both sides of the above equality to v. We obtain
el B, v)u + 7w + 7' = 7' 8%y, V)U + &7 + elay

which implies ¢ =¢,, If x = au + 7 and a, = ayu + %, as in 2.2 (d),
then

auw + v+ (au + %) = a,u + v + (qu + Z,) .

Then, since 2 is a unit we have a = @, and subsequently Z =z,. A
similar argument utilizing % will show y = y,.

Suppose that V splits as a direct sum of hyperbolic planes V =
H 1H,1---1H, where H,=Ru,®ORv, for 1<1=<m. The

basis {u,, v\, %, 5, - - -, Un, v,} is called a hyperbolic basis of V.

Suppose we have the above hyperbolic basis for V. For zx and
z in V, let

m m
r = leatuz + Z;’hm ’
= =

and

If Bz, w) =0, i.e., v, = 0, then

Ou,o() = [51 + 2a.m, + Zml (a7, — 5{%)]%

(*) n =
+ 771’01 + 2:32 [(5z + 771051)7/"@ + (7]'L + 771’\/12),0'6] .

If gz, v,) =0, i.e., a, =0, then
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avl.x<z) = 0,U, + l}?l — 20,7, + i‘; (am; + 7iai>:|”1
(*:k) . v=
+ % [(0; — 0.a)u, + (0, — 07)vy] .

A commutative ring R is said to have one in its stable range or
have stable range one if whenever o and @B are in R with (o, 8) = R
then there is a ¢ in R with a + 08 = unit. Stable range one rings
(both commutative and noncommutative) have been examined from
a ring theoretic viewpoint in [3], [4], [5], and [20]. The role that
stable range one rings play in linear algebra and the general linear
group is discussed in [1], [4], [7], [15], [21], [22], [23], and [24]. This
definition was extended in [9], [10], [14], and [16] to examine the
structure theory of quadratic forms, Witt rings and the orthogonal
group. In particular, in ([14], 3.1) it was noted that a ring having
stable range one was stably free and, hence, for our purposes their
symplectic spaces are direct sums of hyperbolic planes. Examples
of rings with one in their stable range are local rings, semilocal
rings, von Neumann regular rings, and zero dimensional rings.

Suppose R has 2 a unit and stable range one. It is straight-
forward to show that if (x, v, v, ---, ¥, = R then there are «,
o, -+, a, in B with

x+ ay, + - + a,y, = unit .

Returning to the above caleutation (*) (or (**)) suppose that
2 = >, 04; + >, N, is unimodular. Since 2 is a unit, we then have

(51’ 2771; _821 oy =y _Bm’ 77m> =R.
Thus, there exist ay, o, -+, Ap, Vo, Vs, -+ +, Tm With

0, + 2am, + 3 (@), — v,0,) = unit .

That is, if © = au, + -+ + U, + Vo0, + -+ + Vv, then
Ou,,x(2) = 0U, + v, + Z
where ¢ is a unit.

We will now develop a number of consequences of the above ob-
servation. First, is a sharpening of 2.3.

THEOREM 2.4. Let R be a commutative ring with stable range
one and 2 a wnit. Let V=H 1 W be a symplectic space over R
where H= Ru @ Rv s a hyperbolic plane. Let o be in Sp (V).
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Then there is a z in V such that
o= ou,zgungv,y¢56

where x 18 in (Ru)*, y s in (Rv)*', € is a unit, and ¢ is in Sp (W)
and each is uniquely determined by o and z.

Proof. Consider the unimodular vector o(v). By the discussion
before 2.4, there is an ESD-transvection o, , with

(0,,,0)) = 0,,(c(v)) =au +év+t (¢t in W)

where 6 is a unit. The result now follows from 2.3.

Let H = Ru @ Rv be a hyperbolic plane. Let E(u, v) denote the
subgroup of Sp (V) generated by the isometries of the form o,,
and o,, for suitable x and y. Let P(u, v) denote the group generated
by the @, for ¢ a unit. Finally, let E(H) denote the subgroup
generated by all ESD-transvections o, , and ¢,, where H = Ra @ Rb
and B(a, b) = 1.

COROLLARY 2.5 (under the hypothesis of 2.4).
(@) Sp(V) = E(u, v)P(u, v)Sp (W).
(b) Sp(V) = E(H)Sp (W).

Proof. Part (a) follows immediately from 2.4. Part (b) follows
from 2.4 and part (g) of 2.2 which shows each @, may be written
as a product of elements in E(H).

COROLLARY 2.6 (under the hypothesis of 2.4). The group E(H)
18 a normal subgroup of Sp (V).

Proof. Let z =o0,, be in E(H). Let p be in Sp (V). By 2.5,
0 = 0p where ¢ is in E(H) and p is in Sp (W). Then

ot = (00)(0,,.)(00)"
= 0(00,,,07)0™"
= 00,70 (by 2.2(b))

and this final product is in E(H).

Under the hypothesis of 2.4, the symplectic space V splits as an
orthogonal sum V =H, | --- 1 H, where the H, are hyperbolic
planes. On the other hand V = H, L. W. Since orthogonal comple-
ments are unique, W= H, 1 --- L H,. An induction argument will
now give the first part of the following corollary.
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COROLLARY 2.7 (under the hypothesis of 2.4). Suppose V= H, |
H, 1 ..- 1 H, is a decomposition of V into hywverbolic planes. Then

(a) Sp(V)=EH)EH,) --- E(H,). Thus, the symplectic group
Sp (V) s generated by ESD-transvections.

(b) FEach element in Sp(V) is a product of <6m ESD-transvec-
tions where m = (dim V)/2.

Proof. Part (a) is immediate. Part (b) follows from 2.4, 2.2(g)
and induction.

We next develop some transitivity results related to the calcula-
tions (*) and (**).

Let R have stable range one and V= H | W where H = Ru P Rv
is a hyperbolic plane. If z is a unimodular vector in V then, by
using (*) and the calculation prior to 2.4, there is an ESD-transvec-
tion ¢,, with

0,.)=0u+n+%z (Zin W)

where 6 is a unit. Let y = 6~'z. Then

00y0uo(R) = 0, ,[0u + 9V + Z]
= 0u + Nv + (Z — oY)
=ou + v .

That is, 0,,0,,.(2) is in the hyperbolic plane H.

THEOREM 2.8. Let R be a commutative ring with stable range
one and 2 a unit. Let V be a symplectic space over K. Then,

(a) Sp (V) is transitive on wnimodular vectors.

(b) Sp (V) is tramsitive on hyperbolic planes.

Proof. (a) Suppose z and Z are unimodular vectors in V. By

the above discussion, there are products ¢, and o, of isometries in
Sp (V) such that

0.(z) = ou + v

0,(Z) = ou + Nv
where 6, 6 are units and H = Ru P Rv is a hyperbolic plane. Consider
the vector 0,(z) = éu + nv. Then @;-1(0,(z)) = u + pv where ¢ = o7,
Then, using transvection 7 = 7,1,44,,;, We have

70,-1(0,(2)) = —v .

Similarly, a product of two isometries will carry ou + 7v to —w.
That is, there are products >}, and >, of isometries with
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;(Z) = —v= 2;(2) ’

ie., Dyt 3%, (2) = 2. This completes part (a). To show (b), let {u, v}
and {z, y} be hyperbolic pairs. Since w and z are unimodular, there
is a suitable product ¢ of isometries so that o(u) = x. Thus, with-
out loss of generality, assume w =2x. We need to carry v to y
while fixing u. Let y = au + év + w where w is in (Ru @ Rv)*.
Since 1 = B(z, y) = B(u, y) = 6, we have y = au + v + w. Then

{u, y} — {u, au + v} — {u, v},
Ou,—w Tu,—a
and we are done.

COROLLARY 2.9 (cancellation). Let R be a commutative ring
having stable ramnge one and 2 a wunit. If U, V and Y are
symplectic spaces with U L V=U L Y, then V=Y.

Proof. By an induction argument, it suffices to prove the result
when U = H is a hyperbolic plane. Let 6:H 1 V—-H 1 Y be an
isometry. Let H, = o(H) and V, = o(V). There is a product z of
elements in Sp(H 1 Y) withtH, = H. Then tH{ = H*,i.e.,tV, =Y.
Thus V=Y.

If V is a symplectic space of dimension 2 over a commutative
ring with stable range one, then Sp (V) is precisely the special linear
group SL (V) of V. In this case, the structure of SL (V) is given
in [15].

PROPOSITION 2.10 (under the hypothesis of 2.4). The center of
Sp (V) 18 precisely
{alla is im R and a®* =1} .

Proof. If dim (V) = 2, this is given in [15]. If dim (V) = 3,
the proof is analogous to ([13], Thm. 3.22).

Let A be an ideal of R. The natural ring morphism =, R —
R/A induces a surjective morphism T V— V/AV of symplectic
spaces where if V = (V, B) then (V/AV, B) is given by

E(”Axy 77-,1?/) = EAB(xy y) .

It is easy to see that R/A has stable range one if R has stable
range one, e.g., see (Prop. 2.6(a) of [14]). In turn, =, induces a
group morphism 7 ,: Sp (V) — Sp (V/AV) by

(1,40)(w ) = 74(0(2)) .
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A sgplitting V=H, L --- L H, of V into hyperbolic planes
induces a splitting of V/AV = H, | --- L H, into hyperbolic planes
where 7, H, = H,, 1 <i<m. BEach generator, i.e., ESD-transvec-
tion, in E(H,) has a preimage under 7z, in E(H,). By 2.7 these
elements generate Sp (V/AV). Thus, we have the following proposi-
tion.

PROPOSITION 2.11 (under the hypothesis of 2.4). The group mor-
phism 7. Sp (V) — Sp (V/AV), where A is an ideal, is surjective.

We now study the commutator subgroup of Sp (V). To achieve
the expected results we will see that we need units ¢ and 7 in R such
thate —n =1. If 3isaunit in R, then 8 —2 =1 and 3 and 2 will
do. More generally, we can always assure this will happen if R has
“2-fold” stable range one. Precisely, R has 2-fold stable range one
if whenever (a, b,) = R and (a, b,) = R then there is an a with
a, + ab, = unit and a, + ab, = unit. The concept of “k-fold stable
range one” rings was introduced in [7]. Suppose R has 2-fold stable
range one. Then, using (1,1) = R and (0, 1) = R we can find v with
1+ 7 =¢ (unit) and » = unit. Thus, we have units ¢ and » with
e—7n=1

If G is a group, denote the commutator subgroup of G by [G, G].

THEOREM 2.12 (under the hypothesis of 2.4). Suppose there
exists units € and 1) in R with ¢ — ) =1. Then

Sp (V) = [Sp (V), Sp (V)] .

Proof. It suffices to show that each generator ¢,, or o,, of
Sp (V) can be written as a commutator. Consider g,,,. Select units
cand 7 in R with e — 7 =1. Let o« =%'. Then

[@é, O'u,az] = @eo-u,axmzlo-;,laz
= OueniOur-ns (DY 2.2)
= o'u,(ea—a):c (by 22)

=0y,z «

The isometry o,, is handled similarly.

3. The congruence subgroups. Let A be an ideal of the ring
R. As noted in the previous section, the ring morphism z,: R — R/A
induces a group morphism 7x,:Sp(V)—Sp(V/AV). The group
morphism is in general not surjective; however, if RE has stable
range one and 2 a unit then it is surjective by 2.11.
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The general congruence subgroup of level A is
GSp (V, A) = ;' (center (Sp(V/AV)))
where 0 & A & R. The special cases are
GSp(V, R) =Sp(V), GSp (V, 0) = Center (Sp (V)) .
If 05 A& R, then the special congruence subgroup of level A is

SSp (V, A) = ker ()
={o in Sp(V)|n,0 = I}.

The special cases are
S8p (V, R)=Sp(V), SSp(V,0)={I}.

If @ is in R, then the order of «, denoted O(a), is the ideal
generated by «. If « is in V, then the order O(zx) of x is the
smallest ideal A of R satisfying n,x = 0. Note that if 2 = 3 a;b,
relative to a basis {b, b,, ---, b,}, then O®) = (&, @, ---, ). If ©
is in Sp (V), then the order O(o) of ¢ is the smallest ideal A satisfy-
ing 7,0 is in Center (Sp (V/AV)). That is, O(g) is the smallest ideal
A with ¢ in GSp(V, A)'. If G is a subgroup of Sp(V), then the
order O(G) of G is the smallest ideal A with G < GSp (V, A).

LemMMA 3.1. For the isometries in (2),
(1) 0(,.) = 0@), 0(a,.) = O@).

(2) O(z,,) = O0V).

(3) O =R.

(4) O@)=(—1).

THEOREM 3.2. Let R be a commutative ring and A be an ideal
of R. Let V=H 1 W be a symplectic space where H = Ru & Rv
18 a hyperbolic plane. Suppose

r=0u+7Nv+7
y=o0u+7v+y
@, ¥ in W) where x =y modulo AV. If § and 6 are units, then
there is an isometry o in SSp (V, A) with o(x) = y.
Proof. Let z =0"'9. Then
0,.(2) = 0u + N + (T — 607'F)
0,.(y) =0 + v
where 7, =7 — 8(07'%, Z). Set q =2 — 86~'Y. Since x =y modulo
! This ideal exists due to 2.10.
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AV, we have 6 = ¢ modulo 4 and ¥ = ¥ modulo AV, and consequent-
lyO(g)c A. Leto, =0,;,-1,. Then O(g,) C A, i.e., g,is in SSp(V, 4),
and
010,,,(x) = 0u + v
0,(y) = ou + 7v

where 6 and 6 are units. Since 6 = 6 modulo 4, we have 06~ =
modulo 4. Then

7'0:0,,(®) = U + M

70,,.(y) = 1 + a)u + \v
where 1 + @ is a unit and a« is in A. Then, @7}, is in SSp(V, A)
and

011, 97'0,,.(y) = u + tv
where A = ¢ modulo A. Let » = £t — a where a is in A. Then

Ot + 0) = u + [#t — a]v
=U + AV

where 7, ,, has order C A. That is, if ¢ = ¢,:0,9,.,0,%9;'0,0,, then

o(x) =y. Further, ¢ =1 modulo A and thus ¢ is in SSp (V, A).
This completes the proof.

We note that, using the calculations in 2.2, the above expression
for o0 may be rewritten as a product of ESD-transvections of orders
cCA.

Suppose R is a commutative ring with 2 a unit and 2-fold stable
range one (see discussion before 2.12): Let V=H, 1 --- 1 H, be
a decomposition into hyperbolic planes where H, = Ru, & Rv, for
1=i<m. Let

U = U, v=1,
@ =2.0"u; + 37v,, and
% 2

Yy = 2, 08u, + X 9P,

be unimodular vectors in V with = ¥ modulo AV. Since 2 is a
unit and « and y are unimodular,
(59’ 27]{&’ _32(1')’ 2(12), e, __3:‘), 775:;‘) =R

for ¢ =1, 2. Since R has 2-fold stable range one, it is straightfor-
ward to produce a,, a,, + -+, ®p, Vs, -+, Vm With
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o + 20" + 3 [am? — v,6] = p
J

where g, is a unit for < =1,2. Thus, if w=au, + - + AuU, +
YV, + -+ + V.¥, then (in the notation of 3.2).

Ouo(®) =0u+ 7 + %
Cuw(y) =0u + v+ 7

where 0,,.(¥) = 0,,.(y) modulo A and 6 and § are units. Combining
this discussion with Theorem 3.2, we have the next result.

THEOREM 3.3. Let R be commutative rimg which has 2-fold
stable range one and 2 a unit. Let A+ R be an ideal in R. Let
V be a symplectic space over R and E = {x in V|x is unimodular}.
Then SSp(V, A) acts as a transformation group on E and the
SSp (V, A)-orbits of E are precisely the congruence classes of E
modulo AV.

Thus, under the hypothesis of 3.8, then for x and y in £ we
have # = y modulo AV if and only if there is a ¢ in SSp (V, A) with
ox = y.

COROLLARY 3.4 (under the hypothesis of 38.3). The group
SSp (V, A) acts as a transformation group on the family 57 of
hyperbolic planes of V. Two hyperbolic planes H and H are in the
same SSp (V, A)-orbit if and only if n,H = n H.

Proof. The proof is similar to the proof of 2.8(b) or the proof
in the local ring case given in ([13], Theorem 3.24).

COROLLARY 3.5 (under the hypothesis of 38.3). The group
SSp(V, A) is generated by ESD-transvections of order contained in A.

Proof. The proof is analogous to the proof where R is a local
ring given in ([13], Theorem 4.9). The key idea is that if x =y
modulo AV then the ¢ in SSp (V, A) with o(x) = y may be written
as a product of ESD-transvections as was noted after Theorem 8.2

COROLLARY 3.6 (under the hypothesis of 3.3).

SSp (V, 4) = [Sp (V), GSp (V, 4)] = [Sp (V), SSp (V, 4)]

where A is an ideal of R.

Proof. The case A = R is given in the previous section. We
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may assume A = R. By reducing modulo A4, it is easy to see that
[Sp (V), SSp (V, A)]<[Sp (V), GSp (V, A)]cSSp(V, A) .

So it suffices to show that each generator of SSp(V, 4) is in
[Sp (V), SSp (V, A)]. Consider ¢,, where the O(x) C A. Select units
¢ and « as in the proof of 2.12. Then O(s, ,.) = O(c¢,,.)CA and, as
in 2.12,

Ouz =D, 0, ;

thus, o, is in [Sp (V), SSp (V, A)].
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