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This paper investigates transitive groups of direct isome-
tries, without fixed points, of hyperbolic n-space H\ For n = 2
there is a natural one-to-one correspondence between the set
of all such groups and the set of ideal points of H2. For
n ^ 3 there is an analogous collection of groups, which are in
several senses the simplest but not the only such groups.

The existence of a transitive group of transformations
without fixed points can be used to define an addition of
points in the transformed space. The idea of sums of points
in hyperbolic spaces has been used in probabilistic applications,
for example by Kifer and by Karpelevich, Tutubalin and Shur.
These involve a composition of measures based on the collec-
tion (not a group) of translations of H2 or Hz. The group
structure seems necessary for certain statistical questions,
such as characterizations of normal distributions, which were
in part the motivation for this investigation.

1* Some properties of Hn. Theorems about hyperbolic geo-
metry can be stated and proved in a variety of settings, and some
ideas are more manageable in one setting than in another. This
introductory section reviews the basic properties used in the rest of
the paper, grouped according to the setting in which they seem most
natural. Proofs are omitted, except for a few hints where the
references may not provide the needed generality.

The earliest setting for hyperbolic geometry is the synthetic or
axiomatic approach. The classical works of Lobachevsky and Bolyai
are still quite readable; both are included in Bonola [1]. A good
recent textbook, although limited to plane geometry, is Gans [6].
Eves [5], Chapter 7, is rather brief but does suggest some very useful
relationships to topics covered elsewhere in the book. The extension
to higher dimensions is actually not difficult; the very brief treatment
of IP in many standard textbooks (for example, Kulczycki [9], pg.
110-124), together with the standard results for En

9 should be suf-
ficient to point the way.

In this synthetic setting, two lines (or planes of any dimension)
are called parallel if they are nonintersecting but asymptotic. A
pencil of mutually parallel lines defines an ideal point of H*, and
we may say that the ideal point lies on each of the lines, or that
each of the lines passes through or contains the ideal point. Two
parallel planes have only one ideal point Ω in common, and they are
said to be parallel at Ω. The term "hyperparallel" is used in this
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paper to refer to hyperplanes or coplanar lines which are neither
intersecting nor parallel. Repeated use is made of the fact that two
hyper parallels have a unique common perpendicular.

The sum of measures of the interior angles of a triangle is less
than τr; thus, for example, the fourth angle of the Lambert quadri-
lateral in Fig. 4 must be acute.

Reflection in a hyperplane is an isometry, and all isometries of
H" are expressible as the products of no more than n + 1 reflections.
The proof and the extent of freedom in choosing the reflection mirrors
are exactly analogous to the euclidean case. Moreover, reflections in
perpendicular hyperplanes commute. The synthetic proof of this
fact is not completely trivial; a proof in the projective model is
suggested below.

The orthogonal trajectories of a parallel pencil of lines are called
orispheres (or oricycles if n = 2); they are open hypersurfaces of
constant curvature, and are said to pass through the ideal point of
the pencil. Each orisphere is isometric to a euclidean (n — l)-plane;
for n = 3 this was pointed out by Wachter in a letter to Gauss in
1816.

Toward the end of the 19th century several models for hyperbolic
geometry were developed. A conformal model credited to Poincare is
discussed briefly in Spivak [12], pg. lOff, and at more length for
n = 2 in Chapters 5 and 6 of Meschkowski [10]. The points of Hn

are represented by the points of Rn with zn > 0. Hyperplanes are
represented by the intersections of this half-space with spheres and
hyperplanes perpendicular to the hyperplane zn = 0. The fact that
angle measures and thus perpendicularity are reproduced is very
useful in some situations. For example, consider reflection across a
hyperplane H whose representative E is a "vertical" hyperplane.
The map of zn > 0 representing this reflection must be conformal,
must preserve the hyperplane zn = 0 and must leave each point on
E fixed, while interchanging the two half-spaces into which E sepa-
rates Rn. Thus the representing map is euclidean reflection across
E. The product of two reflections in parallel vertical hyperplanes is
a euclidean translation parallel to zn = 0. Also, two hyperbolic hy-
perplanes perpendicular to a line represented by a vertical line are
represented by concentric hemispheres, and again using only confor-
mality we see that the product of reflections in two such hyperplanes
is represented by a dilatation about the common center of the hemi-
spheres. These representations are used in the proof of Lemma 1.

Using the conformal model, Spivak ([12], pg. 20) sketches a proof
that orispheres are isometric to euclidean (n — l)-planes.

The setting for many of the arguments and all of the figures
of this paper is the projective model, in which lines are represented
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by open chords of a sphere Sf in En. Parallel lines are represented
by chords with a common endpoint, which represents the ideal point
common to the lines. Hyper planes are represented by the intersections
of the interior of S? with euclidean hyperplanes, and isometries of
Hn by projective mappings of En which leave £* and its interior
invariant. Details of the model are developed quite fully for n = 2
in Buchmann [2].

The most significant feature of the protective model which is not
immediately apparent is the relationship between hyperbolic perpen-
diculars and reciprocation. To any secant hyperplane E of a sphere
S^ in En is associated its reciprocal or pole Ef with respect to £f\
this is the common point (ordinary or ideal) of all hyperplanes tangent
to £f at points of £f Π E. In the projective model, the euclidean
lines representing hyperbolic perpendiculars to the hyperplane H
represented by E are concurrent (or parallel) in point Ef. In par-
ticular, if E passes through the center of Sf then Er is ideal, and
euclidean perpendiculars to E represent hyperbolic perpendiculars to
H. A euclidean yk-plane E has a reciprocal Er which is a certain
(n — k — l)-plane; and if E intersects S? then the euclidean (n — k)-
planes through E' and points of E inside S^ represent hyperbolic
(n — &)-planes perpendicular to the hyperbolic fc-plane represented
by E.

Let H be a hyperbolic hyperplane represented by E. Reflection
across H is represented by the protective map of En which maps each
point P to its harmonic conjugate with respect to the segment between
E and Ef along the line PE'. If E passes through the center of
.5t this projective map is euclidean reflection across E. Suppose Hj.
and H2 are perpendicular hyperbolic hyperplanes. We may choose a
projective model so that the representing euclidean hyperplanes Et

and E2 both pass through the center of S< Since Hx and H2 are
perpendicular, so are E1 and E2 (this holds only at the center of
S^\ elsewhere the model is not conformal). Because reflections in
perpendicular euclidean hyperplanes commute, so do reflections in
perpendicular hyperbolic hyperplanes.

The hyperbolic hyperplanes in a pencil Π, mutually parallel at Ω,
are represented by euclidean hyperplanes having a common (n — 2)-
plane T tangent to £t (Thus note that, if n > 2, not all hyperplanes
through Ω are parallel.) The poles of all euclidean hyperplanes through
T lie on a line t tangent to £f and perpendicular to T at the point
of tangency. Thus any secant &-plane through t represents a hyper-
bolic &-plane which is perpendicular to each hyperbolic hyperplane in
the pencil 77. Also, if H is any hyperbolic hyperplane not containing
Ω, then the pole of its representing euclidean hyperplane is a point
not on the hyperplane spanned by t and T, and thus there is one



130 ESTHER PORTNOY

and only one hyperplane in Π which is perpendicular to H.
This protective model, with points on and outside £f interpreted

as ideal and "ultra-ideal" points of Hn, is clearly a realization of the
projective space of lines through the origin in Rn+1. Specifically, each
ordinary point of H* corresponds to a line Xz (λ 6 jβ) for some z e Rn+1

such that Φ(z, z) < 0, where Φ(z, w) = —z°w° + z^w1 + + znwn.
Linear transformations of Rn+1 which preserve Φ induce isometries
of Hn; the transformation T and its composition with the mapping
z—> —z induce the same isometry on JET*. This interpretation allows
one to use information about groups of linear transformations to study
groups of isometries of Hn; this is the approach taken in Chen and
Greenberg [4].

Finally, note that Hn is a rank one symmetric space. Theorems
proved in the more general situation may yield useful results for
hyperbolic geometry; one such example is noted in § 5, where a theo-
rem of Chen [3] implies the existence of an ideal point fixed under
each element of a certain group of isometries of H*. Homogeneous
symmetric spaces of negative sectional curvature are probably the
most likely setting for generalization of the results of this paper.
I wish to thank the referee for suggesting several such generaliza-
tions, and for bringing to my attention the papers by Chen and
Greenberg.

2* Simple isometries of iP\ Any direct isometry of the hyper-
bolic plane can be expressed as the product of two reflections in lines,
and is classified as a rotation, an asymptotic rotation, or a transla-
tion, when the lines are respectively intersecting, parallel, or hyper-
parallel. Since proper rotations have fixed ordinary points, we will
be concerned primarily with maps of the other two types.

If n ^ 3 there are direct isometries of Hn which cannot be
expressed as the product of two reflections; for example, "screw
displacements" in JET3 (as in Ez) generally require four reflections.
Clearly the collection of all isometries expressible as the product of
two reflections does not form a group if n ^ 3. Several reasons for
restricting attention to such isometries are discussed in § 5. The
main theorem (§ 4) characterizes the transitive groups of isometries
of Hn, without fixed points, all of whose elements can be expressed
as products of two reflections in hyperplanes. We use the same
descriptive terminology as in H2.

A translation of Hn has a distinguished axis, the common per-
pendicular line of the two reflection mirrors. Points on the axis are
displaced a certain distance along the axis, while any other point
undergoes a greater displacement, increasing with its distance from
the axis. When we speak of a translation of length t along a line
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FIGURE 1

I, we mean that I is the axis of the translation and that the points
of I are displaced a distance t. The translation can be expressed as
the product of reflections in a pair of hyperplanes perpendicular to
I, where one may be chosen arbitrarily and the other is a distance
ί/2 from it.

An asymptotic rotation about an ideal point Ω is the product of
reflections in two hyperplanes which are parallel at Ω. Two such
hyperplanes determine a pencil of hyperplanes, mutually parallel at
Ω; the pencil may be said to be determined by a pair of hyperplanes,
by one hyperplane and an ideal point on it, or by a particular asymp-
totic rotation. A pencil of asymptotic rotations means the collection
(in fact a group) of all asymptotic rotations expressible as products
of two reflections in hyperplanes belonging to a given parallel pencil
Π; the same letter Π will be used to stand for either pencil. Any
asymptotic rotation can be expressed as the product of reflections
in two hyperplanes of the appropriate pencil, with one of them chosen
arbitrarily.

Each orisphere through an ideal point Ω is displaced along itself

FIGURE 2
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by an asymptotic rotation about Ω. This can be shown without much
difficulty by synthetic means. Alternatively, consider a conformal
half-space model of Hn in which Ω lies on all the "vertical" lines,
that is, those perpendicular to the boundary hyperplane zn = 0.
Orispheres through Ω are represented by "horizontal" hyperplanes
zn — c. We saw in § 1 that an asymptotic rotation about Ω is
represented by a euclidean translation parallel to zn = 0, which dis-
places each horizontal hyperplane along itself. Note also that the
product of two asymptotic rotations about i2, even if they belong to
different pencils, is another asymptotic rotation about Ω.

3* The groups GΩ. Let Ω be any ideal point of H*. Denote
by GΩ the collection consisting of the identity, all translations along
lines through Ω, and all asymptotic rotations about Ω.

LEMMA 1. GΩ is a transitive group of direct isometries of Hn,
without fixed points.

Proof. No element of GΩ, except for the identity, has an ordinary
fixed point.

For n = 2, GΩ is the set of all direct isometries of H2 under which
Ω is fixed, and thus is clearly a group. For % ^ 3 w e use a conformal
half-space model, as in the last paragraph of the preceding section.
Lines through Ω are represented by vertical lines, and translations
along them by dilatations about points in the hyperplane zn = 0.
The collection of all such dilatations together with translations parallel
to zn = 0 (which represent asymptotic rotations about Ω) forms a sub-
group of the group of all conformal maps of the half-space zn > 0;
thus GΩ is a group (in fact, a Lie subgroup of the group of isometries
of H*).

To see that GΩ is transitive on Hn, note that if the line PQ passes

FIGURE 3
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through Ω, then a certain translation along PQ maps P to Q, and if
P and Q lie on the same orisphere through Ω (i.e., if the perpendicular
bisector of segment PQ passes through Ω) then a certain asymptotic
rotation about Ω maps P to Q. If neither of these occurs, certainly
the composition of a translation and rotation will map P to Q. This
is in fact a translation, which we can construct explicitly. Let I be
the unique line through Ω and perpendicular to the perpendicular
bisector of segment PQ (see Fig. 3). Now an appropriate translation
along I maps P to Q.

4* The main theorem*

THEOREM. A transitive group on Hn, without fixed points, con-
sisting entirely of isometries which can be expressed as the product
of two reflections in hyperplanes, must be the group GΩ for some
ideal point Ω of Hn.

The theorem follows from three lemmas.

LEMMA 2. There is no transitive group of translations on Hn.

Therefore a transitive group without fixed points must contain
some nontrivial asymptotic rotations.

LEMMA 3. In a group as described in the theorem, the subgroup
of rotations about any ideal point Ω contains either the identity alone,
or all rotations about Ω.

LEMMA 4. A group which contains all rotations about an ideal
point Ω, and either a translation along a line not through Ω or a
rotation about some other ideal point, must contain proper rotations.

Thus a group as described in the theorem can contain only trans-
lations along lines through an ideal point Ω and asymptotic rotations
about Ω; that is, it must be a subgroup of GΩ. But since GΩ has no fixed
points, no proper subgroup could be transitive. The theorem follows.

Proof of Lemma 2. For n = 2, Lemma 2 is a consequence of a
stronger theorem of J. Nielsen [11], that a group of translations of
H2 is either one-dimensional (all translations having the same axis)
or discrete. Note also the generalizations discussed in Chen and
Greenberg [4]. The following argument is based on Nielsen's proof,
with some modifications necessary for n ^ 3.

Let G be a collection of translations of Hn, including the identity
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and inverses of all its elements, and suppose that G is transitive on
Hn. We will construct a proper rotation which is the product of
translations in G.

Given any ε > 0, there must be a translation τx e G of length
< s; let its axis be I. Let P be any point at a positive distance
< ε/2 from I, and let P ' = σf, the reflection of P across I. There
is some translation τ2eG mapping P to P\ Its axis m is perpen-
dicular to the hyperplane L of points equidistant from P and P'
(note that i c i ) , and the length of τ2 is less than ε.

Let ikf be the hyperplane through m and perpendicular to ί, and
choose hyperplane Q also perpendicular to I so that rx = oQσM. Simi-
larly set τ2 = <7s<7z. Using the fact that reflections in perpendicular
hyperplanes commute, we have

τ1τ2rr1τ'2~
1 = σQσMσsσLσMσQσLσs = σQσsσMσMσLσLσQσs

We claim that, if ε is sufficiently small, hyperplanes Q and S must
meet, but not perpendicularly; thus {σQσsf is a proper rotation. This
is obvious for n = 2 (see Fig. 4). For n ^ 3, consider Fig. 4 to
represent the 2-plane of I, P and P'; and suppose that s, m', # represent
the intersections of hyperplanes S, Λf, Q with this 2-plane. Since M
and Q are perpendicular to I, so are m' and q. M and S are perpen-
dicular hyperplanes, and M is perpendicular to the 2-plane of Fig. 4,
so 8 and m' must be perpendicular. The distance between m' and q
is equal to the distance between M and Q, both being measured along
i; this distance is less than ε/2. The distance between s and I is also
less than ε/2, because s must pass through P'. (Note that the dis-
tance between S and L may be much smaller.) Thus for ε sufficiently
small, s and q must intersect, and therefore S and Q intersect.

The hyperplane Q is perpendicular to the 2-plane of lines s and

i
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FIGURE 4
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q, so if S were perpendicular to Q its intersection s with the plane
of Fig. 4 would necessarily be perpendicular to Q and thus also to q.
But s and q cannot be perpendicular; there are no rectangles in the
hyperbolic plane. Thus Q and S are intersecting but nonperpendicular
planes. This completes the proof of Lemma 2.

Proof of Lemma 3. Let G be a group as described in the theo-
rem. Suppose that Ω is an ideal point about which there is some
nontrivial rotation σBσL in G. First we will show that every rota-
tion in the pencil Π determined by R and L must be in G. Let &
be a 2-plane through Ω, perpendicular to R and L, and let r = ΩΩ" =
& Π R and I = i2£' = ̂  Π £. (If n = 2, then r = Λ, etc.) Let £
be any oricycle in & through Ω; let P be any point of Σ inside the
triply asymptotic triangle ΩΩΉ"; and let P' = σtP. An element of
G, mapping P to P', must be of the form σLσMf where M is some
hyperplane through P and either parallel or hyperparallel to L. Then
m = M Π ̂  is a line through P, parallel or hyperparallel to Z. If
m Φ PΩ, m would meet r in an ordinary point, whence M would
meet R in an ordinary (n — 2)-plane, and thus {oBσL){σLσM) = σBσM,
a proper rotation in G. Thus we must have m = PΩ, so M is parallel
to L at Ω, that is, MeΠ. This means that every "sufficiently small"
rotation in the pencil Π belongs to G; thus every rotation in 77
belongs to G.

For n > 2 there are asymptotic rotations about Ω which do not
belong to Π, and we must show that these also belong to G. The
fact that rotations about Ω correspond to (euclidean) translations on
each orisphere through Ω suggests decomposing an arbitrary rotation
about Ω into a rotation in Π and another, "perpendicular" rotation,
as follows.

Let Q, Q' be arbitrary points on the intersection of some hyper-

FlGURE 5
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plane of Π and some orisphere through Ω. The hyperplane M equi-
distant from Q and Qf passes through Ω and is perpendicular to the
line QQfm, therefore M is perpendicular to every hyperplane of 77.
Also, Q is mapped to Q' by some element of G, of the form σMσH,
where H passes through Q and is parallel or hyperparallel to M. If
Ω 0 H, there would be a unique hyperplane L e 77 perpendicular to H,
and some other hyperplane R eΠ meeting H nonperpendicularly. Then
we would have σRσL e G (because R, LeΠ), σMσH e G (by the hypothesis
of t rans i t iv i ty) , and t h u s σBσLσHσMσLσBσMσH = σBσHσLσLσMσMσBσH —

(σBσH)2 e G, a proper rotation. We conclude therefore that Ω e H,
that is, H and M are parallel at Ω, determining another pencil of
asymptotic rotations about Ω, all of them elements of G.

If now P and P' are any two points on a common orisphere
through Ω, let R be the hyperplane of 77 through P, LeΠ such that
P' e σL(R), Q = oL{P)9 M the perpendicular bisector of segment P'Q,
and hyperplane H through Q and parallel at Ω to M. The above
paragraph shows that σMσHeG; but σLσBeG also, so σMσHσLσReG.
This is an asymptotic rotation about Ω, mapping P to P\ Therefore
G contains all asymptotic rotations about Ω, as required.

Proof of Lemma 4. Let σNσL be either a nontrivial asymptotic
rotation about Ω' Φ Ω, or a nontrivial translation along a line I not
passing through Ω. In either case the hyperplanes JV and L may be
chosen so that Ω lies on N but not on L. Let P be any ordinary
point of L, and let M be the hyperplane through P which is parallel
to N at Ω. Now σMσN is an asymptotic rotation about Ω, and the
product (σMσN)(σNσL) = tf^o^ is a proper rotation.

5* Other transitive groups on Hn+ If n = 2, all direct iso-
metries are expressible as products of two reflections, and so the
theorem of § 4 characterizes all transitive groups, without fixed points,
of isometries of H2. For n ^ 3 other groups are possible.

For example, let n = 3, choose some ideal point Ω, and consider
the collection G consisting of all asymptotic rotations about Ω together
with screw displacements along lines through Ω, such that the angle
of rotation is some function θ(t) of the length t of translation. In
order for this collection to be a group we require only that 0(£x + t2) =
0(*i) + #0U; but if G is to exhibit many of the properties of if3, more
conditions are called for. For example, G will not be a Lie subgroup
of the group of isometries unless θ(t) is continuous, that is, unless
θ(t) = ct for some constant c. Thus there is at least a one-parameter
family of groups for each ideal point Ω.

If n ^ 4 there are still more possibilities. The orispheres through
Ω are isometric to euclidean spaces of dimension at least 3, on which
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there are numerous transitive groups of isometries without fixed
points. Any one of these, combined with screw displacements or pure
translations along lines through Ω, gives a transitive group, without
fixed points, on Hn.

It is not accidental that each of these examples has an ideal point
fixed by each element of the group. A theorem of Chen [3, Theorem
4.1 (2)] implies that this is necessary, if G is to be a Lie group. The
necessity of a fixed ideal point is also suggested by the fact that
Brownian motion in hyperbolic space has an ideal limit point; see
Kifer [8]. Both of these results require negative curvature, but hold
in more generality, not just in hyperbolic spaces.

Among transitive groups without fixed points on En, the trans-
lation group is clearly preferred. One may ask whether the groups
GΩ have some analogous properties which justify preferring them over
other groups on jff*. The fact that any element of GΩ can be ex-
pressed as the product of two reflections is one such property. Two
less obvious reasons for preferring GΩ follow.

1. In E%

9 a translation displaces each point the same distance.
No isometry of H* (except the identity) does this; but translations
and asymptotic rotations displace the points of certain hypersurfaces
by fixed distances. The situation is essentially analogous to that of
simple rotations in En, which displace cylinders along themselves by
a distance which increases as one moves away from the axis of
rotation.

Note that an isometry without ordinary fixed points must have
exactly one or two ideal fixed points: at least one, by the Brouwer
fixed-point theorem, and not more than two else the ordinary plane
they span would consist entirely of fixed points. Suppose g has ex-
actly two ideal fixed points, Ω and Ω\ determining a line I. Then g
translates I along itself by some positive distance t. Let Q be any
point, and H the hyperplane through Q, perpendicular to I. g(H) is
another hyperplane perpendicular to ϊ, whose minimum distance from
H is t. Thus the distance between Q and g(Q) is at least t; indeed,
if the distance between Q and I is Ln(Q), then the distance between
Q and g(Q) is at least D, where

sinh — = cosh Lt{Q) sinh — .
Δ 2

(This is a simple exercise in hyperbolic trigonometry; see Gans [6],
pg. 162-166.) Moreover, this distance will be exceeded for at least
some points not on I, unless g is the translation of length t along
line L

Alternatively, suppose g has only one ideal fixed point Ω. Let Σ
be an orisphere through Ω, and Σr = g(Σ). Let π be projection from
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Σ' to Σ along lines through Ω. Note that Σ and Σr are each iso-
metric to En~\ and π corresponds to a direct similarity, with the
proportionality factor λ Φ 1 unless Σ and 2" coincide (in which case
of course π = ίdΣ). Thus τr#|j corresponds to a direct similarity of
JS7*"1; ϊiXΦl this must have an ordinary fixed point. But if PeΣ
were fixed under πg, then P, g(P) and 42 would be collinear, and the
line PΩ invariant under g; and then the other ideal point of this line
would also be fixed under g, contradicting the hypothesis. We con-
clude that g maps each orisphere through Ω onto itself. Since each
such orisphere is isometric to a euclidean space, g will displace each
point on a given orisphere through Ω by the same distance, if and
only if g restricts on each orisphere to a euclidean translation, that
is, if and only if g is a (simple) asymptotic rotation about Ω. (Note
that the distance of displacement varies from one orisphere to
another.)

2. When an origin is chosen in En, each linear subspace through
that origin defines a subgroup of the translation group; and the orbit
of any point in E* under such a linear subgroup is a linear subspace
of the same dimension. Again, we cannot do quite so well in Hn;
but orbits of points, under analogous subgroups of GΩf do lie in low-
dimensional linear subspaces.

Let G be any transitive group of isometries of Hn, without
ordinary fixed points but with a universally fixed ideal point Ω.
First consider the subgroup Gz mapping an arbitrarily chosen point
0 to points on line I = OΩ; note that I is invariant under each
element of Gz. The orbit Gt(Q) of a point Q not on I contains exactly
one point of each hyperplane perpendicular to I and lies on a "cylinder"
of points equidistant from I. The only plane curve through Q which
satisfies these conditions is that obtained when Gι is the collection of
pure translations along I. If Gt involves any rotations about i, there
are at least some points Q for which Gι(Q) is not planar. In par-
ticular, if n = 3, GΩ is the only transitive group of isometries of if3,
without fixed points, such that the orbits of points under Gt are plane
curves.

For n ^ 4, one additional condition characterizes GΩ. Again let
G be any transitive group without fixed points, with a universally
fixed ideal point Ω. Let 0 be an arbitrarily chosen point of Hn, let
1 = OΩ, and let & be any 2-plane through i. Consider the collec-
tion G> of elements of G mapping 0 to points of &. G& is a sub-
group of G if and only if & is invariant under each element of G^.
(This holds for any plane & if G = GΩ, and for some but not all of
the other examples given earlier; for n = 3 this condition provides
an alternate characterization of GΩ.) If G^ is a subgroup of G, and
Q is any point not on ^ , then the orbit G>(<?) contains exactly one
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point of each (n — 2)-plane perpendicular to &, and lies on a (con-
nected) hypersurface equidistant from &. The intersection of this
hypersurface with the 3-plane of Q and & consists of two 2-dimen-
sional surfaces, one of them containing Q. This surface coincides
with G^(Q) if G = GΩ; if G Φ GΩ there are at least some planes &
and some points Q such that G>(Q) does not lie in any 3-plane.
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