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We study the structure of analytic measured groupoids
as defined by Mackey. It has been observed by Ramsay that
an arbitrary groupoid can be thought of as an equivalence
relation on its unit space together with a field of isotropy
subgroups.

We construct a cohomology theory for equivalence rela-
tions with coefficients in a field of abelian groups, and show
that two possible definitions using strict cochains or almost
everywhere cochains coincide, and show how using this to
reconstruct a groupoid from an equivalence relation and a
field of groups,

Introduction. We study the structure of analytic measured
groupoids as defined by Mackey [4]. It has been observed by Ramsay
[8], Theorem 6.9 that an arbitrary groupoid can be thought of as an
equivalence relation on its unit space together with a field of isotropy
subgroups. A groupoid homomorphism consists of an orbit preserving
mapping of the unit spaces together with a homomorphism of the
fields of isotropy subgroups. We formalize this correspondence in
the language of group extensions. The discussion is motivated by
the observation that if & is any groupoid we can associate to it
R<Z, the corresponding equivalence relation, and "%, the field of
isotropy subgroups, and there are natural maps I'Y — & — R<Z.
This is a short exact sequence of groupoids, in a sense explained
in §1, so that < may be thought of as an extension of the field
I’ by the equivalence relation RZ.

In §2 we construct a cohomology theory for equivalence relations
with coefficients in a field of abelian groups, and show that two
possible definitions using strict cochains or almost everywhere cochains
coincide. In §3 we consider how to reconstruct a groupoid from an
equivalence relation and a field of groups. More precisely, an abstract
kernel will consist of an equivalence relation and a field of groups
together with suitable connecting isomorphisms. Any groupoid gives
rise to an abstract kernel and conversely any abstract kernel gives
rise to a groupoid provided that a certain obstruction in H?® vanishes.
The methods we use are algebraically an exact analogue of the usual
theory of group extensions [5]. It is the author’s hope that the
language of abstract kernels may prove a more useful viewpoint for
the study of groupoids.

Cohomology for groupoids with coefficients in a single abelian
group has been discussed by Westman [12], and for the special case
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of an equivalence relation with countable orbits by Feldman and
Moore [2]. The methods we use in §2 follow Moore [6] very closely.
L. Brown obtained the equivalence of the two cohomology theories
for an equivalence relation generated by a freely acting group with
coefficients in a single abelian group. Presumably our results extend
to a cohomology theory for an arbitrary groupoid with coefficients
in a field of abelian groups.

If X and Y are standard Borel spaces, .&# (X, Y) is the space of
Borel functions f: XY, and .5.(X, Y) is the space of functions
measurable with respect to some measure £t on X, with identification
of functions agreeing a.e. on X. If v is a measure on Y and Z is
another Borel space, and fe.& (X, Z),ge .7 (Y, Z), then X}, Y is
the fiber product {(z, ¥) e XX Y: f(x) = g(y)} and p=y is the fiber
product measure (c.f. [7] p. 265).

1. Preliminaries. We will assume the reader is familiar with
the theory of ergodic groupoids, as expounded in [4] and [7]. To
fix our notation, we recall some definitions.

Let &, h be a measured analytic groupoid (not necessarily ergodic).
The unit space of & will be written S, or simply S. The right and
left projections to the units will be written d, g respectively (for droite
and gauche: this is an attempt to reconcile the notation of Ramsay
who uses d, » for domain and range and the author’s prejudices in
favor of right and left). We write & = d(8), & = g(&); % = ©%,,7,
and more generally <™ = T, ;u-n T where g : £V — S is
9, -+, &) = & and d*V is defined similarly. A" is the fiber product
measure hxh" ", and h = d+h. F° = g7'(s), F, = d~'(s), with measures
h*, h, respectively. T¢ F¢--> Fi Tix) =£). < acts on a space X, v
if there is a Borel map P: X— S and a Borel map m: X»,,72" — X,
such that

m(x, s) = « and  m(m(z, §), 1) = m(x, &) ,

and such that P, =i and if v = | »dii(s) and Ji: P(@) — P~(@),
J.(x) = a&, then Joxy, ~ vzV& in an 1Sc of <. (ec.f.[9] Definition 1.2).

Ramsay [9] has discussed the kernel and range closure of a
groupoid homomorphism z: & — S22 For our purposes it suffices to
consider only the case S, = S,., T = id, in which case the construction
simplifies considerably. Kerz is the ¥ space &7 with P: 27 — S,
P@E) =& mEn) =x()'e. o2 is also an 22 space with d: 227 — S,
and m(s, 7) = &). By [9] Theorem 3.2 there is an 57 space 57 and
an equivariant map j(7): 5 — 57 such that each fiber of j(x) is an
ergodic groupoid. The action of 5 on 57 is called the range closure
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of w, written <#Z(x). = is an embedding if each fiber of j(x) is the
trivial groupoid, i.e., if it is principal and transitive. = is surjective
if each fiber of j(x) is transitive and we may take 9? = 8§, with

the natural 57 action, and j(z) = d. A sequence .5~ Yz L oF of
groupoids is a short exact sequence if ¢ is an embedding, j is sur-
jective, and Ker j = .Z(1).

Associated to any groupoid £ are two other groupoids R¥, ['C.
Rz ={(s,t)eS x S:3te%,& =1t &= s} is the associated principal
groupoid (equivalence relation). This is shown to be a groupoid in
[7]. I'S = U,es 'S, Where ', = {ce ©: & =& =s}. By [7], each
'z, is a l.e.s.c. group and I’ is a measured field of groups in the
sense of the definition of §2. I"% inherits its algebraic structure
from Z; we remark that it is not ergodic unless & is a group.

THEOREM 1.1. There 1s a natural short exact sequence I"C 2
v & Rre.

Proof. The definitions of ¢ and R are clear. Keri is the I'¥
space &, with &9 =97¢ 7el'es,teZ. We may take & = RZ,
with j(¢) = R. R% 1is in a natural manner a ¥ space, with &
acting on the left, and each fiber of j(¢) is the trivial groupoid.
Ker R is the & space RZ, with the natural left action of &, and
hence Ker R = #(1). RZ — S, ur @, is the ergodic decomposition
of Ker R and is an R equivariant map with the natural action of
R<z on S. Each fiber is transitive, hence R is surjective.

2. Cohomology of equivalence relations. We extend the
cohomology theories of [3] and [12] by showing how to define cohomo-
logy groups for equivalence relations taking values in a field of abelian
groups. The main result, obtained following methods of Moore, [6],
is that two possible definitions of the cohomology groups, using strict
Borel cochains or cochains of funections identified almost everywhere,
coincide.

Throughout R, h is a principal groupoid, with unit space S; p is
the induced measure measure on S, and A" the induced measure on
R™ ={(v, -+, v,) RV, = V1 =1, ---, » — 1}.

A Polish field of groups on S is an assignment s +— A, of a Polish
group (c.f. [6] p. 3) to each se S, such that

(i) A = U,.s A, has a standard Borel structure <7z

(ii) |4, is the natural Borel structure on A,.

(iii) a: A— S, a(4,) = s, is Borel.

A measured field of l.c.s.c. groups is a Polish field of groups such
that A, is l.c.s.c for each s, and such that there is a choice of v, in
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the Haar class on 4, with s+ v, (F) Borel for each K e <Z(4).

Such a field is an R-module if we are given, for each ve R, a
topological isomorphism J(v): A7 — A, such that J(v,)J(v,) = J(v,v,)Vv,,
v, € R® and such that the map

R+ , A—> A, (v, a)— Jw)a, is Borel.

If B, K is an R-module, an R-module map 7T:A — B consists
of continuous homomorphisms 7T(s): A, — B, such that K@)T(v) =
T(w)J(v) Vve R and such that

T:A—— B, T(a)= T(a(a))(a), is Borel.

Given an R-module A4, we can construct another R-module I(4),
analogous to the regular representation of a group.

I(4), = {f e 7,,(d7(s), A): f(v)e A}
I(A), may be identified with .7, (d~'(s), 4,) by the map
f—17, fw)=Jw)"f).
I(4), is topologised as follows (c.f. [6] p. 5):
(2.1) fo—= = J)"f,(v) — J()"'f(v) bk, a.e.

By [6] p. 6, this makes I(A), a Polish group. Since J(v) is a topological
isomorphism, 2.1 is equivalent to

(2.2) Ja J Ju(0) fw) h,a.e.

We define the Borel structure on I(4) = U,.s I(4), to be the smallest
such that the projection i(a): I{A) — S and all functions I(4) — R of
the form

G(Y, ¢)(h) = SYgi(h(v))dh:(v) , Yez(R), ¢eF (4, R),

are Borel. This makes I(A) into a standard Borel space and by [6]
Proposition 8 the given Borel structure is induced on I(4), for each

s. Notice that all functions hHS oW e(h(w)dhz(v), pe.7 (4, R),
.
are automatically Borel.

ProrosiTioN 2.1. I(A) is an R-module.

Proof. R acts on I(A) by
TW): [(A); — I(4),, [TW)flw) = f(wv) .

Using 2.2 and the quasi-invariance of the measures £, it is clear that
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T(v) is a topological isomorphism. R=I(A)— I(A) is Borel provided
the maps

(i) v, h— a(T(v)h)

(ii) w», h— G(Y, ¢)(T(v)h), Y e Z(R), 6.7 (A, R), are Borel. (i)
is clear and (ii) follows since

GY, 9)(T@)R) = | s(T@ @)z w) = | o) dhzw)
= sthw)p.w)dn-(w)

where p, is the Radon-Nikodym derivative of T,.(h,) with respect to
k. \‘

ProrPoOSITION 2.2, There is a natural embedding of R-modules
A I(4).

Proof. Define I(s): A, — I(A),, I(s)(a)(v) = J(w)a. It is routine to
check that I(s) is algebraically an R-module map. That I(s) is a
homeomorphism onto its image follows as in [6] Proposition 13.

To see that I is Borel, one checks that A— R, a — S s(J(v)a)dh (v)
is Borel for Ye .<#(R), 6.7 (A, R). This follows sincey(v, a)— J(v)a
is Borel.

We define another field U(4), U(4), = 1(4),/A,. It is clear that
with the induced Borel structure and induced R-action, U(A) is an
R-module.

We now turn to the construction of the cohomology groups.
Following [6] and [2] we axiomatise a cohomology functor as follows:

Let R be a principal groupoid. A cohomological functor on the
category of R-modules (in the sense discussed above) is a sequence
of contravariant functors H"(R, A), for each n = 0, to the category
of abelian groups, such that to each short exact sequence of E-
modules there corresponds a long exact sequence of cohomology in
the usual way, and such that

HR, A) = A", H*(R, I(4)) = 0
where
A= (fe.7uS, A: f(s)e A, Jw)f@®) =f(v) aa. veR}.

As in [6] one verifies the uniqueness of a cohomological functor
satisfying these axioms.

Just as in [6] we have two possible candidates for the cochain
groups:
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C"(R, A) = {ce F(BR™, A): c(uy, - -+, U,) € Ay}
aC(uly Tty un+1) = J(ul)c(u27 Tty 1’l/'ﬂa‘l'l)

(a) + lil (—1)e(uy, < *y Wlkyryy ** " Uptr)

+ (=" e(uy, + -+, Ua)
where we identify functions which agree on saturated conull sets.
(b) C"(R, A) = {ce Frm(R™, A): oy, -, U,) € Ay}

and ¢ is given by the same formula as 3. One verifies that 9 is
well-defined on C*.

It is clear that there is a natural map H*— H", induced by
identifying functions which agree a.e. It is also clear that from a
short exact sequence of R-modules one obtains a long exact sequence

of cohomology.
Our aim is to show that the two definitions of cohomology groups

satisfy the axioms and that H* — H* is an isomorphism.
ProrosiTION 2.3. H'R, A) = H(R, A) = A~

Proof. Suppose fe€Z°. Then of = 0 is precisely the condition
feAr

Let feZ(R, A). Then J()f(#) = f(v) on a saturated conull set
in R. Therefore f gives a well-defined element fe A®. Suppose
S =S in A%. Then f(s)= f'(s) a.a.s, and J(v)f(?) = f(v), J)f'(@) =
f'(w), on a saturated conull set in R. Consider {s€S: f(s) # f'(s)}.
This is null and saturated under R, hence f = f’in Z°. Conversely,
suppose f is a representative for f e A®*. Then J(v)f(¥) = f(v) a.a.v.
We need a function in Z° agreeing with f a.e.

Define, for seS, F(s)e. (d7'(s), 4), F(s)(w) = Jw)'f(v). For
ta.a. s, F(s) is constant h, a.e. Let this constant value be a(s), so
that F(s)(v) = a(s) a.a.s€S. Let T = {seS: F(s) is constant &, a.e.}.
Suppose we R, we T. Then

Fw)@) = J@)f(x) = Jw)J@w)™ f(ew) = J(w)F(w)(xw)

which is constant h, a.e. Therefore we T, T is saturated, moreover
a(w) = Jw)a(w) for weT. It is clear that a(s) = f(s) a.a.s, and a
is Borel since

#(a(s)) = S¢(J(v)"f (v)dh5(v) is Borel V¢e.Z (4, R)

a is therefore the required function.
The next step is a modified version of [6] Theorem 1:



AN APPLICATION OF GROUPOID COHOMOLOGY 421

PROPOSITION 2.4 (Modified Fubini Theorem).
CY(R, 4) = C"'(R, I(4), C"R,4)=C"(R I(4).

Proof. We have an obvious map L: C* — C*, L(f) (v, +--, v,) =
S, -+, v,) and similarly for C*. One checks that L, L are well-defined.
It is clear that L is anisomorphism. It isalso straightforward to check
L is injective and Borel. To see that L is surjective we follow [6]
p. 8. A is Polish and may therefore be embedded in an infinite cube
I”. Let p, denote projection to the ith coordinate. For M e <Z(R),
Ne Z(R"™), feC (R, I(4)), set

v, (M, N) = SMSNpif('Uz, e, ’Un)(vl)dhv—l(pl)dh(n—n(,v?’ vy
N Sszvpif(”?’ s )(@)AR M (v, -, )

The inner integral is Borel by definition of the Borel struecture on
C* (R, I(A)). v (M, N) extends to a measure v, on R™ which is
absolutely continuous with respect to A™. Let o, be the Radon-
Nikodym derivative of v, with respect to 2. Define p: R™ — A,
0 = (0, 0 +++). It is straightforward to check that L(p) = f.

Just as we formed I(4), and gave I(A) the structure of a Polish
field of groups, we may form

I9(A), = {f e Zy@(d?7'(s), A): f(v,, v;) € A,}

and give I1¥(4) = U.cs [?(4), the structure of a Polish field of groups.
R acts on I®(4) by
T(z)(vs)F(vly 'Uz) = F(”ly ’02’03) Vyy Vg V3 € R®

This action makes I”(A4) an R-module.

PROPOSITION 2.5. There is a canonical isomorphism of R-modules

I(I(4)) = I"(4) .

Proof. The map is given by K(s): I(1(A)),— I'®(4),, (K(s)F)(v,, v,)=
F@,)@,), v, v,€d®(s). It is a routine check that this is a well-
defined injective R-module map.

The surjectivity is essentially Proposition 2.4, after making the
following identifications:

I(4), = #,,d7(s), A) 5 f(0) — J(W)7'f(v)
I(I(4)), = .#;,(d7(s), I(4),) , F(w)+— T(w) ' F(w)



422 CAROLINE SERIES

and hence

II(A), & 7. [d(s), Fr(d(s), A)) ;

B

(AF)(w)(v) = J()"'[F(w)(vw™)] w, ved(s) X d7'(s)

also

19(4), £ F0d> (), A,) ;
BG(x, y) = J(xy)"'G(x, y) =, yeRY

and d%'(s), h® = d'(s) X d7(8), h, X h,, D, ¢ — pq, q¢ (observe the
last isomorphism preserves measure class by quasi-invariance of the
measures h,).

Define C: .7, (d7'(s), F,,(d7'(s), A)) — F,a(d7(8) X d7'(s), A,) by
C(f)(v, v,) = F(v,)(v,). C is an isomorphism by [6] Theorem 1. Then
for F e I(I(4)),,

CAF = BKF' .

PROPOSTIION 2.6 (¢.f. [6] Proposition 15). There is a canonical
isomorphism of R-modules U(I(A)) = I(U(A)).

Proof. Both modules are quotients of I(I(4)) which by Proposition
2.5 may be identified with I”(A4). Under this identification, to obtain
U(I(A)) we factor by functions

B, = {F('Uu vy) = [T(vo)f(v) = f(vw,): f € 1(4)31; (v, 2) eR(Z)} .
To obtain I(U(A4)), we factor by
B, = {F(v,, v,) = J(w)a(v,): a(v,) € 4,,} .

It is straightforward to check that K: I®(A4)— I”(A), KF(v, v, =
Jw)F (v, vv,) is an isomorphism of R-modules which carries B,
onto B,.

We are now able to prove the vanishing axiom for n > 0:

PROPOSITION 2.7 (c.f. [6] Proposition 22). For any A, and any
n >0, the map H"(R, A) — H"(R, I(A)) induced by the inclusion
A — I(A) is the zero map, and similarly for H.

Proof. We prove the result for H*. It will be seen that the
same proof works for H" with the omission of a.e. considerations.
By Proposition 2.4, L: C*(R, A) — C*'(R, I(4)), is an isomorphism. We
also have an involution of

Q%(R, A); h— h*’ h’*(vly ) /Un) = J(Ql, ﬁ,b)ll(?/,;l, Ty ,01-1)
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which preserves B" and Z"; and a map

T:C'(R, I(4)) — C* (R, I(4)) ,

Tf(vy, ---, V, )W) = 0ty <o, vi)(W; - v,1)
Let i:C*(R, A) — C"(R, I(A)) be the map induced by the inclusion
map. One may check that if fe Z"(R, A), then oTLf* = i(f).

An inductive argument using the long exact sequence of coho-
mology derived from 0 — I(4) — I(I(4)) - U(I(A)) — 0 together with
Propositions 2.6 and 2.7 now reduces the question of the vanishing
of H*(R, I(A)), H*(R, I(A)) to the case » = 1. (c.f. [6] p. 22). This
we check directly:

PROPOSITION 2.8. HYR, I(A)) = H'(R, I(4)) = 0.

Proof. First consider H'. Choose Fe Z'(R, I(A)). Then
0= Tw)Fw,) — Flvw,) + F(v,) a.a. (v, v,) €R™ .

Therefore, a.a. (v, v,) € R®
(1) Fv)(vw,) + Flv)(w,) = F(vw,)(v,) a.a.v,ed™(v,),
hence
(2) F(v,)(vw,) + F(v)(v,) = Flvw,)(v,) a.a. v, v, v,€ R® .
Setting x = vv,, ¥ = v, we obtain
(3) Fy)(x) = Flvi'ay)(v,) — Flog'x)(v,) a.a. o7, ¢, ye R® .

Therefore, for a.a. se S, 3v,€g'(s) such that (3) holds a.a. x, y¢
g?7'(s). We may choose v,(s) such that s+ v,(s) is Borel. Define
G e C'(R, I(4)),
G(s)(w) = F(v(w) " 'w)(v(w))
0G((v)(w) = T(w)G@)(w) — G)(w) = Flv(w) "wv)(Vi(w))
— F(o(w)"w)(v(w)) = Fv)(w) a.a. (w, v)e R .
Hence F' = oG in CY(R, I(4)), so H'(R, I(A)) = 0.

It is clear that a similar argument, with the omission of a.e.
qualifications, shows that H'(R, I(4)) = 0.

In conclusion we have

THEOREM 2.9. The natural maps H™(R, A) > H"(R, A) are iso-
morvhisms 1n all dimensions.
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3. Groupoid extensions. Let R be a principal groupoid with
unit space S and let I be a measured field of l.c.s.c. groups on S.
A groupoid & is an extension of R by I' if R = Rand ' =1T.
This terminology is of course motivated by Theorem 1.1.

An abstract kernel is a triple (B, I, J) where R, I" are as above
and, for a.a. veR, J(v): [’y —I', is a topological isomorphism such
that a.e. (u, v) € R®, J(uwv)*J(u)J(v) € Int I';, and such that the map
R, ' —>1T, (v, &) — Jw, is Borel. A morphism of abstract kernels
t: (R, I", Jy— (R, I'", J') consists of

(i) A groupoid homomorphism : R — R'.

(ii) A Borel homomorphism T: I — I’ over z, i.e., a field of maps
T,:I',— I, such that

T,J(w) = Ad p(w)J'(t(w))T; a.e. ueR,

where g(w) €I, and Adx(y) = z'ywx.
Morphisms t, t’ are conjugate if T, e T;Int ", VvseS.

PROPOSITION 3.1. There is a functor U from the category of
groupoids and homomorphisms to the category of abstract kernels
and morphisms.

Proof. Let ¥ be a groupoid. Set R=RZ and ' =1I'%. Let
v— a(v) be a Borel map R— ¥ such that Pla(v)) = v a.a. veR.
Define J(v): I's — I',, J(¥)(&) = a(v)éa(v)™. It is straightforward to
check that (%) = (R, I', J) is an abstract kernel and that different
choices a', J' give isomorphic kernels. Let n: & — £’ be a homo-
morphism. 7 induces t™: R¥ — R%Z’ and a homomorphism 7: I'& —
I'z’ by restriction, 77 being Borel and hence continuous by [1] p.
23. Also

TiJ(u) = Ad (a(c(w)w(a(u)™)J (zu)Ts YueR
and

a(r(u)m(e(u)™ € I

so that we have a morphism A(x): A(ZL") — A(L).

It is clear that this correspondence is functorial.

If & is a groupoid and U(¥Z) = (R, I, J) then clearly # is an
extension of I by R. We now investigate the extent to which an
abstract kernel (R, I', J) determines all groupoid extensions of I" by R.

By von Neumann’s selection lemma, an abstract kernel gives a
function fe.&,(R?, I'), f(w, v) € I',, such that

(A) Ju)J(v) = Adf(u, v)J(uwv) a.a.u,veR?®.
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Hence a.a. u, v, we R"¥:
Jwvw) = Adf(uv, w) " Jwv)J(w) = Adf(uv, w) " Adf(u, v)J(w)J(v)J(w)
Juvw) = Adfu, vw)J(u)J(vw)
= Adf(u, vw)*J(w)Ad f (v, w) 1 T(w) " J(w)J (v)J (w)
so that
(B) Sluv, w)f(u, v) = k(u, v, w)fu, vw)d(w)f(v, w)

where k(u, v, w) € Z(I",), the center of I',, a.a. u, v, we R®.

LEMmA 3.2 (c.f. [5], Lemma 8.4, Ch. IV). ke Z¥ R, Z(I")) where
Z(I") is the field given by Z(I"), = Z(I,).

Proof. Pick t, u, v, weR¥. Set L = J@)[f(u, vw)J (w)f(v, w)]-
For a.a. t, u, v, we R*®, we may expand L in two ways using (A)
and (B) repeatedly:

L = J@&) f(u, vw)J(@&)J(w)f (v, w)
= f(t, wow)™ f(tu, vw)f &, wk(E, w, vw)TAAfE, w]J(Ew)f (v, w)]
= f@&, wow) ' f (tu, vw)f({tu, vw) " fEuv, w)f({Ew, v) &, wk(tu, v, w)™*
X k(t, w, vw)™*

and

L = J@)Lf (wv, w)f(w, v)k(u, v, w)™]
= [, wow)™" f(buv, w)f €, wo)f(¢, uwv)™ fEu, v)f ¢ Wk, wo, w)™
X (e, w, v)" Tk, v, W)™ .

Comparing these expressions one sees ke Z°.

LEvmMmA 8.3, The itmage of k& in H*® is independent of the choice
of [ and every k' in the class of k is obtained for some choice of f.

Proof. This is routine to check following the lines of [5] Lemma
8.5, Chapter IV.

We write obs(R, I", J) for the image of k in H®. This is further
justified by

LEmMMA 3.4. The image of k in HR, Z(I')) depends only on the
isomorphism class of (R, I, J).

Proof. First observe that an isomorphism (R, I", J) — (R, I[', J')
induces an isomorphism H*(R, Z(I"))— H*(R', Z(I"")) in an obvious way.
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Since T, J(w)T:' = Adgw)J'(w), B(u)el, a.a. ue R, we obtain
using (A)

J'(w)J'(w) = Ad f'(u, v)J'(uv) a.a.u, ve R?

where f'(u, v) = Suv)(T.f (u, N TJ(w)T7 Bw)™)Bw)™". Thus f',J’
satisfy (A).

Now set K, = f'(uv, w)f'(u, v); K, = f'(u, vw)J' (w)f'(v, w).

Using (A) one computes

K, = Buvw)(T.f(wv, w)) T,(f (u, v)J(w)J () T7"Bw) "N T J(w)T7' B(v)™)
X B(w)™!

K, = Bluvw)(T,f(u, vw))( T J(w) f (v, w))(Tu] (w)J(v) T5 B(w)™)
X (T () T7' B(v)™)B(u)™

and so
E'(u, v, w) = KK = T,k(u, v, w) .

THEOREM 3.5. Let (R, I, J) be an abstract kernel and suppose
that obs(R, I', J) = 0. Then the extensions of I’ by R are in one-one
correspondence with H*(R, Z(I")).

Proof. By Lemma 3.4 we may suppose that t = 0a.e. Set & =
R}, with the fiber product measure ®. Define, for u, ve R®, a ¢
r,berl, (w, a)=1; (4, a) = %; (u, a)(v, b) = (uv, a(J(WD) f(u, v)™);
w, a)* =W, fw?, w)Jw)a?). Using (A) and (B), one checks
that these definitions of multiplication and inversion satisfy the
appropriate identities almost everywhere. @ also has appropriate
invariance properties: the fiber measure on F** = F* X [y is @“* =
h*x vz, where v, is the measure on I',, T*% F“°—Fu2ig Ty, b) =
(uw, a(J(u)b)f(u, v)™*). By the quasi-invariance of the measures h°
and the fact that automorphisms of I', preserve [v,], the measure
@** are also quasi-invariant. For weR, set P:I',—I';, P,(a) =
f™, v)J(w")a"*. Then P,y, ~v; and

i@ = i*Sva_dh(v) - SRPﬂ*vv_dh(v) ~ SRv;dh(v) ~ SRvﬁdh(v) —w.

< is therefore almost a groupoid, and we wish to conclude the

existence of a groupoid < which is almost equal to &, in a suitable
sense. But this is prec1se1y the content of [8], Theorem 3.7; namely,

there is a groupoid < and a map j: & — © which is almost a groupoid

homomorphism. We write & = Ext (R, I), z = Extf(R, .
Suppose now that f is replaced by a function f’, so that f'(u, v) =
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fu, v)h(u, v) a.a. (u, v) € R®, where h(u, v) e Z*(R, Z(I')). It is clear
that any extension of I by R may be obtained in this way. If he
B*(R, Z(I')), h = 09, then P:Ext;(R, I') — Ext;, (R, I'), P(u, a) =
(u, g(w)a), is an almost isomorphism (i.e., it satisfies the appropriate
conditions a.e.) and hence induces an equivalence P:Ext (R, I') —
Bxty(R, ). ([8] Theorem 4.1.)
S S

Conversely suppose that Exts(R, I') and Ext;(R, I') are equivalent
extensions of I" by R, via an isomorphism 7. Then there is an almost
isomorphism T: Ext (R, I') — Ext; (R, I'), T(u, a) = (u, P(w)a) where
P(s) =id and P(w):I',— I, is almost a bijection. The condition that

T is almost a homomorphism leads to

(1) (P(wa)(J(w)P(0)b) f'(u, v)™" = Puv)(a(J(w)b)f(u, v)™)
aa. u,veR? acl, bel,.

Setting u = #, (T,a)(P(v)b) = P(v)(ab) so that a.a. v, P(v)T," commutes
with all left multiplications in 7",, and hence is right multiplication
by an element g(v) € I',. Setting v = v, (P(u)a)(J(u) Tzb) = P(w)(a(J(u)b).
Therefore P(w)T.' is also left multiplication by g(w)e ', a.a. u.

We conclude g(u) € Z(I',) a.a. u, and substituting back in (1) leads
to

g(w)(J(w)g(@) f'(w, v)™* = g(uv) f(u, v)™*

so"that h = dg € B(R, Z(I")).
S
From now on we will write Ext,(R, I') for Ext (R, I').
We now return to the special abstract kernels associated to

groupoids.
ProposiTION 3.6. If (R, ', J) = A(Z), then obs(R, I', J) = 0.

Proof. By the definition of A(Z"), we have a Borel map a: R —
<, Pla(u)) = ua.a. ue R, and
Jw)(§) = aw)za(w)™, sely.
Now a(uv)a(v) 'a(u)el’, a.a. u, ve R?. Set
fu, v) = a(wv)a(v)alu)™ .
It is easy to compute that f satisfies (A) and (B) with £ = 0.
ProOPOSITION 3.7. Let (R, I', J) = A(Z), and let f be such that

(A), (B) hold with &k = 0. Then Ext, (R, I') and & are equivalent ex-
tensions of I" by R.
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Proof. The map &+ (P(&), a(P(£))7') is an almost isomorphism.

We have shown that groupoid homomorphisms induce morphisms
of abstract kernels. We now investigate whether a morphism
t:(R, I, J)— (R, ", J) determines a homomorphism Ext,(R, ") —
Ext7(R, I'), and discuss the similarity of such morphisms.

Suppose that obs(R, I', J) = obs(R, ', J) = 0 and that f, f are
chosen so that (A), (B) hold with k, £ = 0. By definition we have a
homomorphism 7: R — R and a field of homomorphisms 7T, over r such
that

3.1) T, J(w) = Ad gw)J(cu) Tz , Bu)el ., .

An almost homomorphism Ext(R, I') — Ext(R, I') consistent with
t must be of the form

(u, @) — (cu, Hw)a) a.a. (u, a) e Bxt(R, '),

where H(w): I',— I"., and H(w) = T,.
The condition that this be an almost homomorphism is

(3.2)  Hu)a(Jwb)fu, v)™) = (Hw)a)Jcu)(T(@)b)fcu, tv)™" a.e.
Let h(u) = H(u)e. Putting v = v, a = e in (3.2) gives

(3.3) Hw)(e) = hw)pw) Tuegw)™, cel, .

Putting u = @, b = ¢ gives

(3.4) Hw)a) = (T,a)h(v) .

Comparing these equations we see that

(3.5) h)pw) e Z(T,I",) a.a.veR
and
(3.6) H(v)(a) = (T.a)h(v) a.a.velk.

Substituting back in (3.2) gives

3.7 T, f (w, v) " h(wv) = h(w)(JJ(cu)h(v)f(zu, Tv)~" .

Now using (A), (3.1) and (3.5) we obtain

(3.8)  Ad(f(zu, to)Jcw)h(v) " (w) )T, = Ad(R(uv) T, f (u, v))T,
so that
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(3.9) flou, To)J(cu)h(v) " h(u)™ WS (U, ) h(uw) € Z(T(I",)) .

Therefore t induces a homomorphism Ext,(R, I") —Ext; (R, I’) precisely
when there is a choice of h(u)eI'., such that

(3.10) Ad h(uw) = Ad B(u)™* a.e.

and (3.7) holds a.e., moreover (3.9) follows from (3.10).
In special cases these conditions simplify: if Z(T,(/",)) = {e} a.e.
then t always induces a homomorphism Extt; if 7, has dense range

a.e. one may compute that there is an obstruction to Extt being a
homomorphism which is an element of HXR, Z(I")). If I', I are fields
of abelian groups all obstructions vanish.

In a similar vein we investigate the similarity of morphisms
t,t: (R, I, J)— (R, I', J). Consider the special case (R, I", J) =A%),
(R, T, J) =WL), T =Uxr), T' = Ax"), where 7, 7’ are similar homo-

morphisms & — Z. Let f, f be functions such that (A), (B) hold a.e.
with k, k = 0. There is a map ¢: S, — &,

(3.11) PET'EPE) T =7(8) aa.feZ.

Let 7, 7" and T, T be the maps induced on R, I" by = and z’, and
set 0(s) = (¢s, 7's) € B. Then

J(0(s)) = Ad @(s)""'Ad v(s) for some ~(s)el..,.

In order to simplify computations we will replace 7’ by v(u)7’(u)v(@)™*
which induces 7’ and a homomorphism conjugate to 7. Thus we
assume v(s) = e.

Applying (3.11) to I, gives

(3.12) T, = JO()T! a.e.

Using the relations

(3.13) T J(w) = Ad gw)J (zu) Tz
(3.14) J(u) = Ad a(u)™

we obtain

(3.15) Ad pw)J(tu) Ty = Ad m(a(u))"'T;

and a similar relation (3.15)" for 7".
Apply Ad to both sides of (3.11) and using (3.12), (3.13), (3.15):

(8.16)  Ad g(w)J(zw)J(0(@)) Ts = J(O(w)Ad ' (w)J(z'w)T5 a.e.

DEFINITION 3.8. Morphisms t, t': (R, I, J) — (R, I, J) are similar
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if ¢ is similar to 7" and t' is conjugate to a morphism for which
(3.12) and (3.16) hold.

Suppose now t, t’ are similar, chosen such that (3.12) and (3.16)
hold, and that both induce homomorphisms of Ext(R, I'). There is
an obstruction to Extt, Extt’ being similar, which we outline below.

From (3.1.6) and (A) we obtain

Ad g(w)Ad f(zu, 6(@)J(zub(@) T,

(8.17) = Ad JOw)B'(w) Ad F(O@w), 7'w)J (0" w) TS

and hence

(3.18) f(zu, 0(@)Bw) = f(O(w), T'w)(J OW)F w)l(w), Le Z(T,I,) a.e.
A routine computation shows that if there is a function @ such that
(3.19) O(u) Extt(u, a)@(w)™ = Extt'(u, a) a.e.

then @(uw) must be of the form (6(u), e¢) and that this is a similarity
if we can choose I(u) = ¢ in (3.18).

Again if Z(T,I',) = {e} a.e., @ is necessarily a similarity. If T,
has dense range a.a., then I(u) eZ(Il). Substituting the expression
for [ obtained in (3.18) into the equation (3.7) for t, and using
8.7 for t' we find by repeated use of (A) and (B) that
l(w)J(zu)l(v) = l(wv) so that replacing g(w) by S(u)l(u)~* produces no
change in any of the relations used except that the I(u) term in
(3.18) vanishes, so that Extt and Extt’ are indeed similar.

4. Examples and applications.

(A) Theorem 2.9 applied to H'(R, A) shows that if 7: R — A4 is
an almost everywhere cocycle, then there is a saturated conull set
S*C S, and a striet cocycle 7': RNS*XS* - A4, sothat # = n’ + dg in
C'(R, A). Since dg is automatically a strict cocycle (we may clearly
assume ¢ is Borel and everywhere defined on S), we may include dg
in 7’ and conclude the existence of a strict cocycle defined on a
saturated conull set of S, equal to = a.e. This is a much stronger
result than [7] Theorem 5.1, in which z’ is only asserted to be strict
on an i.c. of R. This fact simplifies the proof of many results on
cocycles on G spaces, for example the construction of the range
closure of 7: S X G— A. It may be seen by following through the
steps of the proof that the result in fact depends neither on the
freeness of the G action nor on the commutativity of A. (This
result was first observed and proved directly by L. Brown, private
communication.)
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(B) Split extensions. An extension Ext R, ") of R by I is
said to be split if we can choose f = 0 in (A). In this case J: R —
Aut I" is a cocycle, where Aut /" is an algebraic groupoid in an obvious
way. It is not hard to see that Ext (R, I") depends up to isomorphism
on the cohomology class of J in Aut 7'/Int I.

Let 7: R’ — R be a homomorphism of principal groupoids, and let
T:I"— I be a morphism of the fields I/, I" on §', S over 7, such that
each T, is an isomorphism. If J: R — Aut/l is a cocycle, then
JO(u) = T (z(w) Tz, we R, is a cocycle R'— Aut [”. In particular
if 7 is a similarity then Ext,(R, I') and Ext, ,.(R’, I'’) are similar.

Conversely let 7: Ext, (R, I'") —» Ext,(R, I') be a similarity with
inverse +r, so that +ror is similar to the identity. Then, as in Pro-
position 3.1, z©: R’ — R is a similarity. Moreover applying 3.12 to
TvoT" we see that each T7 is an isomorphism. By (3.1), T5J'(w)T5 " =
Ad k(w)J(t'u), ue R’, where k(u)e I'.-,,. Therefore

J'(w) = Ad(T; " k(w)J "™ (u) ,

so that J' = J7°" up to a cocycle in Int 7.

Hence the similarity classes of split extensions of R by I” correspond
to cohomology classes of cocycles J: R — Aut /'/Int I'. In particular,
taking I” to be a constant field H and R to be a hyperfinite relation,
one obtains many dissimilar split extensions of B by H.

(C) Following the methods of [2] Theorem 5, one shows that if
an equivalence relation R is generated by a free action of a l.c.s.c
group G on S, then H*(R, A) = H*(G, .7 (S, A)). In particular if R
is hyperfinite or if G is a free group, then H*(R, A) =0 for n =2
(e.f. [2] Theorem 6) and we may construct Ext (R, I") for any field
I over S. If I" is a field of abelian groups we may in addition
choose f = 0 so that the extension splits.

(D) It is natural to ask whether all the extensions we construct
are similar to groupoids coming from group actions. Groupoids are
countably similar if they are similar under mappings which are
countable to one on the units, c.f. [3]. We have the following partial
result:

PROPOSITION 4.1. Let R be a hyperfinite equivalence relation and
let H be a les.c. group and J: R — Aut H a Borel cocycle. Then
there is a l.c.s.c. group G and a standard Borel G space X so that
X X G is countadbly similar to Ext,(R, H).

Proof. It is well known that J may be replaced by a similar
cocycle J' taking values in a countable subgroup D of Aut H. (This
uses hyperfiniteness of R and the fact that AutH is separable in
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the compact open topology, c.f. e.g. [11] Corollary 9.2). Realize
R as generated by a transformation 7' on S and form X = S x D.
On X we have the skew action 7Y and the translation action of D
on itself. These two actions together generate a relation R’ coun-
tably similar to B. J'(s,d; s',d") =d + J(s,s’) —d' is a cocycle on
R’ similar to J on R. Let G = H® (Z x D) where the Z X D action
on His (n,d)-h=d(h). Let G act on X, H acting trivially and
Z x D as described above. Then Ext,(R’, H) = X X G, and by (B)
Ext,(R', H) is countably similar to Ext,(R, H). For one computes
that J'(z, xg) = p(g9), where p: G — D is projection, so that J(x, xg) =
Adg: H— H vVexe X, geq.

On the other hand, an example of Hahn [3] shows that there is
a field of l.c.s.c. groups I” on a hyperfinite relation R, and a cocycle
J: R— AutI', such that Ext,(R, I') is not countably similar to any
X % G.

(E) Remark that the groupoid G° deseribed in [10] §7 is a special
case of our constructions.
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