POWER SERIES RINGS OVER DISCRETE VALUATION RINGS

JIMMY T. ARNOLD
If V is a discrete valuation ring with Krull dimension m, it is shown that the power series ring $V[[x_1, \cdots, x_n]]$ has Krull dimension $mn + 1$.

Throughout the paper all rings are assumed to be commutative with identity and the ring R is not considered to be a prime ideal of R. In [1] the author defines a ring to have the SFT (strong finite type) property if for each ideal A of R there exists a finitely generated ideal B and a positive integer k such that $B \subseteq A$ and $a^k \in B$ for each $a \in A$. It is shown in [1, Theorem 1] that if R fails to have the SFT-property then the power series ring $R[[Y]]$ has infinite Krull dimension. On the other hand, if D is a Prüfer domain with $\dim D = m$ and if D has the SFT-property then $\dim D[[Y]] = m + 1$ [2, Theorem 3.8].

Recall that a valuation ring V with finite Krull dimension is discrete if and only if $P \neq P^2$ for each nonzero prime ideal P of V [5, pp. 190–192]. A valuation ring V has the SFT-property if and only if it is discrete [2, Proposition 3.1]. Thus, if V is a valuation ring and $\dim V = m$ then either V is discrete and $\dim V[[Y]] = m + 1$ (this specific result was proved by Fields in [4, Theorem 2.7]) or V is nondiscrete and $\dim V[[Y]] = \infty$. For $\dim R = m$ the author asks in [1, p. 303] if either $\dim R[[Y]] = m + 1$ or $\dim R[[Y]] = \infty$. We show that the answer is no for ring $V[[x_1, \cdots, x_{n-1}]]$, where V is a discrete valuation ring with $\dim V \geq 2$. Specifically, we prove the following theorem.

Theorem. If V is a discrete valuation ring with Krull dimension m then the power series ring $V[[x_1, \cdots, x_n]]$ has Krull dimension $mn + 1$.

Proof. The proof is by induction on m and the case $m = 1$ is well-known since, in this case, V is Noetherian (cf. Lemma 2.6 of [4]). Thus assume that $m \geq 2$, that the theorem holds if $\dim V = m - 1$, and suppose that $(0) = P_1 \supseteq P_2 \supseteq \cdots \supseteq P_m$ is the set of prime ideals of V. Throughout the proof X denotes the set $\{x_1, \cdots, x_n\}$ of analytic indeterminates over V, $V[[X]]$ denotes the power series ring $V[[x_1, \cdots, x_n]]$, $p \in P_1 \setminus P_i$, $W = V_{P_i}$, $U = V/P_i$, $F = W/P_i W$ and, even though $P_i = P_i W$, we write \mathcal{P} to denote the ideal $P_i W$. We note that W is a rank one discrete valuation ring with maximal ideal $\mathcal{P} = p W$, F is the quotient field of U, and for each integer $k \geq 1$
we have $P_{k+1} \subseteq P^k P_1$. If $\xi \in (W[X])_{W \setminus \{0\}}$ then there exists a nonzero element a in W such that $a\xi \in W[X]$. But then $pa\xi \in V[X]$ and $pa \in V$ so $\xi \in (V[X])_{V \setminus \{0\}}$. This shows that $(W[X])_{W \setminus \{0\}} \subseteq (V[X])_{V \setminus \{0\}}$ and the reverse containment is obvious so equality holds. It follows that the correspondence $Q \to Q \cap V[X]$ is a bijection from the set

$$\{Q \in \text{Spec}(W[X]) \mid Q \cap W = \{0\}\}$$

to the set $\{Q' \in \text{Spec}(V[X]) \mid Q' \cap V = \{0\}\}$ which preserves set containment. Thus, if $Q \in \text{Spec}(W[X])$ and $Q \cap W = \{0\}$, then rank $Q = \text{rank } (Q \cap V[X])$ and it follows that rank $Q' \leq n$ for each $Q' \in \text{Spec}(V[X])$ such that $Q' \cap V = \{0\}$.

Let $(0) \subset Q_1 \subset \cdots \subset Q_t = P_m + (X)$ be a maximal chain of prime ideals of $V[X]$ and choose k so that $Q_k \cap V = \{0\}$ while $Q_{k+1} \cap V \neq \{0\}$. Then, as we have already observed, $k = \text{rank } Q_k \leq n$. Since $p \in Q_{k+1}$, we have $(P_i[X])^* \subseteq P_i^* P_i[X] \subseteq p P_i[X] \subseteq Q_{k+1}$ and hence $Q_{k+1} \supseteq P_i[X]$.

We first consider the case in which $Q_{k+1} \neq P_i[X]$. It follows from Theorem 3.14 of [3] that there exist elements $\lambda_1 = x_1, \lambda_2, \cdots, \lambda_n$ in $x_i F[x_i]$ such that the $U[x_i]$-homomorphism $\phi: U[X] \to U[\lambda_1, \cdots, \lambda_n]$ determined by $\phi(x_i) = \lambda_i$, $1 \leq i \leq n$, is an isomorphism. But ϕ extends to an $F[x_i]$-epimorphism $\phi: F[X] \to F[x_i]$ and if \bar{Q} is the kernel of ϕ then depth $\bar{Q} = 1$, rank $\bar{Q} = n - 1$ [6, Corollary 1, p. 218], and $\bar{Q} \cap U[X] = \{0\}$. Since $F[X] = (W/\mathcal{P})[X] \cong W[X]/\mathcal{P}[X]$ and $U[X] \cong V[X]/P_i[X]$, \bar{Q} determines a prime ideal Q of $W[X]$ such that depth $Q = 1$, rank$(Q/\mathcal{P}[X]) = n - 1$, and $Q \cap V[X] = P_i[X]$. Therefore, rank $Q \geq n$ and, since $\dim W[X] = n + 1$, it follows that rank $Q = n$. If we choose $f_1, \cdots, f_{n-1} \in X W[X]$ such that the corresponding elements $\bar{f}_1, \cdots, \bar{f}_{n-1}$ in $F[X]$ form a regular system of parameters for $(F[X])_{\bar{Q}}$, then $\{f_i, \cdots, f_{n-1}, p\}$ is a regular system of parameters for $(W[X])_Q$ and the ideal $N'_i = (f_i, \cdots, f_{n-1})(W[X])_Q$ is a prime ideal of $(W[X])_Q$ for $1 \leq i \leq n - 1$ (cf. Corollary 1, p. 302 and Theorem 26, p. 303 of [6]). In particular, $N_{n-1} = N'_n \cap W[X]$ is a prime ideal of $W[X]$ such that rank $N_{n-1} = n - 1$, $N_{n-1} \subseteq Q$, and $N_{n-1} \cap W = \{0\}$. We now have $P_i[X] = Q \cap V[X] \supseteq N_{n-1} \cap V[X]$ and rank $(N_{n-1} \cap V[X]) = rank N_{n-1} = n - 1$—that is, rank $P_i[X] \geq n$. Therefore, $k + 1 = rank Q_{k+1} \geq 1 + rank P_i[X] \geq n + 1$. We have already seen that $k \leq n$, so $k = n$ and rank $P_i[X] = 1$. Thus, $P_i[X] / P_i[X] \subseteq Q_{k+1} / P_i[X] \subseteq \cdots \subseteq Q_i / P_i[X]$ is a maximal chain of prime ideals in $V[X] / P_i[X] \cong \mathcal{U}[X]$ of length $t - k$. By assumption $t - k = (m - 1)n + 1$ and since $k = n$ this implies that $t = mn + 1$.

We now consider the case in which $Q_{k+1} = P_i[X]$. It follows from the previous argument that $n \leq rank P_i[X] = rank Q_{k+1} = k + 1$. We will show that equality holds. Let \mathcal{P} be a valuation overring of $V[X]$ with prime ideals $(0) \subset Q'_1 \subset \cdots \subset Q'_{k+1}$ such that $Q'_i \cap V[X] = Q'_i$.
for each \(i \). Since \(Q_k \cap V = (0) \) we may assume that \(Q'_{k+1} = \text{rad}(p'V') \) and, by localizing if necessary, we assume that \(Q'_{k+1} \) is the maximal ideal of \(V' \). We wish to show that \(V' \supseteq W[X] \). If this is not the case then there exists \(h \in W[X] \) such that \(h^{-1} \in Q'_{k+1} \). If \(f = ph \) then \(f \in P_i[X] \), \(h^{-1} = p/f \), and there exists an integer \(s \) such that \(h^s = p^s/f^s = p\zeta \) for some \(\zeta \in V' \). But \(f^s \in (P_i[X])^s \subseteq p^s-1P_i[X] \) so we have \(p\zeta = p^s/p^{s-1}f_1 \) for some \(f_1 \in P_i[X] \). Therefore, \(1/f_1 = \zeta \in V' \) contrary to the assumption that \(P_i[X] \not\subseteq V' \). It follows that \(W[X] \subseteq V' \) and if \(Q''_i = Q'_i \cap W[X] \) for \(1 \leq i \leq k + 1 \) then \(0 \subset Q''_1 \subset \cdots \subset Q''_{k+1} \) is a chain of prime ideals of \(W[X] \) such that \(Q'' \cap V[X] = Q_i \). In particular, \(Q''_{k+1} \cap V[X] = P_i[X] \). Since \([P + (X)] \cap V[X] = P_i + (X) \) it follows that \(Q''_{k+1} \) is not maximal in \(W[X] \). Thus, \(n + 1 > \text{rank } Q''_{k+1} \geq k + 1 \) — that is, \(k < n \). It follows that \(k = n - 1 \) and this together with the previous argument shows that, in either case, \(\text{rank } P_1[X] = n \). We now have that \(P_i[X]/P_i[X] \subset P_{i+1}/P_i[X] \subset \cdots \subset Q_i/P_i[X] \) is a maximal chain of prime ideals in \(V[X]/P_i[X] \cong U[X] \) of length \(t - (k + 1) = t - n \). By assumption, \(t - n = (m - 1)n + 1 \), so \(t = mn + 1 \).

Remark. The proof of the theorem shows that if \((0) = P_0 \subset P_1 \subset \cdots \subset P_m \) is the set of prime ideals of a discrete valuation ring \(V \) then each of the prime ideals \(P_i[x_i, \ldots, x_n] \) can be included in a maximal chain of prime ideals of \(V[x_1, \ldots, x_n] \) and for \(0 < i < m \) we have rank \((P_i[x_i, \ldots, x_n]/P_{i-1}[x_i, \ldots, x_n]) = n \).

References

Received March 19, 1980 and in revised form August 25, 1980.
Richard Arens, Reducing the order of a Lagrangian ... 1
Richard Arens, Manifestly dynamic forms in the Cartan-Hamilton treatment of classical fields ... 13
Jimmy T. Arnold, Power series rings over discrete valuation rings 31
Charles A. Asmuth and Joe Repka, Supercuspidal components of the quaternion Weil representation of $\text{SL}_2(\mathbb{F})$ 35
Luis A. Caffarelli and Avner Friedman, Sequential testing of several simple hypotheses for a diffusion process and the corresponding free boundary problem ... 49
William B. Jacob, Fans, real valuations, and hereditarily-Pythagorean fields .. 95
W. J. Kim, Asymptotic properties of nonoscillatory solutions of higher order differential equations ... 107
Wayne Steven Lewis, Embeddings of the pseudo-arc in E^2 115
Daniel Alan Marcus, Closed factors of normal \mathbb{Z}-semimodules 121
Mitsuru Nakai and Leo Sario, Harmonic functionals on open Riemann surfaces ... 147
John Currie Quigg, Jr., On the irreducibility of an induced representation ... 163
John Henry Reinoehl, Lie algebras and Hopf algebras 181
Joe Repka, Base change for tempered irreducible representations of $\text{GL}(n, \mathbb{R})$... 193
Peter John Rowley, Solubility of finite groups admitting a fixed-point-free automorphism of order $r s t$. I ... 201
Alan C. Woods, The asymmetric product of three homogeneous linear forms ... 237