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If X* has the Radon-Nikodym property, then for every
compact operator T: L,(¢, X) —Y there is a bounded function
g: 2> L(X,Y) that is measurable for the uniform operator
topology on L(X, Y) such that

T(f) = nggd#

for all f in L,(p, X). The same result holds for weakly
compact operators if X* is separable Schur space. These
representations yield Radon-Nikodym theorems for operator
valued measures and a generalization of a theorem of D. R.
Lewis.

The representation of linear operators on the Banach space
Lz, X) of Bochner integrable functions, has been the object of much
study for the past forty years. Dunford and Pettis began this
investigation in 1940 [6] with the representation of weakly compact
and norm compact operators on L,(z) by a Bochner integral. Their
work was based on an earlier paper of Pettis [9] and was comple-
mented by the work of Phillips [11]. More recently, the theory of
liftings has been used by Dinculeanu [5] and others to obtain a
representation for the general linear operator on L,(¢, X). In this
paper we will use methods in the spirit of Dunford, Pettis, and
Phillips to show that if X* has the Radon-Nikodym property, then
the compact operators on L,(¢, X) are representable by measurable
kernels and if X* is a separable Schur space (i.e., weakly convergent
sequences converge in norm) then the weakly compact operators on
L,(¢, X) are representable by measurable kernels. As corollaries,
we obtain a Radon-Nikodym theorem for operator-valued measures
and a generalization of a theorem of D. R. Lewis [4, p. 88] on
weakly measurable functions that are equivalent to norm measurable
funections.

Throughout this paper (2, 2, t) is a finite measure space and
X, Y and Z are Banach spaces with duals X*, Y*, and Z* respec-
tively. The space of all bounded linear operators from X to Y will
be denoted by L(X, Y). The subspaces of L(X, Y) consisting of all
the weakly compact and norm compact operators from X to Y will
be denoted by W(X, Y) and K(X, Y). The space Lz, X) is the
space of (-Bochner integrable functions on 2 with values in X and
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258 KEVIN T. ANDREWS

L.(¢, X) is the space of X-valued p¢-Bochner integrable functions on
£ that are essentially bounded. An operator T:L,(¢, X)—Y is
representable by a measurable kernel if there is a bounded measurable
g: 2 — L(X, Y) such that

T(f) = Bochner — nggd;e .

From this, it follows shat |[T]|| = |/g|l~ [5, p. 283]. Recall that a
Banach space is weakly compactly generated if it is the closed linear
span of one of its weakly compact sets. Finally, note that if x is
a partition of 2 into a countable number of disjoint elements of X
and if f is in L,(#¢, X), then the function E.: L,(g¢, X)— Ly, X)
defined by

E(f) =2 S Efdﬁx
i - Eerx [,CE B
(here the convention 0/0 = 0 is observed) is a linear operator.
Most of the first lemma is well-known so we omit the proof.

LeMMA 1. For each countable partition =z, the operator E. is a
contraction on L,(¢, X) and L.(p, X). Moreover, if the partitions
are directed by refinement, then

lim [[E(f) — flli=0  for all f in Ly, X)
lim [[ E(f) — fll. =0  for all f in L, X).

Before stating the main theorem we require a preliminary de-
finition. A function ¢ in L.(g¢, L(X, Y)) is said to have its essential
range in the wuniformly (weakly) compact operators if there is a
(weakly) compact set C in Y such that g(w)x € C for almost all @ in
Q and x in X with ||z < 1.

THEOREM 2. Let X* have the Radon-Nikodym property. Then
there is an isometric isomorphism between the space of compact
operators K(L,(¢, X), Y) and the subpace of L.(tt, K(X, Y)) consisting
of theose functions whose essential range is in the uniformly compact
operators. In fact, T in K(L,(¢, X), Y) and g in L.(¢, K(X, Y))
are in correspondence if and only if

) =\ fedp  for all £ in Ly, X).

Proof. Let T be in K(L(#¢, X), Y). Notice that for any par-
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tition 7, f in L,(¢#, X), and g in L.(¢, X*) = (L,(#¢, X))*, we have that

| Bhgdn = fE)dn.

It follows from this that the adjoint of TE, is E.T*. Now, if the
partitions 7 are countable, we have that

li_m Ef=f for all f in L.(¢, X*)

by Lemma 1. Since [|E:|l. =1, this limit is uniform on compact
sets. By Schauder’s theorem, 7*:Y* — L.(¢, X*) is compact and so

lim B, T*y* = Ty*
uniformly for ||y*|| < 1. Therefore,
lim E,T* = T*
in the operator norm. Since E.T* = (TE,)*, it follows that

IimTE,. =T

in operator norm.
Now, for each countable partition =, define g.: 2 - L(X, Y) by

Aern

e = 3 L@y (.
g:()x = X, A Xi(e) -

Then for each partition #, ® in £, and x in X with ||z|| £ 1, we have
that g.(w)x S T{f: f in L,(¢, X), |||l = 1}. Since T is compact, it
follows that g.(®) is in K(X, Y) for each partition 7 and ® in 2.
Moreover, one easily sees that

TE(f) = | fo.du

for all simple functions f in L,(#, X) and thus for all functions f
in L(¢, X). Hence if ©, and n, are two partitions, then

(TE., — TE.)) = | f(g:, — g:)dn .
Since

lim || TE., — TE.|| =0,

71,y

an appeal to [5, p. 283] establishes that
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lim || gz, — gs,|le = lim || TE,, — TE.]| = 0.
71T TysTy

Thus the net (¢.) is Cauchy in the norm of L.(¢, K(X, Y)). It follows
that there is a g in L.(¢, K(X, Y)) such that

lim |lg. — gl =0
and so
lim ng g=dp = ng gdp
for all f in L,(¢, X). We also have, for almost all @, that
glwyx S T{f: feL(y X), |l fll =1}

for all # in X with ||z|] = 1. Hence the essential range of g consists
of uniformly compact operators. Finally, Lemma 1 ensures that

T(f) = lim TEAf) = lim | rg.dpe = | rode.
Conversely, suppose that g: 2 - K(X, Y) is a bounded measurable
function such that there is a compact set C C Y with g(w)x in C for

almost all @ in 2 and all 2 in X with ||z} £ 1. Without loss of
generality, we may assume g(w)x is in C for all w in 2. Define

7(5) = | fodn

for feL,(¢, X). Another appeal to [5, p. 283] shows ||T|| = ||g]|~.
Let

be a simple function in L,(g¢, X) with ||f]| =1 i.e.,

;HMH#Ei =1.

Then
() = | ordp = 3| s@wdpo)
=3 L @
= Sllwlinme—i |, o T

is in eo C by [4, p. 48]. Since co C is compact by Mazur’s theorem,
the operator T is compact. This completes the proof.
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That X* has the Radon-Nikodym property is necessary as well
as sufficient for the first part of the above proof. Indeed, if each
T in K(L(p¢, X), Y) is representable by a Bochner integrable g in
L.(p¢, K(X, Y)), then taking Y to be the scalars shows that L (¢, X)* =
L. (¢, X*) which implies [4, p. 98] that X* has the RNP. An
immediate consequence of Theorem 2 is a Radon-Nikodym theorem
for certain operator valued measures.

COROLLARY 3. Let X* have the RNP and let G: 3 — K(X, Y) be
a p-continuous vector measure of bounded wvariation. ILf, for each
E an X with pE, >0, there exists E, in X with E,Z E, and
P(HEY > 0 such that

{G:(EE’))x: xeX, Ec3S ECE, (k) >0, ||z|] = 1}

18 relatively morm compact, then there exists a Bochmer integrable
g: 2 — K(X, Y) such that

G(E) = | gdn
E
for each E in 2.
Proof. By exhaustion [4, p. 70], the corollary is established if

for each K, in ¥ with p#(#)) > 0 we can find E, in ¥ with E, S FE,
and #E, > 0 and a Bochner integrable g such that

GB) = | gan
yol
for all £ in X with £ E,. So let K, ¢ with p#(&)) > 0 and select
the E, € E, guaranteed by the hypothesis. Define an operator 7 on
the simple functions in L,(g¢, X) by
T(f) = 3, GA N B, if f=XeX, 4 in 5 A4N0N4=0

if 4 %= j. Notice that if ||F|| <1

Sl pd =1,
then

S [l (4, 0 B < 1

and so
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G(A; N By

= i Ai EZ )
T = 2l 0 B - — s

is in
{G(f)w veX,Ec3 EC B, (E) >0, ||z] < }

a set which is compact by Mazur’s theorem. Thus T has a compact
linear extension to all of L,(¢, X). Hence, by Theorem 2, there
exists a Bochner integrable g: 2 — K(X, Y) such that

1) =\ faar
for all fe Ly, X). In particular, if ¥ is in ¥ and F < FE,, then
G(E)e = T(xXy) = Sngdy :
Since g is Boechner integrable, we have, by [4, p. 47], that

G(E) = | gdu

as required.

Our next result is a generalization of a theorem of D. R. Lewis
[4, p. 88] dealing with the equivalence of weakly measurable and
measurable functions. The proof uses the following result of Amir
and Lindenstrauss [1, p. 43]: If X is a weakly compactly generated
space and X, £ X and Y, & X* are separable subspaces, then there
is a bounded projection P: X — X with separable range such that
X, € P(X) and Y, & P*(X™).

PROPOSITION 4. Let X* and Y be weakly compactly generated
Banach spaces. If f: 02— K(X, Y) is a bounded function such that
for each y* in Y* the function y*f(-): 2 — X* is measurable, then
there is a bounded measurable function g: 2 — K(X, Y) such that for
each y* in Y* y*f(-) = y*g(-)u-a.e., (the exceptional set may depend
on y*).

Proof. We claim that the set A = {y*f(-): y*e Y* ||ly*|| £ 1} is
compact in L,(¢, X*). If not, then there is a sequence ¥} in the
unit ball of Y* and 6 > 0 such that

Hysf() — y:f(')”Ll(/‘,X*) >0
for m # n. Choose a bounded projection P:Y —Y with separable
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range such that PfyF = y} for all n. Since each yif(-): 2 — X* is
measurable and hence essentially separably valued, there is a bounded
projection P, X* — X* with separable range and sets 2, in ¥ with
H(\R2,) = 0 and yif(2,) S P(X™) for every n. Now, since each f(w)
is a compact operator we have, for all #** in X**, that f(w)**z**
is in the natural image of Y in Y** and so we may define h: Q-
K(X**, Y) by h(w)z** = P, f(w)**Pfz**. We claim that for each z**
in X**, the function A(:)x**: 2 —Y is measurable. To see this, note
that since P, has separable range, the functions A(-)x** are separably
valued and since

y*h(_)x** — yﬂ-Plf(.>**P2*x** — x**sz(')*Pl*y*

and each f(-)Py*: 2 — X* is measurable, the functions A(-)x** are
weakly measurable. An appeal to the Pettis measurability theorem
[4, p. 42] establishes the measurability of A(-)z**. Now if Y, is the
Banach space obtained by taking the closed linear span of P,Y in Y,
then Y, is separable and % can be viewed as taking its values in
K(X** Y,). Moreover, if we define S:Y—-Y, by Sy = Py, then
h@)x** = SP.f(w)**Prx**. Thus, if y; is in Y*, then h(w)*y; =
Pr* f(w)** P*S*y¥ is in P,X*, since the range of f(w)*** is in X*
and P;* extends P,. Let Z = P,X* and B={T:T in K(X** Y,),
T*Y+c Z}. We claim that B is separable. To see this, let U and
V denote the closed unit balls of Z* and Y,* endowed with the weak*
topologies. Since Y, and Z are separable, U and V are compact metric
spaces, and thus, so is U x V. For each T in B, define a function
JT on U xV by JT(u, v) = uT*v. Then the map T — JT is a linear
isometry of B into C(U x V) [8] and so, by [7, p. 437], B is separable.
Since the values of k in K(X**, Y,)lie in B and || M(®,) — A(®.)||gxer v =
(@) — h(@y) ]|y for all o, @, in 2, the values of & in K(X**, )
form a separable set. Now because A(-)x** is measurable for each
2** in X**, an appeal to [5, p. 102] establishes that % is measurable.
Since k is bounded, h is Bochner integrable and so we may choose
a sequence h, of K(X** Y)-valued simple functions such that

limS I — hyllde =0 .

n Q2

Define operators S, and S from L.(#¢, X**) to Y by
Suo) = | ghidpe and S(g) = | ghap

for g in L.(g, X**). Since each h, takes on only a finite number
of values, each S, is a compact operator. Moreover, we have that

1S = S)@ll = { ol 1n = holldge = gl | 1n— k] dg
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for all ¢ in L.(¢, X**). It follows immediately that the operator S
is compact. The adjoint of S is the operator y* — y*h(-) and hence
by Schauder’s theorem is also compact. But y*h(-)=w3f(-) a.e. This
contradicts

lysf() — y:rk»f() “Ll(ll,X*) >0

for m # n and establishes that the set A is compact.

Now choose y¥ in Y* such that y*(-) is dense in A. If & is
constructed as above for this sequence (y}), then h is measurable
and so, by Egoroff’s theorem, for all 6 > 0 there is-a set F in ¥
with p¢(@\E) < 6 such that hX; can be approximated uniformly by
simple functions. Fix 6 > 0 and choose such a set E. It follows
that the sequence ¥} (- )Xz= y¥h(-)X; is relatively compact in L.(z¢, X*).
Since this sequence is L.(#¢, X*)-dense in {y*f(-),,: ly*|| =1}, this
set is relatively compact in L.(#¢, X*).

Now define T:Y* — L.(¢, X*) by Ty* = y*f(-);,- Then T is
compact and as an operator on L,(%#, X), T*: L,(¢, X)— Y **is compact.
Notice that the dominated convergence theorem ensures that T is w*
to w* sequentially continuous. Thus, if y** is in T*(L,(#¢, X)), then
y** is a weak* sequentially continuous functional on Y*. But since
Y is weakly compactly generated, this means y** is a w* continuous
functional on Y* [3, p. 148]. Hence, T*(L,(#, X)) is contained in Y.
Theorem 2 now produces a Bochner integrable ¢g: F — K(X, Y) such
that

T*(k) = SElcgd;z

for all k¥ in L,(¢, X). But, if y* is in Y*, then T**y* = y*g. It
follows that y*g = y*f a.e. on K. Since p(Q\E) < §, this completes
the proof.

Theorem 2 does not hold for weakly compact operators. To see
this, let 2 be the unit interval endowed with Lebesgue measure and
let 7,(-) be the nth Rademacher function i.e., 7,(@) = signum(sin 2"z ®).
Consider the function g: [0, 1] — L(4, 4) defined by g(w)(a,) = (r.(®)a,)
for all (a,) €4. The function g is not essentially separably valued,
since if ®, and w, are different numbers in [0, 1] there exists a
Rademacher function r, with |7,(®,) — 7,(®,) | = 2 and hence, || g(®,) —
9(@,)|lpiyey = 2. Thus, g is not measurable. Define an operator
T: L, 4) — 4 by

7(f) =\ fodn

and note that T is weakly compact. If T were representable by a
kernel, then that kernel would be equal to g a.e. and so g would be
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measurable, which is a contradiction. However, we can use Proposi-
tion 4 to obtain a representation theorem for weakly compact
operators by imposing further conditions on X*.

THEOREM 5. Let X* be a separable Schur space. Then there is
an isometric isomorphism between the space of weakly compact
operators W(L,(¢, X), Y) and the subspace of L.(tt, W(X, Y)) consisting
of those functions whose essential range ts in the uniformly weakly
compact operators. In fact, T in W(L,(t, X, Y)) and g in L.(t,
W(X, Y)) are in correspondence if, and only if,

7(5) = | fodr
for all f in Ly, X).

Proof. Let T bein W(L,(#¢, X), Y). By the Factorization Lemma
{2, p. 814], there is a reflexive space R and operators S: L,(¢, X) —
R and J: R-—-Y such that T'=JS. Suppose S is representable by a
measurable kernel h: 2 — L(X, B). Then T is representable by the
measurable kernel ¢: Q2 — L(X, Y) given by g(w)x = Jh(w)x for all
2 in X and @ in 2. Hence, without loss of generality, we may
assume that Y is reflexive.

Let G: ¥ — L(X, Y) be the representing measure of T i.e.,

(1) GE)x = T(X;) for all x in X and E in X

(il) T() = S; £dG for all f in Ly, X) and

1G@E) |
pE

(iii) T = sup

An appeal to [10, p. 345] produces a bounded function g: 2 —
L(X, Y) such that

(1) g()z: 2 —-Y is Bochner integrable for all x in X and

(2) G(E) = S g(@)wdp(@) for all z in X and E in 3.

It follows quickfy from the density of simple functions in L,(¢, X)
that

7(s) = | grdn

for all f in L,(#, X). Consider, for each y* in Y*, the functions
y*g(-): 2 — X*. Since these functions are separably valued and
weak* measurable, they are measurable by [4, p. 42]. Now L(X, Y)=
K(X, Y), since X* is a Schur space and Y is reflexive. Consequently,
Proposition 4 now produces a bounded measurable h: 2 — K(X, Y)
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such that, for each y* in Y*, y*g(-) = y*h(-)pt-a.e. Thus, for all y*
in Y* and f in L,(#, X) we have that

l]

(y*, 9(o) f(@))dp(w)

Q

S
|,v*, M) f@)an
v(],nr2)

y*, Tf

and so
7(f) = | hrdp.
It follows easily that ‘

Mw)z < T{f: f in Ly, X), [ fll = 1}

for almost all @ in 2 and all # in X with ||| =1. Hence, the
essential range of h consists of uniformly Weakly compact operators.
The converse is proved in the same way as in Theorem 2'so we
omit the proof. =
Our final result follows from Theorem 5 in the same way that
Corollary 3 follows from Theorem 2 so the proof is omitted.

COROLLARY 6. Let X* be a separable Schur space and let G: 3 —
K(X;Y) be a p-continuous vector measure of bounded wvariation. If,
for each E, in ¥ with pE, > 0, there exists an E, in ¥ with E, < E,
and p(E,) > 0 such that

{G;E)x zin X, B in I, ECE, tEF>0,|z|] = 1}

is relatively weakly compact, then there exists a Bochner integrable
9: 2 — K(X, Y) such that

(&) = | gan
Sfor each K in 2.
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