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If an nth order linear ordinary differential equation Ly =0
is disconjugate, then the sign of the Green’s functions is well
known. In this work, it is only supposed that Ly=0 is
(¢4, +++, i;)-disconjugate for certain values of 7, ---,7,, and the
sign of the Green’s functions for certain multipoint problems
is shown to be the same as when Ly = 0 is disconjugate. The
results extend earlier ones on two-point problems due to Peter-
son. The proofs simplify Peterson’s arguments in a way such
that the analysis of two-point problems is not only easier but
carriers over to multipoint problems.

1. Introduction and preliminaries. We concern ourselves
with a fixed compact interval [a, b] and real-valued solutions of the
nth order linear differential equation Ly = 0 where

Ly = y™ + p,_,@)y™ ™ + ... 4+ p(t)y

and p,€Cla,b],2=0, ---,n — 1.

For the basic facts about disconjugacy and Green’s functions,
the reader is referred to Chapter 3 of Coppel’s monograph [3]. As
usual, Ly = 0 is said to be conjugate on an interval I provided there
exists a nontrivial solution of Ly = 0 with at least n zeros counting
multiplicities on I; in the contrary case, Ly = 0 is said to be dis-
conjugate on I. If Ly = 0 is conjugate on the interval [a, 8], then
the first conjugate point of a, denoted by 7(a), is the infimum of
the numbers ¢ € (a, 8] such that Ly = 0 is conjugate on [a, t]. If

@y, -+, a, are distinet points in [a, b] and 4, ..., 7, are nonnegative
integers, then a function f defined on [a, b] is said to have (¢, - - -, ;)-
zeros at (a, ---, a,) if f has i; derivatives at a; and f*(a;) = 0 for

1<j=2k0514;, -1 If4,+.-. +4,=mn, then Ly =0 is said
to be (3, .-, 1,)-disconjugate on an interval I provided that no
nontrivial solution of Ly = 0 has (¢, - - ., 4,)-zeros at (a, ---, a;) for
any choice of a, -+, a;, in I with a, < ... < a,.

Consider the boundary-value problem (BVP for short)

Ly = f,y has (i, - -, i;)-zeros at (a, ---, az) ,
Wt oo Flh=nae=a < ... <a,=0b,

(1.1) {

and the polynomial
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P@&) = (6 — a)s - - (¢ — an) .

We will refer to (1.1) as the BVP assigning (i, ---, i,)-2eros at
(ay, ---, a;). If no nontrivial solution of Ly = 0 has (z,, - - -, 7,)-zeros
at (a,, ---, a;), then (1.1) is uniquely solvable for all fcCla, b] and
the solution is given by

vt) = [ [Gt, 97 e)ds, tela,b]

where G (¢, s) is the Green’s function. G(, s)eC([a, b] X [a, b]) is
uniquely determined by the requirement that, for each fixed s € (a, b),
g(t) = G(¢, s) must satisfy the three conditions: (i) Lg =0 on a =
t<s and s<t<b, (ii) g has (4, ---, 1,)-zeros at (a, ---, a;), and
(iii) ¢g9(s+0)— g”(s—0)=0 or 1 according as 0 =<+ <mn — 2 or
1 =mn — 1. For convenience, we make the following

DEFINITION. The polynomial P(t) is said to determine the sign
of G(t, s) if P(t)G(t, s) = 0 for all (¢, s)€[a, b] X (@, b) with equality
only when tef{a, ---, a}.

In a very important result, Levin (see the reference on p. 46
of [7] to Levin’s 1961 doctoral dissertation) and Cigkin [2] showed
independently that P(t) determines the sign of G(¢, s) when Ly =0
is disconjugate.

The disconjugacy of Ly = 0 obviously implies (4, - - -, i;)-discon-
jugacy whenever 4, +---+ 7, = n; however, it is possible for Ly =0
to be (¢, ---, i,)-disconjugate for certain values of 4, - .., 4, without
being disconjugate. Our results will provide new information only
when our assumptions are weaker than the assumption that Ly = 0
is disconjugate, and the reader is referred to the remarks at the
bottom of p. 177 of [9] pointing out some instances when this is
not the case. Numerous articles (ef. [10], [11], and [12] and the
references therein) have been written establishing relations between
different kinds of disconjugacy assumptions.

Sections 2 and 38 deal with two-point and multipoint problems,
respectively. In §4, an example is given which shows how completely
the sign of G(¢, s) can fail to be determined by P(t) in the absence
of any kind of disconjugacy assumption.

We now dispense with some preliminaries. We define the adjoint
operator L* in the same way as Hinton [6] and Peterson [9]. That is,
define the quasi-derivatives D, and the function classes 4,,7=0,-..,n
recursively by (i) 4, = C[a, b] and Dz = z for all z€ A4,, and (ii) for
1=sk=mn A, ={2€4,_;: D,_z€C'[a, b]} and Dz = (D,_2) +
(—=D¥p,_,(t)z for all ze A,. Then L* is defined by L*z = D,z.
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Throughout the paper, we let w,(t, 8), 0 <k < n — 1, denote
the principal solutions of Ly = 0 at s; that is, u,(t) = u,(t, s) is the
solution of Ly = 0 satisfying at s the initial conditions u{(s) = o,
(Kronecker’s delta), 0 <1 =<n — 1. Also, let 2,(¢,8), 0=k =n—1,
denote the principal solutions of L*2 = 0 at s. An important rela-
tionship between the principal solutions of Ly = 0 and L*z = 0 is
(see p. 168 of [9])

(1.2) (s, 0) = (—1)""D, 412 »(¢, 8) ,

p,q=0,...,n— 1lands, te[a, b]. In (1.2) as elsewhere in the paper,
for a function of two variables, say f(¢, ), we denote the ith partial
with respect to the first variable by f“(¢, ) with a similar inter-
pretation for quasi-derivatives.

Let W[fi(2), - --, fi(®)] = det(fi2(@), ¢, j=1, ---, k denote the
“Wronskian” determinant of sufficiently smooth functions f;, -, fi.
By Cramer’s rule, there is a nontrivial solution of Ly = 0 having
(p, » — p)-zeros at (a, B) if and only if

(13) W[u’p(B’ a); ] u”n—l(B’ a)] =0

wher we intrepret notations such as the left-hand side of (1.3) to
be the Wronskian of u,(t) = u,(¢, @), -- -, #,_,(t) = u,_,(t, @) evaluated
at t = g.

When discussing zeros and disconjugacy relative to the adjoint
equation L*z = 0, quasi-derivatives play the same role as ordinary
derivatives do for Ly = 0. We will use the fact that Ly = 0 is
(m — p, p)-disconjugate if and only if L*z = 0 is (p, n-p)-disconjugate
(see [6] or [9] for a proof).

2. Two-point problems. The theorem to follow involves the
hypotheses:

(H) Ly =0 is (p, q)-disconjugate on [a, b] and p + q = n.

H) Ly =0 1is (p, 1, ¢ — 1)-disconjugate and L*z =0 is (q, 1,
p — 1)-disconjugate on [a, b].

H,) Ly =01 (p— 1,1, q)-disconjugate and L*z =0 ts (¢ — 1,
1, p)-disconjugate on [a, b].

THEOREM 2.1. If either

(i) H),H,) and L=qg=n— 2,
or

(i) (H),H,) and 2<g=<n — 1,
holds and G(t, s) is the Green’s function for the BVP assigning (p-q)-
zeros at (a, b), then P(t) determines the sign of G(t, s).
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Proof. Suppose (i) holds. It follows from (H) that
(2.1) Wilu,(t, a), -+, Uy i(t,@)] 0, a<t=b.
We consider the funetion g(¢, s) given by
(2.2) g(t, 8) = a,(sHu,t, a) + -+ + a,_(Su,,(&,a), a=t,s=b,
where a,(s), - .-, a,_,(s) are chosen so that

g9, s) + uPyb,s) =0 0=i<qg—1)

holds. Such a choice is possible since (2.1) is valid. Then G(t, s) is
given by

g(t, s), a<t<s=<b

(2.3) G(t, s) =
9@, 8) +u,,(t,s), a=s=t=b

since G(t, s) defined by (2.3) has the properties required of the Green’s
function.

Now consider the gqth order differential operator M defined for
y(?) € C'(a, b] by

(2.4) My =Wlu,(t, a), ---, u,(t, @), yl/ Wlu,(t, a), ---, u,,(&, a)] .

The equation My = 0 is normal (i.e., has continuous coefficients with
the coefficient of the gth order term nonvanishing) on the interval
(a, b].

Fix a point (¢, s,) € (a, b) X (a, ). Now g < n — 1 since (i) holds
so G(t, s,) as a function of ¢ is in C%a, b] and

0, a<t<s
MIG(t, 5] =
LG4 80)] {M[un—-l(t’ 30)] y S St=DH.

Since G(t, s,) € C%(a, b) has a qth order zero at ¢t = b, then
G(t, s) = S:K(t, OMIG(z, s)ldz, a<t<b,

where K (t, 7) is the Cauchy function for the equation My = f.
Considering separately the cases a <t < s, and s, <t < b and using
the above expression for M[G(t, s,)], one obtains the representation

b
—S K(t, DM, .z, s)lde, a<t<s,,
0

(25) G<t7 30) = 3
— StK(t, OMlu,_(c, s)ldc, s, <t=<b.

For fixed 7z, K(t, 7) as a function of ¢ is a solution of My = 0 with
g — 1 zeros at £ = 7. Since u,(¢, @), -- -, %,_,(t, a) form a solution basis
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for My = 0, K(t, ) may be extended continuously to ¢ = a and has
P zeros at t = a. Hence, by the (p, 1, ¢ — 1)-disconjugacy of Ly =0,

(2.6) Kit,7)#0, a<t<t<bh.
We now proceed to show that
2.7 Mlw,_(z,8)]#0, a<s<t==hb.
Let
Z(8, 7) = M[u,_,(z, s)]Wlu,z, a), -+, ups(t, )], a<s<z=DHh.
By (1.2), Z(s, ) equals the determinant

(_1)pDn—1—pzn—1(a; T) ¢t (—l)”_lzn—l(a, T) (——1)”—1z'lb—-1(s, T)
(—1)p+1Dn—l-—pzn—2(a, T) e (_1)nz'ﬂ—2(a’y 7‘-) (_1)%z1¢—-2(8’ T)

(=)D, s 2,1 4(a, T) -+ (=120 (@, T) (—1)" 2, (s, 7)) .

Note that Z(s, r) is a nontrivial linear combination of z,_.(s, ), - -,
2,-.(8, 7) since the (g, p)-disconjugacy of L*z = 0 implies that the
coefficient of z,_,(s, 7) is nonzero. Fix 7e(e, d) and let 2(s) = Z(s, 7),
a < s <7z7. Then 2(s), extended continuously to the interval [a, 7], is
a nontrivial solution of L*z = 0 with ¢ zeros at s=a and p —1
zeros at s = 7. Hence, by the (q, 1, »p — 1)-disconjugacy of L*z = 0,
it follows that (2.7) is valid.

We see from (2.5), (2.6), and (2.7) that G(¢,s) # 0 for (¢, s)e
(a, b) X (a, b). To determine the sign of G(Z, s), we note that, for
b, with ¢ < b, < b, the Green’s function for the BVP assigning (p, q)-
zeros at (a, b)) exists, call it G(¢, s, b,). If (%, s)e(a, b,) X (a, b,), then
(2.5) implies that 0G(t, s, b,)/0b, is nonzero and has the same sign as
G(t, s, b); hence, |G(t, s, b)| increases as b, increases. Now pick
points b, and ¢, such that a < ¢, < b, < b and Ly = 0 is disconjugate
on [a, b]. Then P(t,)G(t, t,, b)) > 0 since Ly = 0 is disconjugate on
[a, b,]; moreover, |G(t, &, b,)| increases as b, increases from b, to b
so P(t)G(t,, t,, b) > 0. Therefore, P(t)G(t, s,b) >0 for all (¢, s)e
(a, b) X (a, b) as desired.

The proof is very similar if (ii) holds. In this case, one lets

g(ty S) = Bq(8>uq(t, b) + -0+ Bn—l(s)un—l(ty b) and
9, 8) — Upa(t,8), a=t<8s=Dh

G(t =
(&) 9@, s) , a<s<t=sb,

and solves for B,(s), - -+, B._1(s). We leave the details to the reader.

REMARK. The proof of Theorem 2.1 actually yields that |G(¢, s)|
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increases as the right endpoint increases when (i) holds; that is, if
(i) holds and @ <b, < b, < b and (¢, s) € (a, b,) X (a, b)), then |G(%, s, b,)| <
|G(t, s, b,)|. Similarly, |G(¢, s)| can be seen to decrease as the left
endpoint increases when (ii) holds. Such monotonicity has been
studied by Bates and Gustafson [1] when Ly = 0 is disconjugate.
Theorem 2.1 is essentially Theorem 6 of Peterson [9]. Both
draw the same conclusion, but Theorem 2.1 has fewer hypotheses
since Peterson assumes (H), (H,) and (H,) all hold. The key ideas of
considering the Cauchy function for the operator M defined by (2.4)
and utilizing (1.2) in the proof are due to Peterson; however, Peterson’s
proof is considerably more complicated and depends more heavily on
the adjoint equation. The greater simplicity is achieved because
(2.5) is a simplification of the representation which Peterson obtains;
furthermore, it is just this simplification which makes it possible to
extend the results to multipoint problems as in the next section.

3. Maultipoint problems. As well as (H), we will be interested
in the following hypotheses:
H) Ly =0 s (p, 1, ..., 1)-disconjugate or [a, b] (meaning

(D, 1y + - +y Gu_p)-disconjugate where j, = --- = j,_, = 1).
(H) Ly=0is(1, ---, 1, g)-disconjugate on [a, b] (that is, (4,, - - -,
Jn-g Q)-disconjugate where j, = ... = j,_, = 1).

We now state a result due to Peterson [11] which will be instru-
mental.

LemmaA 8.1. Ly =0 48 (44, - - -, i,)-disconjugate on [a, b] provided
that 4, + --- + 1, = n and either

(i) (H), (Hy) and i, = p,
or

(ii) (H), (Hy) and 1, = g,
holds.

Under the hypotheses of Lemma 3.1, Green’s functions for
numerous multipoint problems exist, and we determine the sign in
what follows. Lemma 3.2 below is also due to Peterson. For the
proof, see Theorem 1 of [11] and Remarks 8, 9, and 10 of [9].

LeEMMA 3.2. Ly =0 is (iy, -+ -, 1,)-disconjugate on [a, b] f 1, +
coo + 1, =n and either
(i) 4, =p and Ly =0 s (i, n — 1)-disconjugate on [a, bl, 1 =

D, e, N — 1’
or

(ii) 4, =q and Ly =0 is (n — 1, 1)-disconjugate on [a, b], 1 =
g, -+, N — 1?
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holds. The same statement is true for the adjoint equation L*z = 0.

We now prove a 1e5nma which supplements the sign information
contained in the Levin-Ciékin theorem.

LEMMA 3.3. Suppose Ly = 0 is disconjugate on [a,d],a < a =
a, < - <a,=pR<b, and G(, s) is the Green’s function defined on
the square [a, b] X [a, b] for the BVP assigning (i, ---, iy)-zeros at
(@, -+, a,). Then Pt)G(t,s) =0 on the rectangle {(t,s):a <t < b,
a < s < B} with equality only when tefa,, -+, a.}, P&)G(, s) > 0 on
each of the triangles {({,s):a =t <s=a} and {(t,s): 3 =s <t = b},
and G(t, s) = 0 on each of the quadrilaterals {(f, s):a £t <b,a < s <
a,s=tland {¢,s);a=t=bB=s=bHt=s}

Proof. The argument on pp. 107-108 of [3] given for the square
[a, B] X (a, B) can be seen to be valid for (¢, s) in the rectangle
[a, b] X (a, B) so the rectangle conclusion follows. Suppose s is fixed
with ¢ £ s < a. As a function of ¢, G(¢, s) satisfies Ly = 0 and has
n zeros on [s, b] from which it follows that G(¢, s) = 0 for te[s, b]
and G(t, s) = —u,_,(t, s) for t e[a, s]. Similarly, for s <s<b, G, s) =
0 for tela, s] and G(t, 8) = u,_,(t, s) for te[s, b]. The rest of the
conclusions now follow completing the proof.

We now give the main theorem.

THEOREM 3.1. Suppose i, + -+ + 1, =n,k =3, and either

(i) H), H,), 1, = p and L*z = 0 is (g, 1, p — 1)-disconjugate on
La, B],
or

(ii) H), (H), 1, = q and L*z = 0 is (¢ — 1, 1, p)-disconjugate on
[a, 8],
holds. If G(t, s) is the Green’s function for the BVP assigning
(%4, * -+, 1p)-2eros at (a, - -, a;), then P(t) determines the sign of G(t, s).

Proof. The proof is much like that of Theorem 2.1 with a
Green’s function for the operator M now playing the role played by
the Cauchy function in the proof of Theorem 2.1. Suppose (i) holds.
By Lemmas 3.2 and 3.3, it suffices to prove the result when i, = p.

Let g(t, s) again be the form (2.2) where a,(s), ---, a,_,(s) are
now chosen so that

9% a;, 8) +ul(a;,8) =0 CQ=<j=<k0=I1=<4;—1)

holds. G(t, s) is again given by (2.8) and M is again defined by (2.4).
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This time we pick a point (¢, s,) in (@, b) X (a, b) and then choose
a point @ with o < a < min{a,, t, s,}. The equation My =0 is a
normal, gth order, disconjugate equation on the interval [, b]. Let
Gu(t, s) be the Green’s function for the problem

My = f, y has (4,, - -, 9;)-zeros at (a, *--, @)
on the interval [a, b]. G(¢, s,) as a function of ¢ is in C‘Ya, b] and
has (4,, ---, 1,)-zeros at (a,, ---, a,); hence, we arrive at
b
(3°1) G(ty SO) = S GM(t, T)M[un—l(z-, 80)]dT ’ (44 é t é b ’
30

in place of (2.5). The same argument as in Theorem 2.1 shows that
(2.7) again holds. It now follows from (3.1), Lemma 3.3, and (2.7)
that G(t, s,) # 0 unless ¢, €{a,, ---, a,}.

It remains to be shown that P(¢) and G(t, s,) are of the same
sign when both are nonzero. This will follow from Lemma 3.3 if
we can establish that

(3.2) Mu,_(7,8] >0, a<s,<7t<bh.
Consider s, fixed and let w(z) be defined by
w(T) = Wlu,(z, @), -+, Uo7, @), Uys(T, 8)], S5 =7<Db.
The first nonvanishing derivative of w(z) at = = s, is
(3.3) wPN(s,) = Wlu,(sy, @), <+, Up_1(So, @)] -

Hence, (3.2) follows from (2.4), (2.7), and (3.3) completing the proof
when (i) holds. A similar argument suffices when (ii) holds.

The next theorem follows at once from Theorems 2.1 and 3.1 and
Lemma 3.2.

THEOREM 3.2. Suppose i, + -+ + i, = n and either

(i) 4, =p and Ly =0 is (i, n — 1)-disconjugate on [a, b], 1 =
p—1 -, m—1,
or

(ii) 4, =q and Ly =0 1s (n — 4, 1)-disconjugate on [a, b, ¢ =
q— 1’ R 1,
holds. Then P(t) determines the sign of G(t, s) where G(t, s) is the
Green’s function for the BVP assigning (i,,- -+, i,)-zeros at (a,-- -, ay).

With exactly the same disconjugacy hypotheses as in Theorems
11 and 12 of [9], Theorem 3.2 shows that P(¢) not only determines
the sign of two-point problems but determines the sign of multipoint
problems as well.
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4, An example. In Remark 7.3 of [4], Gustafson claims that,
if Ly = 0 is conjugate on [a, b], then the inequality

(4.1) G(t, s)/Pt) >0, a<s<b, a<t=<bh,

may fail at a finite number of points. This seems to indicate that
the set of points where (4.1) fails cannot be infinite; however, known
results (see Theorems 4 and 5 in [8] and the reference in [8] to
earlier Russian literature) show this to be false. It is still of interest
to question the location of the points (¢, s) in the square [a, b] X
[a, b] where P(t)G(t, s) < 0. For example, the proofs of Theorems
4 and 5 of [8] produce points close to the line ¢ = b where P(t)G(¢, s) <
0. It is reasonable to question whether all such points must lie
outside the square [a, 7,(a)] X [a, 7.(a)]. Also, in the case of discon-
jugacy, the zeros of G(¢, s) along the line s = s, where a < s, < b
are isolated (see Lemma 15, p. 107 of [3]). Perhaps this property
still holds even when Ly = 0 is conjugate on [a, b].

We present in this section a third order equation on the interval
[0, 4] where the Green’s function for the BVP assigning (2, 1)-zeros
at (0, 4) is zero at all points on the horizontal line segment {(¢, s);
s =1,0 =<t <1} and changes sign on each vertical line crossing this
line segment at a point (¢, 1) with 0 < ¢, < 1. This answers the
questions raised above in the negative.

Let u, v, w,W be defined by

ut)=1—-1t, @ =1, wit=0¢—-10t-1,
W(t) = 2t° — 6¢* + 10 .

Then W(t) is the Wronskian of wu(t), v(t), w(t) and is nonzero on the
interval [0, 4]; hence, we find p, q, » € C[0, 4], such that u, v, w form
a basis for solutions of

Ly =y"" + p(0)y" + q@)y’ + r)y =0, tel0,4].

Any function having a double zero at ¢ = 0 is a constant multiple
of v(t) and v(4) # 0; hence, the Green’s function for the BVP assigning
(2, 1)-zeros at (0, 4) exists, call at G(&, s).

We now calculate 7,(0). Let z(f) = w(t) — 4u(t). Then z(¢) has
a simple zero at ¢ = 0 and, since () = 0 for £ > 0, the results of
"Sherman [13] show that 7,(0) is the first zero of W[wv(¢t), 2(¢)] to the
right of ¢ = 0. A short calculation shows 7%,(0) = 1/5/2; hence,
7(0) > 1.

The Green’s function may be written as

(—1/16)u,(4, s)t*, t<s

Gt, 8) = (—1/16)u (4, 8)t* + uy(t, 8), t=s.
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Let 1 denote the line segment I ={(t s);0<t<1, s=1}. Then
G(t,s) =0 for all (¢,s) on I since u,(4,1) =0. We now calculate
0G(t, $)/ds at points on I. By using either Peano’s formulas (see p.
95 of [5]) or (1.2), one sees that

O st 8] = —tnalt, 8) + Uas(t, ) -
0s

Applying this, we see that

oG(t, ) 3¢?
—n ==, 05t<1.
0s (1) 16 <

Therefore, G(t, s) changes sign on any vertical line passing through .
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