THE FACTORIZATION OF H^p ON THE SPACE OF HOMOGENEOUS TYPE

AKIHITO UCHIYAMA
THE FACTORIZATION OF H^p ON THE SPACE OF HOMOGENEOUS TYPE

AKIHITO UCHIYAMA

Let K be a Calderon-Zygmund singular integral operator with smooth kernel. That is, there is an $\Omega(x)$ defined on $\mathbb{R}^n \setminus \{0\}$ which satisfies

\[\int_{|x|=1} \Omega = 0, \quad \Omega \neq 0, \]

(*) \quad $\Omega(rx) = \Omega(x)$ when $r > 0$ and $x \in \mathbb{R}^n \setminus \{0\}$, \quad $|\Omega(x) - \Omega(y)| \leq |x - y|$ when $|x| = |y| = 1$,

and that

\[Kf(x) = P.V. \int_{\mathbb{R}^n} \Omega(x-y) |x-y|^{-n} f(y) dy. \]

Let

\[Kf(x) = P.V. \int_{\mathbb{R}^n} \Omega(y-x) |y-x|^{-n} f(y) dy. \]

R. Coifman, R. Rochberg and G. Weiss showed the weak version of the factorization theorem of $H^1(\mathbb{R}^n)$ and that was refined by Uchiyama in the following form.

THEOREM A. If $1 < q < \infty$ and $1/q + 1/r = 1$, then

\[c_{K,q} \|f\|_{H^1(\mathbb{R}^n)} \leq \inf \left\{ \sum_{i=1}^{\infty} \|g_i\|_{L^q} \|h_i\|_{L^r} : \right. \]

\[f = \sum_{i=1}^{\infty} (h_i K g_i - g_i K' h_i) \}

\[\leq c'_{K,q} \|f\|_{H^1(\mathbb{R}^n)}. \]

In this note, we extend Theorem A to $H^p(X)$, where $p \in (1 - \varepsilon_X, 1]$ and X is a space of homogeneous type with certain assumptions.

1. Preliminaries. In the following, $A > 1$ and $\gamma \leq 1$ are positive constants depending only on the space X.

Let X be a topological space endowed with a Borel measure μ and a quasi-distance d such that

(1) \quad $d(x, y) \geq 0$

(2) \quad $d(x, y) > 0$ iff $x \neq y$

(3) \quad $d(x, y) = d(y, x)$

(4) \quad $d(x, z) \leq A(d(x, y) + d(y, z))$
\[|d(x, z) - d(x, y)|/d(x, y) \leq A(d(z, y)/d(x, y)) \]
\[\text{if } d(z, y) < d(x, y)/(2A) \]
\[t/A \leq \mu(B(x, t)) \leq t \]

for all \(x, y, z \) in \(X \) and all \(t \in (0, A\mu(X)) \), where \(B(x, t) = \{ y \in X : d(x, y) < t \} \). We postulate that \(\{B(x, t)\}_{t \in (0, A\mu(X))} \) form a basis of open neighborhoods of the point \(x \).

Let \(\varphi(t) \in C^\infty(0, \infty) \) be a fixed nonnegative function such that \(\varphi(t) = 0 \) on \((0, 1/2) \), \(\varphi(t) = 1 \) on \((1, \infty) \) and \(|d\varphi/dt| < 3 \).

Further, we assume that \(X \) is endowed with a function \(k(x, y) \) defined on \(X \times X \) such that

\[|k(x, y)| \leq 1/d(x, y) \quad \text{for all } x, y \in X \]
\[\sup \{|k(x, y)| : y \in X \text{ satisfying } A^{-2}t \leq d(x, y) \leq t \} \geq 1/(At) \]
\[\sup \{|k(y, x)| : y \in X \text{ satisfying } A^{-2}t \leq d(x, y) \leq t \} \geq 1/(At) \]
\[\text{for all } x \in X \text{ and all } t \in (0, A\mu(X)) \]
\[|k(x, y) - k(x, z)|, |k(y, x) - k(z, x)| \leq (d(y, z)/d(x, y))^{1/2}/d(x, y) \]
\[\text{if } d(y, z) < d(x, y)/(2A) \]

and that for any \(f \in L^p(X) \)

\[Kf(x) = \lim_{t \to 0} \int k(x, y, t)f(y)d\mu(y) \]
\[K'f(x) = \lim_{t \to 0} \int k(y, x, t)f(y)d\mu(y) \]

exist almost everywhere and

\[\|Kf\|_2 \leq \|f\|_2, \quad \|K'f\|_2 \leq \|f\|_2, \]

where

\[k(x, y, t) = k(x, y)\varphi(d(x, y)/t) \]

and \(\|g\|_p \) denotes \(\left(\int_X |g(y)|^p d\mu(y) \right)^{1/p} \).

For \(x \in X \) and \(t \in (0, A\mu(X)) \), let

\[T(x, t) = \{ \Psi \in C(X) : \}

\[\sup \Psi \subset B(x, t) \]
\[|\Psi(y)| \leq 1/t \]
\[|\Psi(y) - \Psi(z)| \leq (d(y, z)/t)^{1/2}/t \quad \text{for any } y, z \in X \}

For \(f \in L^1(X) \) and \(p > 1/(1 + \gamma) \), let

\[f^\#(x) = \sup_{t \in (0, A\mu(X))} \sup_{\Psi \in T(x, t)} \left| \int f(y)\Psi(y)d\mu(y) \right| \]
\[\|f\|_{L^p} = \|f^\#\|_p \].
If $p > 1$, then $\|f\|_{H^p} \approx \|f\|_p$ by the Hardy-Littlewood maximal theorem and we define $H^p(X) = L^p(X)$. If $1/(1 + \gamma) < p \leq 1$, then we define $H^p(X)$ to be the completion of $\{f \in L^1(X) : \|f\|_{H^p} < \infty\}$ by the metric $\|f - g\|_{H^p}$.

A comment on notation: The letter C denotes a positive constant depending only on A and γ. The various uses of C do not all denote the same constant. All the functions considered are real valued functions.

2. The results. Our results are the following.

Theorem 1. If $1/p = 1/q + 1/r < 1 + \gamma$, $0 < 1/q < 1 + \gamma$, $0 < 1/r < 1 + \gamma$, $g \in H^q \cap L^2$ and $h \in H^r \cap L^2$, then

$$\|hKg - gK'h\|_{H^p} \leq c_{q,r} \|g\|_{H^q} \|h\|_{H^r},$$

where $c_{q,r}$ is a positive constant depending on q, r and X.

Remark 1. As a consequence of this theorem, for any $g \in H^q$ and any $h \in H^r$ we can define $hKg - gK'h$ as the limit of $\{h_jKg_j - g_jK'h_j\}_{j=1}^\infty$ in H^p, where $\{g_j\}_{j=1}^\infty \subset H^q \cap L^2$ converges to g in H^q and $\{h_j\}_{j=1}^\infty \subset H^r \cap L^2$ converges to h in H^r.

Theorem 2. If $\mu(X) = \infty$, $1/p = 1/q + 1/r < 1 + \gamma$, $0 < 1/q < 1 + \gamma$, $0 \leq 1/r < 1 + \gamma$ and $f \in H^p$, then there exist $\{g_j\}_{j=1}^\infty \subset H^q$ and $\{h_j\}_{j=1}^\infty \subset H^r$ such that

$$f = \sum_{j=1}^\infty (h_jKg_j - g_jK'h_j),$$

$$(\sum (\|g_j\|_{H^q} \|h_j\|_{H^r})^p)^{1/p} \leq c_{q,r} \|f\|_{H^p}.$$

As a result of these theorems, we get

Corollary 1. If $\mu(X) = \infty$, $1/p = 1/q + 1/r < 1 + \gamma$, $0 < 1/q < 1 + \gamma$, $0 < 1/r < 1 + \gamma$ and $f \in H^p$, then

$$c_{q,r} \|f\|_{H^p} \leq \inf \left\{ \left(\sum_{j=1}^\infty (\|g_j\|_{H^q} \|h_j\|_{H^r})^p \right)^{1/p} \right\} ;$$

$$f = \sum_{j=1}^\infty (h_jKg_j - g_jK'h_j) \leq c_{q,r} \|f\|_{H^p}.$$

Example 1. Let $X = \mathbb{R}^n$, $d(x, y) = |x - y| \omega_n = (\sum_{j=1}^n (x_j - y_j)^2)^{n/2} \omega_n$, μ be the Lebesgue measure and let $k(x, y) = \Omega(x - y) |x - y|^{-n}$, where ω_n is the volume of the unit ball of \mathbb{R}^n and Ω satisfies (*). Then, by taking $\gamma = 1/n$ and by taking A sufficiently large depending on
Ω, the conditions (1) ~ (10) can be satisfied. In this case, the above definition of H^1 coincides with the definition of $H^1(R^n)$ given by Fefferman-Stein [5]. Thus, Corollary 1 is an extension of Theorem A.

Example 2. Let $A_t = t^p (0 < t < \infty)$ be a group of linear transformation on R^n with infinitesimal generator P satisfying $(Px, x) \geq (x, x)$, where $(,)$ is the usual inner product in R^n. For each $x \in R^n$ let $\rho(x)$ denote the unique t such that $|A_t^{-1}x| = 1$. Let $\Omega(x)$ be such that

$$\int_{|x| = 1} \Omega(x)(Px, x) = 0 \quad (\Omega \neq 0) ,$$

$$\Omega(A_t x) = \Omega(x) \text{ when } t > 0 \text{ and } x \in R^n \setminus \{0\}$$

$$|\Omega(x) - \Omega(y)| \leq |x - y| \text{ when } |x| = |y| = 1 .$$

Let $X = R^n$, $d(x, y) = \rho(x - y)\omega_n$, μ be the Lebesgue measure and let $k(x, y) = \Omega(x - y)/d(x, y)$, where $\nu = \text{tr } P$. Then, by taking $\gamma = 1/\nu$ and by taking A sufficiently large depending on P and Ω, the conditions (1) ~ (10) can be satisfied. [See Riviere [12].]

If we remove the condition $\mu(X) = \infty$, we can show the following a little weaker result.

Theorem 2'. If $\mu(X) < \infty$, X is connected, $1 \leq 1/p = 1/q + 1/r < 1 + \gamma, 1 < q, 1 < r, f \in H^p$ and $\int fd\mu = 0$, then there exist $\{g_j\}_{j=1}^\infty \subset L^q$ and $\{h_j\}_{j=1}^\infty \subset L^r$ such that

$$f = \sum_{j=1}^\infty (h_j K g_j - g_j K'h_j)$$

$$(\sum (||g_j||_q ||h_j||_r)^p)^{1/p} \leq c_{q,r} ||f||_{H^p} .$$

Corollary 1'. If $\mu(X) < \infty$, X is connected, $1 \leq 1/p = 1/q + 1/r < 1 + \gamma, 1 < q < \infty, 1 < r < \infty, f \in H^p$ and $\int fd\mu = 0$, then

$$c_{q,r} ||f||_{H^p} \leq \inf \left\{ \left(\sum_{j=1}^\infty (||g_j||_q ||h_j||_r)^p \right)^{1/p} : f = \sum_{j=1}^\infty (h_j K g_j - g_j K'h_j) \right\} \leq c'_{q,r} ||f||_{H^p} .$$

Remark 2. When $\mu(X) < \infty$, for $f \in L^1(X)$ we can easily show

$$\left| \int fd\mu \right| \leq C \inf_{x \in X} f^*(x) .$$

Thus, for any $f \in H^p$ we can define $\int fd\mu$ by $\lim_{n \to \infty} \int f_n d\mu$, where $\{f_n\} \subset$
$L^1 \cap H^p$ and $\lim f_n = f$ in H^p. And it follows easily that

$$\left| \int f \, d\mu \right| \leq c_p \|f\|_{H^p}.$$

3. The basic lemmas.

Definition 1. If $1/(1 + \gamma) < p \leq 1$, we say that a function $a(y)$ is a p-atom if there exists a ball $B(x, t)$ such that

$$(20) \quad \text{supp } a \subset B(x, t), \|a\|_\infty \leq t^{-1/p}, \int_a a \, d\mu = 0.$$

We can show easily that $\|a\|_{H^p} \leq c_p$.

Definition 2. For $f \in L^1 + L^2$, $q > 0$ and $\alpha > 0$, let

$$M_q f(x) = \sup_{t > 0} \left(\int_{B(x, t)} |f|^q \, d\mu / t \right)^{1/q},$$

$$K^* f(x) = \sup_{t > 0} \left| \int_k(x, y, t) f(y) \, d\mu(y) \right|,$$

$$K^{\alpha} f(x) = \sup_{t > 0} \left| \int_k(y, x, t) f(y) \, d\mu(y) \right|,$$

$$f^{[*\alpha]}(x) = \sup_{t > 0} \sup_{\phi \in T_\alpha(x, t)} \left| \int f \phi \, d\mu \right|$$

where

$$(21) \quad T_\alpha(x, t) = \{ \phi \in C(X): |\phi(z)| \leq t^{-1}(t + d(x, z))^{-1-\gamma} \}.$$

Lemma 1. If $p > q$, then

$$\|M_q f\|_p \leq c_{p, q} \|f\|_p.$$

This is an immediate consequence of the Hardy-Littlewood maximal theorem. We omit the proof.

Lemma 2. If $d(y, z) \leq d(x, y)/(2A)$, then

$$d(x, y)/(2A) \leq d(x, z) \leq 2Ad(x, y).$$

This follows easily from (4). We omit the proof.

Lemma 3. If $t > 0$ and if $d(y, z) \leq d(x, y)/(2A)$, then

$$|\varphi(d(x, y)/t) - \varphi(d(x, z)/t)| = 0 \quad \text{if } d(x, y) \in (t/(4A), 2At),$$

$$\leq C(d(y, z)/d(x, y)^\gamma$$
otherwise.

Proof. Set \(w = \varphi(d(x, y)/t) - \varphi(d(x, z)/t) \). If \(d(x, y) \leq t/(4A) \), then, by Lemma 2, \(d(x, z) \leq t/2 \). Thus, \(w = 0 - 0 = 0 \). If \(d(x, y) \geq 2At \), then, by Lemma 2, \(d(x, z) \geq t \). Thus, \(w = 1 - 1 = 0 \). If \(t/(4A) < d(x, y) < 2At \), then, by (5),

\[
|w| \leq C|d(x, y) - d(x, z)|/t \leq C(d(y, z)/d(x, y))
\]

Lemma 4. If \(t > 0 \) and if \(d(y, z) \leq d(x, y)/(2A) \), then

\[
|k(x, y, t) - k(x, z, t)| \leq Cd(y, z)^{d(x, y)}^{-1/2}
\]

\[
|k(y, x, t) - k(z, x, t)| \leq Cd(y, z)^{d(x, y)}^{-1/2}
\]

Proof. We show only the first inequality. Note that

\[
|k(x, y, t) - k(x, z, t)| \leq |k(x, y) - k(x, z)| \varphi(d(x, y)/t)
\]

\[
+ |k(x, z)| \varphi(d(x, y)/t) - \varphi(d(x, z)/t)|.
\]

By (9), the first term of (22) is dominated by \(d(y, z)^{d(x, y)}^{-1/2} \). By Lemma 2, Lemma 3 and (7), the second term of (22) is also dominated by \(Cd(y, z)^{d(x, y)}^{-1/2} \).

Lemma 5. Let \(1/(1 + \gamma) < p \leq 1 \) and \(u \in H^p \). Then, there exist a sequence of real numbers \(\{\lambda_j\}_{j=1}^{\infty} \) and a sequence of \(p \)-atoms \(\{a_j\}_{j=1}^{\infty} \) such that

\[
u(23) \quad u(x) = \sum_{j=1}^{\infty} \lambda_j a_j(x) \quad \text{in } H^p \quad \text{when } \nu(X) = \infty,
\]

\[
u(24) \quad u(x) = \sum_{j=1}^{\infty} \lambda_j a_j(x) + \int u \, d\nu(X) \quad \text{in } H^p \quad \text{when } \nu(X) < \infty,
\]

\[
\left(\sum_{j=1}^{\infty} |\lambda_j|^p \right)^{1/p} \leq c_p \|u\|_{H^p}.
\]

This is the atomic decomposition of \(H^n(X) \) which was shown by Macias-Segovia [10].

Lemma 6. Let \(1/(1 + \gamma) < p \leq 1 \), \(u \in L^1 \), \(\text{supp } u \subset B(x_0, t) \) and \(t \in (0, A\mu(X)) \). Then, there exists a sequence of real numbers \(\{\lambda_j\}_{j=1}^{\infty} \) and a sequence of \(p \)-atoms \(\{a_j\}_{j=1}^{\infty} \) such that

\[
u(25) \quad u(x) = \sum_{j=1}^{\infty} \lambda_j a_j(x) + \lambda_0 a_0(x)
\]

\[
\left(\sum_{j=0}^{\infty} |\lambda_j|^p \right)^{1/p} \leq c_p \left(\int_{\mathbb{R}^n \cap [x_0, 2A]} u^p \, d\mu \right)^{1/p},
\]

where
\[\lambda_0 = \int \mu \frac{1}{r} \mu(B(x_0, t)) \text{, } a_0(x) = t^{-1/p} \chi_{B(x_0, t)}(x) \]

and \(\chi_E \) denotes the characteristic function of a measurable set \(E \).

Note that \(\int \mu \mu \frac{1}{t} \leq C \inf_{x \in B(x_0, 2At)} \mu(x) \). Then, applying Lemma 5 to \(u - \lambda_0 a_0 \), we get Lemma 6.

Lemma 7. Let \(1/(1 + \gamma) < p \leq \infty \). Then,

\[
\| f^{[a]} \|_p \leq c_{p, \alpha} \| f \|_{H^p} .
\]

Proof. It can be shown easily that

\[f^{[a]}(x) \leq c_a |f(x)| . \]

Thus, if \(p > 1 \), (25) follows from the Hardy-Littlewood maximal theorem.

Let \(1/(1 + \gamma) < p \leq 1 \). Note that if \(\mu(X) < \infty \), then it is trivial that \(\| \chi_x^{\alpha} \|_p \leq c_p \| \chi_x^{\alpha} \|_{\infty} \leq c_{p, \alpha} \). Thus, by Lemma 5, it suffices to show (25) for a \(p \)-atom \(a(y) \) satisfying (20). If \(y \in B(x, t/\alpha)^{s}, s > 0 \) and \(\Psi \in T_a(y, s) \),

\[
\int |a(z)\Psi(z)| d\mu(z) \\
= \left| \int a(z)(\Psi(z) - \Psi(x))d\mu(z) \right| \\
\leq \int_{B(x, t)} t^{-1/p} d(z, x)^{r} d(x, y)^{-1-\gamma} d\mu \text{ by (21)} \\
\leq t^{1-1/p+\gamma} d(x, y)^{-1-\gamma} .
\]

Thus,

\[
a^{[\alpha]}(y) \leq t^{1-1/p+\gamma} d(x, y)^{-1-\gamma} .
\]

If \(y \in B(x, t/\alpha) \), then

\[
a^{[\alpha]}(y) \leq c_a t^{-1/p} .
\]

Hence, by (26) and (27),

\[
\| a^{[\alpha]} \|_p \leq c_{p, \alpha} .
\]

Lemma 8. Let \(1/(1 + \gamma) < p < \infty \). Then,

\[
\| K^* f \|_p \leq c_p \| f \|_{H^p} \\
(28)
\]

and

\[
\| K^{**} f \|_p \leq c_p \| f \|_{H^p} .
\]
Proof. If \(p > 1 \), then these follow from the well known argument about the maximal singular integral.

Let \(1/(1 + \gamma) < p \leq 1 \). We show only (28). Note that if \(\mu(X) < \infty \), then it follows easily that

\[
||K^*\mathcal{X}_\gamma||_p \leq c_p \|K^*\mathcal{X}_\gamma\|_2 \leq c_p \|\mathcal{X}_\gamma\|_2 \leq c_p.
\]

Thus, by Lemma 5, it suffices to show (28) for a \(p \)-atom \(a(y) \) satisfying (20). If \(d(x, y) > 2At \) and \(s > 0 \), then

\[
\left| \int k(y, z, s)a(z)d\mu(z) \right| = \left| \int (k(y, z, s) - k(y, x, s))a(z)d\mu(z) \right| \leq C \int_{B(x,2At)} d(x, z)^{-1}(x, y)^{-1+\gamma}d\mu \text{ by Lemma 4}
\]

\[
\leq Ct^{1+\gamma}d(x, y)^{-1+\gamma}.
\]

Thus,

\[K^*a(y) \leq Ct^{1+\gamma}d(x, y)^{-1+\gamma}. \]

On the other hand, since (28) has been known for \(p = 2 \), we get

\[\int_{B(x,2At)} |K^*a|^p d\mu \leq Ct^{1-p/2}(\int |K^*a|^2 d\mu)^{p/2} \leq Ct^{1-p/2}||a||_p^p \leq C. \]

Thus, by (30) and (31), we get

\[\int |K^*a|^p d\mu \leq c_p. \]

Lemma 9. Let \(\zeta(x, y) \) be a function defined on \(X \times X \) such that

\[
|\zeta(x, y)| \leq d(x, y)^{\gamma-1}
\]

\[
|\zeta(x, y) - \zeta(x, z)| \leq d(y, z)^{\gamma}/d(x, y)
\]

if \(d(y, z) < d(x, y)/(2A) \). Let \(u \in L^2 \), \(\text{supp } u \subset B(x_0, t), t \in (0, A\mu(X)) \)

\[v(x) = \int \zeta(x, y)u(y)d\mu(y) \]

and \(1 + \gamma > 1/s_1 > \gamma \). Then,

\[\left(\int_{B(x_0,t)} |v|^2 d\mu \right)^{1/s_2} \leq c_{s_1} \left(\int_{B(x_0,2At)} (u^*)^2 d\mu \right)^{1/s_1} \]

where \(1/s_2 = 1/s_1 - \gamma \).

Proof. If \(s_1 > 1 \), this can be shown in the same way as [13]
120. Let \(1/(1 + \gamma) < s_1 \leq 1\). Applying Lemma 6 to \(u(x)\) and \(p = s_1\), we get \(\{\lambda_j \}_{j=0}^{\infty}\) and \(\{a_j(x)\}_{j=0}^{\infty}\) such that (24). For \(j = 1, 2, 3 \ldots\), let

\[
B(x_j, t_j) \supset \text{supp } a_j, \quad t_j^{-1/s_1} \geq ||a_j||_{\infty}.
\]

For \(j = 0, 1, 2, \ldots\), let

\[
v_j(x) = \int \zeta(x, y) a_j(y) d\mu(y).
\]

Then,

\[
|v_0(x)| \leq C t_j^{-1/s_1},
\]

\[
|v_j(x)| \leq C \min(t_j^{-1/s_1}, t_j^{1+\gamma-1/s_1}/d(x, x_j)) \quad \text{for } j \geq 1.
\]

Thus, by (24) and \(s_1 \leq 1 < s_2\),

\[
\left(\int_{B(x_0, t)} |v|^s d\mu \right)^{1/s} \leq \sum_{j=0}^{\infty} |\lambda_j| \left(\int_{B(x_0, t)} |v_j|^s d\mu \right)^{1/s} \leq c_{s_1} \sum_{j=0}^{\infty} |\lambda_j| \leq c_{s_1} (\sum_{j=0}^{\infty} |\lambda_j|^{s_1})^{1/s_1} \leq c_{s_1} \left(\int_{B(x_0, 2A\mu)} (u^*)^s d\mu \right)^{1/s_1}.
\]

4. Proof of Theorem 1. We may assume \(q \leq r\). Then \(r > 1\). Let \(x \in X\) be fixed. Let \(t \in (0, \Lambda \mu(X))\) and \(\Psi \in T(x, t)\). Then

\[
\int \Psi(y) (h(y)Kg(y) - g(y)K'h(y)) d\mu(y)
\]

\[
= \int (\Psi(y)Kg(y) - K(\Psi g)(y)) h(y) d\mu(y).
\]

Set

\[
\eta(y, z) = k(y, z)(\Psi(y) - \Psi(z))g(z).
\]

Note that

\[
\Psi(y)Kg(y) - K(\Psi g)(y) = \int \eta(y, z) d\mu(z).
\]

Let

\[
d(x, y) > 16A^t.
\]

Then \(\Psi(y) = 0\). Set

\[
\int \eta(y, z) d\mu(z) = -k(y, x) \int \Psi(z)g(z) d\mu(z)
\]

\[
+ \int (k(y, x) - k(y, z)) \Psi(z)g(z) d\mu(z)
\]
If $z \in \text{supp } \Psi$, then, by (41),
\[d(x, z) < d(y, x)/(2A) \]
Hence, by (9) and (12),
\[|\zeta_2(y, z)| \leq d(x, y)^{-1-\tau t^{-1}}. \]
If $z_1, z_2 \in B(x, 2At)$, then, by (41) and Lemma 2,
\[d(x, z_1) < d(y, x)/(2A) \text{ and } d(z_1, z_2) < d(y, z_1)/(2A). \]
Hence, by (9), (12) and (13),
\[|\zeta_2(y, z_1) - \zeta_2(y, z_2)| \leq |k(y, x) - k(y, z_1)| |\Psi(z_1) - \Psi(z_2)| + |k(y, z_1) - k(y, z_2)| |\Psi(z_2)| \leq C(d(z_1, z_2)/t)^{t^{-1}}d(x, y)^{-1-\tau}. \]
Thus, by (43), (44) and $\text{supp } \zeta_2(y, \cdot) \subset B(x, t)$,
\[Ct^{-\tau}d(x, y)^{1+\tau}\zeta_2(y, \cdot) \in T(x, t). \]
So,
\[|\eta_2(y)| \leq Cd(x, y)^{-1-\tau t^\tau}g^s(x). \]
Let
\[d(x, y) \leq 16A't. \]
Set
\begin{align*}
\eta_2(y, z)d\mu(z) &= \Psi(y) \int k(x, z)\varphi(d(x, z)/(\beta t))g(z)d\mu(z) \\
&\quad + \Psi(y) \int (k(y, x) - k(x, z))\varphi(d(x, z)/(\beta t))g(z)d\mu(z) \\
&\quad + \int k(y, z)(\Psi(y) - \Psi(z))\varphi'(d(x, z)/(\beta t))g(z)d\mu(z) + \Psi(y) \int \zeta_2(y, z)g(z)d\mu(z) \chi_{B(x, 16A't)}(y) \\
&= \Psi(y) \int k(x, z, \beta t)g(z)d\mu(z) + \Psi(y) \int \zeta_2(y, z)g(z)d\mu(z) \\
&\quad + \int \zeta_2(y, z)\varphi'(d(x, z)/(\beta t))g(z)d\mu(z) + \Psi(y) \int \zeta_2(y, z)\varphi'(d(x, z)/(\beta t))g(z)d\mu(z) \chi(y) \\
&= \eta_3(y) + \eta_4(y) + \eta_5(y),
\end{align*}
where $\beta = 128A^\epsilon$ and $\varphi' = 1 - \varphi$.
Since β is sufficiently large, if $\varphi(d(x, z)/(\beta t)) \neq 0$, then
\[d(x, y) < d(x, z)/(2A). \]
Hence, by (9),
\[|\zeta_t(y, z)| \leq Ct(t + d(x, z))^{-1-r}. \]

Let
\[d(z_1, z_2) < d(x, z_1)/(2A)^{\gamma}. \]

Set
\[d(z, z_1) - |k(y, z) - k(x, z)| \leq \varphi(d(x, z_1)/(\beta t)) \]
\[+ |k(y, z_1) - k(y, z)| \varphi(d(x, z_1)/(\beta t)) \]
\[+ (|k(y, z_2)| + |k(x, z_2)|) \varphi(d(x, z_1)/(\beta t)) - \varphi(d(x, z_2)/(\beta t)) | \]
\[= \zeta_{41} + \zeta_{42} + \zeta_{43}. \]

By (49) and (9),
\[\zeta_{41} \leq Cd(x, z_1)^{\gamma}d(x, z_1)^{-1-r}. \]

Since \(\beta \) is sufficiently large, if \(\varphi(d(x, z_1)/(\beta t)) \neq 0 \), then, by (46) and Lemma 2,
\[d(x, z_1)/(2A) \leq d(y, z_1). \]

Hence, by (49) and (9),
\[\zeta_{42} \leq d(z_1, z_2)^{\gamma}d(y, z_1)^{-1-r}\varphi(d(x, z_1)/(\beta t)) \]
\[\leq Cd(x, z_2)^{\gamma}d(x, z_1)^{-1-r}. \]

By Lemma 2,
\[d(x, z_2) \geq d(x, z_1)/(2A). \]

If \(\zeta_{43} > 0 \), then, by Lemma 3,
\[d(x, z_2) > \beta t/(4A). \]

So
\[d(x, y) \leq 16A^{t} \leq 64A^{\delta}d(x, z_2)/\beta = d(x, z_2)/(2A). \]

Thus, by Lemma 2 and (53),
\[d(y, z_2) \geq d(x, z_2)/(2A) \geq d(x, z_1)/(2A)^{\gamma}. \]

Hence, by (7), Lemma 3, (53) and (54),
\[\zeta_{43} \leq (d(y, z_2)^{-1} + d(x, z_2)^{-1})C(d(z_1, z_2)/d(x, z_1))^{\gamma} \]
\[\leq Cd(x, z_1)^{\gamma}d(x, z_1)^{-1-r}. \]

So, by (48), (51), (52) and (55),
\[C\zeta_t(y, \cdot) \in T_{(2,4)^{-2}}(x, t). \]

Thus,
\begin{equation}
|\gamma_1(y) - \delta(y)| \leq C |\Psi(y)| g^{*[1/(2,4)^{-2}]}(x).
\end{equation}

By (7) and (13),
\begin{equation}
|\zeta_0(y, z)| \leq t^{-1-\gamma}d(y, z)^{-1-\gamma}.
\end{equation}

If \(d(z_1, z_2) < d(y, z_1)/(2A) \), then by (7), (9) and (13),
\begin{equation}
|\zeta_0(y, z_1) - \zeta_0(y, z_2)|
\leq |k(y, z_1)(\Psi(z_1) - \Psi(z_2))| + |k(y, z_1) - k(y, z_2)| |\Psi(z_2) - \Psi(y)|
\leq d(y, z_1)^{-1-\gamma}d(z_1, z_2)^{-\gamma} + d(y, z_1)^{-1-\gamma}d(z_1, z_2)^{-\gamma}t^{-1-\gamma}d(z_1, z_2)^{-\gamma}
\leq C d(y, z_1)^{-1-\gamma}d(z_1, z_2)^{-\gamma}.
\end{equation}

So, by (57) and (58), \(C^{1+\gamma} \zeta_0(y, z) \) satisfies the hypothesis of Lemma 9. Note that if \(z \in B(x, 2A\beta t) \),
\begin{equation}
(\phi'(d(x, \cdot))/(\beta t))g(\cdot)^*(z) \leq C g^*(z).
\end{equation}

Thus, by Lemma 9, we get
\begin{equation}
\left(\int_{B(x, 16A^4 t)} |\gamma_5|^{s_2} d\mu \right)^{1/s_2}
\leq C c_{s_1} t^{-1-\gamma} \left(\int_{B(x, 2A\beta t)} (g^*)^{s_1} d\mu \right)^{1/s_1},
\end{equation}

where \(\gamma < 1/s_1 < 1 + \gamma \) and \(1/s_2 = 1/s_1 - \gamma \).

By (42), (45), (47) and (56),
\begin{equation}
\int \gamma(y, z) d\mu(z) = -\int g \Phi(y, x) \Phi(d(y, x)/t) + \gamma_0(y) + \gamma_0(y) + \gamma_0(y)
\end{equation}
where
\begin{equation}
|\gamma_0(y)| \leq C g^{*[1/(2,4)^{-2}]}(x) t^{\gamma}(t + d(x, y))^{-1-\gamma}.
\end{equation}

Thus,
\begin{equation}
|\gamma_0| \leq \left| \int \int \gamma(y, z) d\mu(z) h(y) d\mu(y) \right|
\leq C \left\{ g^*(x) K^* h(x) + h^*(x) K^* g(x) \\
+ \left\{ \gamma_0(y) h(y) d\mu(y) + g^{*[1/(2,4)^{-2}]}(x) M(h(x)) \right\} \right\}.
\end{equation}

Since \(1/p = 1/q + 1/r \) and \(1/p < 1 + \gamma \), we can take \(s_i \) such that
\begin{equation}
1 + \gamma > 1/s_1 > \max(1/q, \gamma), 1/s_2 = 1 - s_2 > 1/r.
\end{equation}
Then, by (59),

$$\int \eta_\xi(y) h(y) d\mu(y)$$

(62)

$$\leq \left(\int_{B(x, \lambda^2 t)} |\eta_\xi(y)|^2 d\mu(y) \right)^{1/2} \left(\int_{B(x, \lambda^2 t)} |h|^2 d\mu \right)^{1/2}$$

$$\leq c_\xi M_{\eta_\xi} g^*(x) M_{\eta_\xi} h(x) .$$

By (40), (60) and (62), we get

$$(hKg - gK'h)^s(x) \leq C\{g^s(x)K^s h(x) + h^s(x)K^s g(x)$$

$$+ M_{\eta_\xi} g^s(x) M_{\eta_\xi} h(x) + g^s[[2, 2]^{-1}] (x) M_{\eta_\xi} h(x) \} .$$

All the terms on the right hand side belong to L^r by Lemma 1, Lemma 7, Lemma 8 and (61).

5. Proof of Theorem 2. By Lemma 5, we may assume that f is a p-atom such that

$$\text{supp } f \subset B(x_0, t), \| f \|_\infty < t^{-1/p} \quad \text{and} \quad \int f d\mu = 0 .$$

Let $q \leq r$. Then $r > 1$.

Let N be a large number depending only on X and p. Then, by (8), there exists y_0 such that

$$A^{-2}Nt \leq d(x_0, y_0) \leq Nt, |k(y_0, x_0)| > 1/(ANt) .$$

By (9),

$$\inf \{d(x, x_0) < t, d(y, y_0) < t \} > 1/(2ANt) .$$

Let

(70)

$$h(x) = \chi_{B(y_0, t)}(x) N .$$

Then, $|K'h(x)| > C$ on $B(x_0, t)$. Let

$$g(x) = -f(x)/K'h(x_0) .$$

Then, $g \in H^q$, $h \in H^r$ and

$$\| g \|_{H^q} \| h \|_{H^r} \leq C(t^{-1/p+1/q})N t^{1/r} = CN .$$

Set

$$w(x) = f(x) - (h(x)Kg(x) - g(x)K'h(x))$$

$$= f(x)(K'h(x_0) - K'h(x))/K'h(x_0) - h(x)Kg(x)$$

$$= w_1(x) + w_2(x) .$$

Since $\text{supp } w_1 \subset B(x_0, t)$ and $\| w_1 \|_\infty \leq t^{-1/p} N^{-1}$, we see that
\[
\int_{B(x_0,4A^2 Nt)} w_{W_1}(x) d\mu(x) \\
\leq \int_{B(x_0,4A^2 Nt)} t^{-1} N^{-r_p} (1 + d(x_0, x)/t)^{-p} d\mu(x) \\
\leq c_p N^{-r_p + 1 - p} \log N.
\]

A similar estimate holds for \(w_2 \). Thus,
\[
\int_{B(x_0,4A^2 Nt)} w_{W_1}(x) d\mu(x) \leq \int_{B(x_0,4A^2 Nt)} w_{W_1} + w_{W_2} d\mu \\
\leq c_p N^{-r_p + 1 - p} \log N \to 0 \quad \text{as} \quad N \to \infty.
\]

Since \(\text{supp} \ w \subset B(x_0, 2A N t) \) and \(\int w d\mu = 0 \), by taking \(N \) sufficiently large and applying Lemma 6 to \(w(x) \), we get
\[
w(x) = \sum_{j=1}^{\infty} \lambda_j f_j(x),
\]
where \(\{f_j\}_{j=1}^{\infty} \) are \(p \)-atoms and
\[
\sum_{j=1}^{\infty} |\lambda_j|^p < 1/2.
\]

Hence,
\[
f = (hKg - gK'h) + \sum_{j=1}^{\infty} \lambda_j f_j.
\]

Applying the same argument to each \(f_j \) and repeating this process, we get the desired result.

6. Proof of Theorem 2'. Since \(\mu(X) < \infty \) and \(X \) is connected, we can easily see that for any \(\varepsilon > 0 \) and any \(p \)-atom \(a(x) \), there exist \(\{a_j(x)\}_{j=1}^{\varepsilon \text{p},} \) such that
\[
a(x) = \sum_{j=1}^{\varepsilon \text{p},} a_j(x)
\]
and that each \(a_j \) is a \(p \)-atom supported on the ball with radius \(< \varepsilon \).

Thus, for the proof of Theorem 2', we may assume that \(f \) is a \(p \)-atom such that the radius of its support is less than \(N^{-1} \mu(X) \), where \(N \) is a sufficiently large number, depending only on \(X \) and \(p \), to be determined later.

Following the proof of Theorem 2, we define \(h(x) \) by (70) and \(g(x) \) by
\[
g(x) = -f(x)/K'h(x).
\]

Then,
\[w(x) = f(x) - (h(x)Kg(x) - g(x)K'h(x)) = -h(x)Kg(x). \]

Note that if \(y \in B(y_0, t) \), then
\[
|Kg(y)| \leq \left| \int k(y, z)f(z)d\mu(z)/K'h(x_0) \right| \\
+ \left| \int k(y, z)f(z)(1/K'h(x_0) - 1/K'h(z))d\mu(z) \right| \\
\leq C \int |k(y, z) - k(y, x_0)| |f(z)|d\mu(z) \\
+ \int |k(y, z)| |f(z)|N^{-r}d\mu(z) \\
\leq C \int (Nt)^{-1}N^{-r} |f(z)|d\mu(z) \leq CN^{-1-r}t^{-1/p}.
\]

Thus,
\[
\|g\|_q \|h\|_r \leq C \|f\|_q \|h\|_r \leq Ct^{-1/p+1/q}Nt^{1/r} = CN,
\]
\[
\int wd\mu = 0,
\]
\[
supp w \subset B(y_0, t)
\]
\[
\|w\|_\infty \leq \|h\|_\infty \sup_{y \in B(y_0, t)} |Kg(y)| \leq NCN^{-1-r}t^{-1/p}.
\]

If \(N \) is sufficiently large, then \(2w \) is a \(p \)-atom and the radius of its support is less than \(N^{-1/\mu(X)} \). Iterating this process, we get desired result.

ACKNOWLEDGMENT. I thank Professor M. Kaneko for helpful conversation and valuable information.

REFERENCES

Received October 1, 1979.

Tôhoku University
Kawauchi, Sendai, Japan
Bruce Allem Anderson and Philip A. Leonard, Sequencings and Howell designs ... 249
Kevin T. Andrews, Representation of compact and weakly compact operators on the space of Bochner integrable functions 257
James Glenn Brookshear, On the structure of hyper-real \(\varepsilon \)-ultrafilters 269
Frank John Forelli, Jr., A necessary condition on the extreme points of a class of holomorphic functions. II .. 277
Richard J. Friedlander, Basil Gordon and Peter Tannenbaum, Partitions of groups and complete mappings ... 283
Emden Robert Gansner, Matrix correspondences of plane partitions 295
David Andrew Gay and William Yslas Vélez, The torsion group of a radical extension ... 317
André (Piotrowsky) De Korvin and C. E. Roberts, Convergence theorems for some scalar valued integrals when the measure is Nemytskii 329
Takaši Kusano and Manabu Naito, Oscillation criteria for general linear ordinary differential equations ... 345
Vo Thanh Liem, Homotopy dimension of some orbit spaces 357
Mark Mahowald, \(bo \)-resolutions ... 365
Jan van Mill and Marcel Lodewijk Johanna van de Vel, Subbases, convex sets, and hyperspaces .. 385
John F. Morrison, Approximations to real algebraic numbers by algebraic numbers of smaller degree ... 403
Caroline Series, An application of groupoid cohomology 415
Peter Frederick Stiller, Monodromy and invariants of elliptic surfaces 433
Akihito Uchiyama, The factorization of \(H^p \) on the space of homogeneous type ... 453
Warren James Wong, Maps on simple algebras preserving zero products. II. Lie algebras of linear type .. 469