Vol. 92, No. 2, 1981

Recent Issues
Vol. 332: 1  2
Vol. 331: 1  2
Vol. 330: 1  2
Vol. 329: 1  2
Vol. 328: 1  2
Vol. 327: 1  2
Vol. 326: 1  2
Vol. 325: 1  2
Online Archive
Volume:
Issue:
     
The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Officers
 
Subscriptions
 
ISSN 1945-5844 (electronic)
ISSN 0030-8730 (print)
 
Special Issues
Author index
To appear
 
Other MSP journals
Oscillation criteria for general linear ordinary differential equations

Takaŝi Kusano and Manabu Naito

Vol. 92 (1981), No. 2, 345–355
Abstract

Lovelady has recently proved the following oscillation theorem.

Theorem. Let n 4 be even and q : [a,) (0,) be continuous. If tn2q(t)dt < and the second order equation

d2z      1   ∫ ∞      n−3
dt2 + ((n−-3)!   (s − t)   q(s)ds)z = 0
t

is oscillatory, then the n-th order equation

x(n) + q(t)x = 0

is oscillatory.

In this paper the above theorem will be extended to a class of differential equations of the form

-1---d --1----d⋅⋅⋅-d--1- d--x-- +q(t)x = 0.
pn(t)dt pn−1(t)dt   dtp1(t)dtp0(t)

Mathematical Subject Classification 2000
Primary: 34C10
Milestones
Received: 3 October 1979
Published: 1 February 1981
Authors
Takaŝi Kusano
Manabu Naito