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If V is a discrete valuation ring with Krull dimension
m, it is shown that the power series ring Vlx,, -+, x,]] has
Krull dimension mn + 1.

Throughout the paper all rings are assumed to be commutative
with identity and the ring R is not considered to be a prime ideal
of R. In [1] the author defines a ring to have the SFT (strong finite
type) property if for each ideal A of R there exists a finitely gen-
erated ideal B and a positive integer % such that B < 4 and ofe B
for each ac A. It is shown in [1, Theorem 1] that if R fails to have
the SFT-property then the power series ring R[Y] has infinite Krull
dimension. On the other hand, if D is a Priifer domain with dimD=m
and if D has the SFT-property then dimD][Y [=m-+1 [2, Theorem 3.8].
Recall that a valuation ring V with finite Krull dimension is discrete
if and only if P - P? for each nonzero prime ideal P of V [5, pp.
190-192]. A valuation ring V has the SFT-property if and only if
it is discrete [2, Proposition 3.1]. Thus, if V is a valuation ring
and dimV = m then either V is discrete and dimV[Y ] = m -+ 1 (this
specific result was proved by Fields in [4, Theorem 2.7]) or V is
nondiscrete and dimV[Y ] = co. For dim R = m the author asks in
[1, p. 303] if either dim R[Y] =m + 1lor dim R[ Y] = . We show
that the answer is no for ringV[x, ---, 2,_,], where V is a discrete
valuation ring with dimV = 2. Specifically, we prove the following
theorem.

THEOREM. IfV is a discrete valuation ring with Krull dimension
m then the power series ring Vx, ---, x,] has Krull dimension
mn + 1.

Proof. The proof is by induction on m and the case m =1 is
well-known since, in this case, V is Noetherian (cf. Lemma 2.6 of [4]).
Thus assume that m = 2, that the theorem holds if dimV =m —1, let
dimV = m, and suppose that (0) = P,cP,cP,<---< P, is the set of
prime ideals of V. Throughout the proof X denotes the set {x,, - - -, ®,}
of analytic indeterminates over V, V[X] denotes the power series
ring V[, ---, 2,0, pe P\P}, W=V,, U=V/P, F=W/P,W and, even
though P, = P,W, we write & to denote the ideal P,W. We note
that W is a rank one discrete valuation ring with maximal ideal
P = pW, F is the quotient field of U, and for each integer &+ =1
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we have P! C p*P,. If 6e(W[X])ww then there exists a nonzero
element ¢ in W such that aée W[X]. But then paze V[X] and
paeV so £€(V[X])yw- This shows that (W[X])ww S (VIXDrnw
and the reverse containment is obvious so equality holds. It follows
that the correspondence @ — @ N V[X] is a bijection from the set

{Q eSpec(W[XD QN W = (0}}

to the set {Q eSpec(V[X])|Q NV = (0)} which preserves set con-
tainment. Thus, if Q@ €Spec(W[X]) and @ N W = (0), then rank Q =
rank (@ N V[X]) and it follows that rank@ =<n for each Q'¢
Spec(V[X]) such that @' NV = (0).

Let (0)c@,c---CcQ, = P, + (X) be a maximal chain of prime
ideals of V[X] and choose k so that Q, NV = (0) while Q. NV =
(0). Then, as we have already observed, & = rank @, < ». Since
pEQRr, we have (P[X])?CS PX] < pP[X] < Q.+, and hence
Qi =2 B[X].

We first consider the case in which Q,;, = P,[X]. It follows
from Theorem 3.14 of [3] that there exist elements N, = 2, Ny, * -+, N
in 2,F[x,] such that the U[x,]-homomorphism ¢: U[X] = U\, -+, N
determined by ¢(x;) = \;, 1 £ 7 < 1, is an isomorphism. But ¢ extends
to an F[x,]-epimorphism ¢: F[X] — F[x,] and if @ is the kernel of
é then depth @ =1, rank@ =n — 1 [6, Corollary 1, p. 218], and
QN U[X]=(0). Since F[X]=(W/A)[X]=W[X]/L[X] and U[X]=
VIX]/P[X], @ determines a prime ideal @ of W[X] such that depth
Q =1, rank(Q/[X]) =n — 1, and QN V[X] = P[X]. Therefore,
rank @ = n and, since dimW[X] = n + 1, it follows that rank @ = «.
If we choose fi,- -, fus € XW[X] such that the corresponding elements
Fiy o vy fuosin F[X] form a regular system of parameters for (F[X])g,
then {f,, ---, fu_s, p} is a regular system of parameters for (W[X]),
and the ideal N = (f), ---, f)(W[X]), is a prime ideal of (W[X]),
for 1<¢<n —1 (cf. Corollary 1, p. 302 and Theorem 26, p. 303 of
[6]). In particular, N,, = N, ,N W[X] is a prime ideal of W[X]
such that rank N, ,=n — 1, N,., <@, and N,_, N W = (0). We now
have P[X] =QNV[X]DN,,NV[X] and rank (N,,NV[X]) =
rank N, , = n — 1—that is, rank P,[X] = n. Therefore, kt +1=
rank @,., =1 + rank P[X]) =% 4+ 1. We have already seen that
k<mn, so k=un and rank (Q,+/P.,[X] =1. Thus, P[X]/P[X]
Qi /P[X]c---CQ,/P[X] is a maximal chain of prime ideals in
VI[X]/P[X]=U[X] of length t—k. By assumption t—k=(m—1)n+1
and since k = n this implies that ¢ = mn + 1.

We now consider the case in which @Q.., = P,[X]. It follows
from the previous argument that » < rank P,[X] = rank Q.+, =k + 1.
We will show that equality holds. Let #° be a valuation overring
of V[X] with prime ideals (0)C Qi --- Q). such that QN V[X]=Q,
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for each 4. Since @, NV = (0) we may assume that @}, = rad(»?")
and, by localizing if necessary, we assume that Q.. is the maximal
ideal of 77 We wish to show that 7" D2 W[X]. If this is not the
case then there exists h € W[X] such that A€ @,.,- If f = ph then
feP[X], h~* = p/f, and there exists an integer s such that 2~ =
p°/f* = pC for some e 7. But f*e(P[X]) < p'P,[X] so we have
p = p*/p*~f, for some f,€ P,[X]. Therefore, 1/f, = (€7 contrary
to the assumption that P,JX] & @;... It follows that W[X] & 7
and if @' =Q NW[X] for 1<i<k+1 then 0)CQ'C---CQ.,
is a chain of prime ideals of W[X] such that @' NV[X] =@Q,. In
particular, Q/,, N V[X] = P,[X]. Since [&Z + (X)|NV[X] =P, +(X)
it follows that @}, is not maximal in W[X]. Thus, » + 1> rank @Q;,,=>
k +1— that is, k < n. It follows that & = n — 1 and this together
with the previous argument shows that, in either case, rank P,[X] =
n. We now have that P[X]/P,[X]CQ../P.[X]C--- CQ/P[X]
is a maximal chain of prime ideals in V[X]/P,[X] = U[X] of length
t—(k+1) =t—=xn By assumption, t —n=(m — 1)n + 1, so ¢t =
mn + 1.

REMARK. The proof of the theorem shows that if (0) = P,C
P, c...c P, is the set of prime ideals of a discrete valuation ringV
then each of the prime ideals Pz, ---, ,] can be included in a
maximal chain of prime ideals of V{[z, ---, 2,] and for 0 < 7 < m we
have rank (P;[x,, ---, «,]/P;_\[®, -+, .]) = n.
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