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ON INCOMPLETE POLYNOMIALS. II

E. B. SAFF AND R. S. VARGA

The approximation of x™ by incomplete polynomials is
studied, i.e., we consider the extremal problem

k
E, i:= inf{ ™+ 2 dyan
=1

:(dlv""dk)eRk}y ngk’
[o,1]

for the supremum norm on [0, 1]. We show that, for 2 fixed,
n*E, . — &, as n — oo, where

k-1
6= inf«{ et (t’“ s a,»t")
7=0

ay, "',ak—l)eRk} .

[0, +o0)

A generalization of this result for the case of lacunary
polynomial approximation is given, as well as inequalities for
E, i and ¢,.. Furthermore, we prove that for any polynomial
P(t) of degree at most 2, there holds for the supremum norm
le"*P®)lro, +r = lle"*P(#)llro, 202+

1. Introduction. In this note, we continue our investigation
[6], [7], [8], [3], of incomplete polynomials, a subject first introduced
by G. G. Lorentz [4]. Following the notation of [7], if x, denotes
the set of all real polynomials of degree at most %, then for each
pair (s, k) of nonnegative integers, =, , denotes the set of polynomials

(L.1) Ty = {2°q(®): @, e 7.},

so that =,,C7,,. A polynomial in 7w, is called an incomplete
polynomial of type (s, k). For any set K C R, the norm || - || shall
denote the supremum norm on K, i.e., [|gllx: = sup{|g(®)|: x € K}.
Setting

(1.2) E,.: = inf{]|2*(@* — q@)|lp: qems}, 7t ={0},

it is known [7] that, for each pair (s, k), there exists a unique monic
polynomial Q, ,(x) €7, , of exact degree s + k, such that ||@, .|lwu =
E, ..

In a recent paper, Borosh, Chui, and Smith [1] established that
for any positive integer k, there exist positive constants o,(k) and
o,(k) such that

(1.3) o,k) < n*E, .. =<o0,k), VYn>k.

They also proved that the coefficients of the extremal polynomials
Q._1.:(x) are bounded as n — .
One aim of this note is to derive (ef. (3.3)) explicit upper and
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162 E. B. SAFF AND R. S. VARGA

lower bounds for #*E,_,, for all » > k. But more importantly, we
prove (in Corollary 2.3) that the limit of #n*E, ., as n — « exists
and is given precisely by

(1.4) limn*HE, ,,=¢,, Yk=0,
where
(1.5) &: = Inf{[|e~*(t* — (£)) [lto, 4o D € Ty} -

Since, after suitable normalization, the extremal polynomials for (1.2)
are L”-analogs of Jacobi polynomials, and the extremal polynomials
for (1.5) are L™-versions of Laguerre polynomials, our essential con-
tribution is to show, as in the L*setting, that L>-Laguerre polynomials
can be obtained as the limit of certain L>-Jacobi polynomials.

A generalization of the inequalities (1.8) to the case of lacunary
polynomials is also proved in [1]. As a consequence of our main
theorem, we derive the best possible result for this case as well (cf.
Corollary 2.2).

The outline of the paper is as follows. In §2, we prove our
main result and deduce as corollaries the limit (1.4) and its analog
for lacunary polynomials. In §3, we derive inequalities for incom-
plete polynomials, and in §4 we study the quantities ¢, of (1.5).
We also prove in §4 (cf. Theorem 4.2) that for any polynomial
Per,, there holds

(1.6) e P&l +or = Ile"P(8) [lto,21 -

Moreover, the interval [0, 2k] is best possible in an asymptotic sense,
as k— oo,

2. The main result and its consequences. Our primary objeec-
tive is to prove

THEOREM 2.1. Let the k + L integers 0 < pt, < pt, < -+- < 4, < 'm
be fixed, and, for each monnegative integer n, set

k
@.1) E,: = inf {’ w“(x’” -> cjx”f> i(ey, +-, 01 € R"} .
=1 fo,11
Then,
2.2) lim n*E, = S 1T (m — p,)

-0 k! i=1

where ¢, is defined in (1.5).
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Before proceeding with the proof, we remark that by Descartes’
rule of signs, the linear space generated by the functions x™+#, g+,
..., x** 6 gatisfies the Haar condition on (0, 1], and hence (cf. [5, p.
16]), the extremal problem (2.1) has a unique solution for each »n =
0, i.e., there exist unique constants c¢}(n), 5 =1, ---, k, such that

k
(2.3) = } x"(x"‘ - > cf(n)x"f> , Yn=0.
j=1 [0,1]
For notational convenience, we set
k
(2.4) p¥x): =™ — D ef(n)x*, Yn=0.
=1

The proof of Theorem 2.1 requires the following lemmas:

LEMMA 1. (Lorentz [4], Seff and Varga [6]). Let P(x)(%£0) be
an incomplete polynomial of type (s, m), where s+m>0. If |PQ)|=
I Pl with L0, 1], then s8*/(s + m)! = = L.

LEMMA 2. For each n, the polynomial x"pk(x) (cf. (2.4)) has an
alternation set of k + 1 points in [n*(n + m), 1], i.e., there ewxist
points {C,; .}, with

(2.5) Wl +mP<C,<- - <§a.=1
such that
(2.6) GuwiCn) = (D"E,, 1=0,1,--- k.

Consequently, pi(x) has k distinct zeros in (n*/(n + m)%, 1), and, as
n — oo, these k zeros all tend to x = 1.

Proof. From the fundamental property of Haar system approxi-
mation (ef. [5, p. 20]), z"p¥(x) has an alternation set consisting of
k 4 1 points in [0, 1] and, by Lemma 1, these points must all belong
to [n¥(n + m)?, 1]. O

LEMMA 3. Set ty..: = m. Then, for the polynomials pi(x) of
(2.4), we have, uniformly on each compact set of R,

C(/"l, O) C(lu2) 0) cee C(#k-i—l, 0)
C(, 1) Cle, 1) o CWyss, D
@.7) lim pi(z) = A-l—det : : : ,

Cle, b — 1) Ctoy ko — 1) -+ Clttprs, k — 1)

xﬂl xl‘Z “ee xl‘k+1
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where C(t;, 1) denotes the bz’nomiql coeffictent (ﬁ;f>, and where A: —
det [ai,:i]: ;0 = C(ﬂj, 7 — 1), ’L-, j = 1, 2, S k.

Here and below, we adopt the usual eonvention that C(y;, 1) =0
if p; <.

Proof. Let z, x{, ---, i denote the k zeros of p}(x)in (0, 1)
(cf. Lemma 2). Then, we claim that p}(x) can be expressed as

(n) (n) (n)
Qp1 Qg 00 Qg
(n) (n) (n)
Q1 Qe 0 Qg
(n) a(m .. (n) ’ ’
Q3,1 2,2 * Akt
(n) (n) (n)
. . . . ) as” o oasy - Aoy
(2.8) p,,(x) = det : : : =+ det . . ’
(n) (n) (n) . . .
Qi1 Az = Qg letr
(n) (n) (m)
Qp,1 Qg Gk
e K2 ... gt

where each entry a{* is the (4 — 1)-st order divided difference of
the function f;(x): = ®*/ in the points xz™, x™, ---, ¥, i.e.,

2.9) ai™: = file™, ™, -, 2™, i=1, -,k j=1,---,k+ 1.
7

To see this, the polynomial defined by the right side of (2.8) is
evidently monie, vanishing for xz™, -.., 2, and is thus p}(x) by
uniqueness. Now as » — co, we have from Lemma 2 that z™ — 1
for each 7 =1, -, k, whence

(i--1)
@10) limait = L = 0y, i -1, =1, k=1, kL

Furthermore, the limit of the denominator determinants in (2.8),
which is A from (2.10), is different from zero because it can be
expressed as a nonzero constant times the Vandermonde determinant

in the distinet points g, t, - - -, pi(ef. [2, p. 47]). Thus, (2.7) follows
from (2.10) and (2.8). 7

We note from (2.7) that lim,.. p*" (1) = k! B/A, where B: =

det [b,,;] with b,; = C(¢4;,7 —1),%,5=1,2,---, k + 1. Since B equals

¥, (21)"! times the Vandermonde determinant in the points g, tt, -- -,

P = m, and since A equals ¥z (2!)~' times the Vandermonde
determinant in the points g, £, ---, ¢, we have that

(2.11) lim p3™“(1) = ﬂ (m — p;) .

n—o00

This fact will be useful in the
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Proof of Theorem 2.1. As stated in Lemma 2, the polynomial
2*p¥(x) has k 4+ 1 alternations in [#*/(n + m)’, 1]. Hence on replacing
2 by 1 — t/n, the polynomial (1 — t/n)"q,(t), where ¢,(¢): = p}(1 — t/n),
has k& -+ 1 alternations in the interval

nZ

><2m.

Furthermore, for each fixed o = 2m, we have (cf. (2.3))

218)  WE, = 2w @)oo = (1 - L) w0

, Vn=e.

[o,e]
Next, we claim that the sequence {n*q,(f)}:-, is uniformly bounded

on compact sets of the real line. Indeed, by Lemma 2, we can write

(2.14) pi@) = P) 11 (@ — af"),

where P,(x) is a monic polynomial of degree m — k, and n*/(n + m)* <
2™ <1 for each 1 =1, ---, k. Thus,

2.15)  miq,(t) — (-1)1613”(1 - _;_) Iil (t — t;M) Lt = m(l — 2

Next, on differentiating k-times the product in (2.14) via Leibniz’s
formula, we obtain

. t 1 .. 25 t 1 .. (k)
1 n( __)_—_ * ( __>—____ * ,
nlfg Pl1 " ! igg D 1 " ' lim p% *(1)

n—>00

uniformly on each compact subset of R, the last equality following
from (2.7). Thus, from (2.11),

(2.16) lim Pﬂ(l - %) - i' fl (m — ) =27,
so that, with (2.15), and the fact that each ¢ ¢ (0, 2m) it follows,
as claimed, that {n*q,(¢)}3_, is uniformly bounded on compact sets of
the real line.

Now, let ¢*(t) be any limit function of the sequence {n*q.(t)}i-:.
Then by (2.15) and (2.16), ¢*(t) is a polynomial of degree %k of the
form q¢*(t) = (—1)*yt* + ---. Since e '¢*(t)(#0) is a limit function on
[0, o] of the sequence {(1 — t/n)"n*q,(t)};-,, and since each function in
this sequence has k + 1 alternation points in [0, p], the same must
be true of e~g*(t). Consequently, ¢*() must be the unique solution
of the extremal problem

2.17)  e(0): = inf {[[e*q(®) |l 9@O) = (—=D)*¥E* + --- em} .
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But this implies that {n*q,(f)};-, has a unique limit function and, from
(2.18), that

(2.18) lim n*B, = [|e~g*(®) n.n = £(0) -
Finally, since (2.18) holds for all p = 2m, we have with (1.5) and
(2.16) that

(o) = inf {||e~*q(®) [lio,+er: @(t) = (—1)*vt* + -+ - e my}

:'Yek:“s-k‘ﬁ(m—#')-
k! i=: !

This, coupled with (2.18), gives the desired result of (2.2). O
As applications of Theorem 2.1, we now give the sharp improve-
ments of the results in [1]. For this purpose, let k¥ > 0 be a fixed

integer, and let A,: = (\y(n), My(m), - - -, Ni(n)), where the integers \;(n)
satisfy

0= M) < N(m) < oo < N(m) <m0

Then, for the extremal problem

k
o+ S bt : (b, - bk)eR"} ,
i=1

(2.19) &(,): = inf {’

fo,11

we have

COROLLARY 2.2. If m—nMMm) =D and C=Zn — N(m) for all
large n, where C, D are integers and C = 1, then

C+k—1 D
(2.20) < - I )ek < lim »*'&(\,) < limn*& Q) = <k>sk )

n—o0 n

where €, 1s defined in (1.5). Moreover, these inequalities are best
possible.

Proof. Since

1

(b, - bk)eR"} ,

k
x”‘”<xD + 2 bj:x:f‘f)
i=1

Z(\,) = inf {‘

[0,1]

where p; = p;(n): = N;(n) — n + D, then &(),) is of the form (2.1)
with m = D and n replaced by # — D. From the hypotheses on the
Ni(n), we note that 0 < o, < p, < -+ <, £ D — C for all n large.
Hence, by Theorem 2.1, the set &~ of possible limit points for the
sequence n*&(\,) is given by
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k

= e MW -pr0sm<m< - <m=D-0C}.
.=

As the largest possible limiting value occurs when ¢t; = 5 — 1,5 =1,

-+, k, and the smallest limit occurs when p¢t; =D—-C+j—Fk, 5 =1,
.-+, k, the inequalities (2.20) follow. |

We remark that, under the assumptions of Corollary 2.2, if
b = bf(n) denotes the extremal coefficients for (2.19), then Lemma
3 implies that these coefficients are bounded as n — . The precise
statements of these bounds are left for the reader.

For the case when D =k and C = 1, Corollary 2.2 immediately
gives

COROLLARY 2.3. For each fixed positive imteger k, the quantities

2.21) E, ., = inf {

k

x* + >, dam : ]: d, -+, dy) eR"} , n=k,
j=1 0,1

satisfy

(2.22) lim #*E, ., = ¢ ,

n—o0

where ¢, 18 defined in (1.5).
REMARK 1. If df =df(n),j=1, .-,k denotes the extremal

coefficients for (2.21), then since the polynomials «* + X%, dfa*—7
approach (x — 1)* as n — oo, we have

k
(2.23) 1imd§~‘=(~1)"< ,>, j=1 - k.
n—oo 7

REMARK 2. By using a slightly different method of proof, it
can also be shown that

(2.24) (n —k)E, 4, <¢, forall n=k.

3. Inequalities for incomplete polynomials. We now obtain
estimates for the quantities E,, defined in (1.2).

THEOREM 3.1. For any pair (s, k) of integers withs =1,k = 0,
we have

(3.1)

IA

Es,k

IA

i

(23 + 2k> -t
k k '

k
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Proof. The upper bound for E,, in (3.1) follows directly from
[7, eq. (80)]. To establish the lower bound in (3.1), we consider the
polynomials

28 + 2k — 1

V,u(@): = < k

>—1stI£_1/2’2s_l/2)(2x . 1) ,

where P{*#(t) denotes, as usual, the Jacobi polynomial. From Szego
[9, p. 63], V, () is monic of exact degree s + k. It is proved in
Lemmas 8.2, 3.3 of [6] that V, . (x) attains positive and negative
relative extrema on (0, 1] alternately at % + 1 points &, with
0<& <& < -+ <& =1, and furthermore that miny,,., |V, ()| =
|V, (1)|. Thus, on regarding (1.2) as weighted best approximation
from 7,_, on (0, 1], the theorem of de la Vallée Poussin [5, p. 82]
implies that F,, = |V, (1)|. Again from Szego [9, p. 58], V,,.(1) can

be directly determined, so that

2 2k — 1\ [k — 1/2
Es,kglvs,kaﬂ:(”k )( k/). =

Since (k ﬂkl/ 2) = (2k)!/2*(k!)?, we obtain, on replacing s by

n — k in (3.1), that

2n (2k)! - 2n B - "
(3.2) k) TR =\ g =1, VYn>k.
In particular, (3.2) yields
2k + 2\
69 B swmoaser (M7 s,

which gives explicit estimates for the positive constants o,(k), o,(k)
in (1.3).

Concerning bounds for the coefficients of arbitrary incomplete
polynomials, we mention a simple consequence of Proposition 4 in
[7]. For this purpose, we define

k
(3'4) Ts,k(x): = Qs,k(x)/Es,k = xsZ aés’k)xi ’

where, as stated in §1, @, .(x) €7, , is the unique extremal polynomial
for (1.2). Furthermore, let &% < &% < ... < g#® =1 denote the
alternation set for @, .(x) in [0, 1] (ef. [7, Proposition 2]). Then, we
have

THEOREM 3.2. If p(x) =o° >, ax’ ex, , and 1f M = max{|p(&&")|:
0 <1<k}, then
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(3.5) la;,| = Mla®|, YVOZiZk,
where the a®® are the coefficients in (3.4).
Proof. In |7, Proposition 4], it is shown that the above hypo-
theses imply

(Ip@)| = M| T, ()|, Vo & (§>™, 1), and

B8 pv@) = M 8@, voe 0, 1, v = 1,2, --- .

Since a; = p“t?(0)/(s + %)!, and since (3.6) in particular holds when
2 = 0, the inequalities (3.5) follow. O]

4. Inequalities for polynomials on [0, +c). As a useful
analog of the first inequality of (3.6) for the interval [0, + o), let
gi¥(t) = t* + ---, be the unique polynomial in 7, such that (cf. (1.5))

& = 167 ®) It +00) »
and let
(4.1) 0=nP <P < -0 <P

be the unique %k + 1 alternation points for e igi(¢) in [0, + ), i.e.,
etlgi(t)| = ¢, for tel0, +oo) only if t=n® for some 01 =< k.
Then, by applying the same reasoning as in the proof of [7, Prop.
4], we have

THEOREM 4.1. If per, and if M = max{le"p@¥)|: 0<i<Fk),
then

(4.2) Ip@®)| = Mlgx®)l/e: vie (0, 77) .
As a consequence of Theorem 4.1 and the fact (ef. (2.12) with

m = k) that »/¥ < 2k, we immediately have (cf. [7, Corollary 5]) the
first part of

THEOREM 4.2. If p em, with pZ0, and if |e*p(0) |=]]e D) |lto,+c0r»
then { < 9 < 2k; in particular,

(4.3) e D) llto,+0r = (€7D [r0,261 = [l€7" D) [I10,087 -

Mo'reover, the quantity 2k is asymptotically best possible as k — <o,
in the sense that there exists a comstant p = 2.945820--- for which

(4.4) 2k — p-kV* + oK) < i < 2k, as k— oo .
Ui
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Proof. To establish the result of (4.4), consider the Laguerre
polynomial Li*?(x) for each k=1. It is known (cf. Szego [9, p. 176])
that |L{"?(0)| and the successive relative maxima of e¢~*|L{™?(2t)|
for t =0 form an increasing sequence for each k. Calling the
abscissa of the last relative maximum ¢, then

(4.5) etk | LY (28,) | = |6 L (2t) ||t 4 5

which, from Theorem 4.2, implies that , < . Now, it is evident
that 2, exceeds w,, the largest zero of L “*(x), where x, is known
(cf. [9, p. 132]) to satisfy

(4.6) x, = 4k — wk"® + o(k"?) , as k— oo,
with @ = 5.891 639 ---. But then, the inequalities %,/2 < {, < 9® <
2k, coupled with (4.6), give (4.4). N

For reference purposes, the numerical values of 7 of (4.1) are
given in Table I below for 1 <k < 11.

We now consider estimates for the quantities ¢,. Since »*E,_, , —
¢, as m— o, we deduce from the inequalities (3.2) the result of

THEOREM 4.3. For each imteger k = 0,

k
(2k)! _<_2—sk§l.

4D TRl = ol

For k large, this implies, via Stirling’s formula, that

1 .. — 9k . . ok
< = —,=1.
(4.8) == llﬁiank ol & , while llrlflwsoup o =1
However, the upper bound in (4.8) can easily be improved. For this
purpose, let L®(f) denote, as usual, the Laguerre polynomial in =,
with respect to the weight function e~*t* on [0, + o) (cf. [9, p. 100]),
where a > —1. Since L{(t) = (—1)**/k! + --- emx,, and since

__1\kok
e L) o0 = e L@ 0 = e {ED e 4o}

[0,+c0)

we have, by definition of ¢,, that

k
4.9) 2t = e L (0) 00, Ver > —1.
Now, in the case when a = —1/2, it is known [9, p. 240] that
asymptotically

(4.10) e L) [ sy ~ BT as k— oo,
nkl/lﬁ
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where 7 is the maximum of the Airy’s function A(¢) for te R. Thus,
from (4.9), we have

k
(4.11) lim sup % _ZTek < (18)"r/z = 0.6017 - - .
In (4.8) and (4.11), lower and upper estimates for 2%,/k! are given
which do not have the same asymptotic behavior as k— . It is
an open question if there exist constants a with 1/83 < a < 1/2 and
@ > 0 for which

3 3 zkek —
(4.12) lim (_k'—> -Q.

Finally, we include the results of numerical computations of ¢,
(ef. (1.5)), using the Remez algorithm. Tabulated below in Table I
are 2%,/k! and 7 (ef. (4.1)) for 1 < &k < 11, rounded to six decimal
places.

TABLE I
k ke /k! V'E ek} EY/52%e, /1! e @2k — 9$®)/KL3
1 .556 929 .556 929 .556 929 1.278 466 0.721 534
2 .433 831 .613 530 .546 593 3.009 706 0.785 997
3 .369 345 .639 724 .532 688 4.827 187 0.813 183
4 .827 863 .655 726 .520 450 6.684 493 0.828 1717
5 .298 228 .666 859 .509 963 8.565 402 0.838 958
6 275 655 .675 215 .500 899 10.462 169 0.846 301
7 .257 698 .681 806 .492 959 12.370 440 0.851 865
8 .242 958 .687 190 .485 917 14.287 471 0.856 265
9 .230 569 .691 706 .479 602 16.211 473 0.859 834
10 219 959 .695 570 .473 886 18.141 145 0.862 804
11 210 735 .698 930 .468 671 20.075 554 0.865 316

Since 7* = 0.564 190 ---, we note that the third column of
Table I is in numerical agreement with the first inequality of (4.8),
while the fourth column of Table I is in numerical agreement with
(4.11). Moreover, since the entries of the third and fourth columns
of Table I are respectively strictly increasing and strictly decreasing,
it would appear that 1/3 < a < 1/2 if (4.12) were valid. Also, as a
consequence of (4.4), we have

(4.13) 2945820 - -+ + o(1) > 2k — P/ =0, as k—> o,

which again is in agreement with the last column on Table I.

ACKNOWLEDGMENT. We wish to thank Dr. M. Lachance (University
of South Florida) for kindly performing the calculations for Table I.
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Added im Proof. Using a different method the authors have
recently extended Theorem 2.1 to the case of L%norms, ¢ =1, on
[0, 1].
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