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Let f be a p-adic field of odd residual characteristic.
It is known that all but one summand of the quaternion
Weil representation are supercuspidal. These summands
are precisely identified in terms of corresponding summands
of quadratic extension Weil representations.

1. Let f be a p-adic field of odd residual characteristic. From
[6] we know that all supercuspidal representations of G = SL,(f)
occur as summands of various Weil representations associated with
quadratic extensions of f. It is also known that the Weil repre-
sentation associated to the unique quaternion division algebra over
f decomposes into a direct sum of irreducible representations, all
but one of which are supercuspidal. The object of this paper is to
show just how these representations correspond to summands of
quadratic extension Weil representations. The methods depend
heavily on [3]. The primary motivation for this paper was the
problem of decomposing tensor products of certain supercuspidal
representations of G. The authors have been told that some similar
computations have been worked out by J. Shalika and W. Casselman.

2. In this paper, the ring of integers in f and its prime ideal
are denoted respectively by o and p. We choose a generator 7w of
p and a non square unit ¢ in o. The order of the residue class
field will be denoted by gq.

For 6e{r, ¢, ex}, we let o, and p, denote the ring of integers
in #(1/60) and its prime ideal respectively. Trace and norm of £(1/ 7 )
over I are written 7, and v, respectively.

The quaternion division algebra over f will be denoted by D.
Its integers will be denoted by A and the prime ideal of A will
be P. The reduced norm and trace of D over f are written respec-
tively v, and z,. The set {1, %, 4, &} is a basis of D over f where
i?=¢ j*=m, and 1j = —ji = k. There are convenient imbeddings
of t{1/¢) and t(v ) in D where t(1¢) = {a + bita,bet} and
tV'w)={a +bj:a,bect). Let S be a complete set of residues of
o./p. (and thus of A/P) consisting of zero and roots of unity. Then
for any ze D we may write z = >\7 v «,j" where each a, € S.

Since 7 can be chosen to be any element in t that generates p,
we will generally consider only the cases § = ¢ and 6 = 7.

3. From [3], we recall some information on the representations
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36 C. ASMUTH AND J. REPKA

of I'={yeD:yy(v)=1}. Let C’={zct(10):v(z) =1}. Given U
in I, there is a natural way of choosing a character nyeCAI“’ for
some . We then say that U is of type ¢ and that U corresponds
to . Let U and, consequently & and +, be fixed. Let m be the
smallest integer such that U is trivial on I", =I' N1 + P™). If m
is even, U is of type exr or w. If m is odd, U is of type e. It
happens that under this correspondence, no Uel matches a square
trivial character of C* or C*.

We will describe U as an induced representation from a sub-
group B(U). The inducing representation will have a character X
whose degree is either 1 or q. B(U) will always be of the form
C’H where H is a subgroup of I' depending on m. Let M be the
smallest odd integer not less than m. We shall describe H by
giving its elements modulo .

First let 6 = x. Then m is even. If U corresponds to q/reC'”,
then the conductor of « is C;=C~N (1 + p:) where s = m. Then
H is given by the set of elements v,(v)"¥*y where v =1+

st ea,j". Each a,€S and also a,e SNt if » is odd. Thus we
may write (modulo I',)

H={1+bip" +i 5 bg*— (—1" S0, b,e S0t} .
n=s/2+1 2

(When —1¢ (£°)?, the choice of U may force j; and k& to be inter-
changed; this has no effect on the results.) Let 6 = ahe B(U)
where aeC* and he H. Then X,(0) = () and X, is a character
of degree one.

Now let 6 =¢. Then m is odd. If U corresponds to q/feCA'E,
then the conductor of + is C; = C* N (1 + p;) where 2s — 1=m = M.
Let H be given by those elements v,(v)"Y*y where v=1+>2} «a,j"
and «, €S is zero when 7 is even.

Assume first that s is odd. Then y,(v)""*=1 (modulo I',) so
that v in the form above is in H. Here X, is of degree one and
for a e C¢, we have X,(ah) = ().

Now let s be even. Then he H is in the form p(B)h, where
rB) =1+ g5+ A2)w.(8)r"", BeS, and h,e HN(l + P*). For
beSNt, we define wy(d)eC/C- NIy by w,®) =1+ z°~'b¢, modulo
1+ P¥. Let aeC*® be written a = a,a; where a,cC*N S and a, ¢
C:. Then we have

- «1r<aoa1>«/r[wM [the v.(8) ﬂ if @, ~+1

gv(ay), if 3 =0 and a, = *+1
0, if ¢y =+1and B #0.

XU(aoalf'!(BVLo) =
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Here @, = » + ti. X, is a character of degree q.

4. In this section we give definitions for the Weil representa-
tions using formulae from [5]. We fix once and for all a character
@ of ¥+ with conductor 0. For xecf, let @,(x) = @(\x). Haar
measures on the additive groups of ¥(1/6) and D are normalized so
that in each case the ring of integers has unit measure.

We let

1, for 6 =¢

p6) = {C, for 6 ==«

where { = >,..;, O(mz"2%).

The quadratic extension Weil representations of G will be
denoted T(4,)). They act on L*(t(v0)). We will define T(4, \) on
generators of G. Let feL)(f(1/@)). Then

\

10
[T(ﬁ, >»)<O 1>f J(z) = 0,(bvy(2)) f(2)

[ 01
LT(ﬁ, h)(_l 0>’f ](z) = ¢(0, M)p(@)sgny(—x) SW_) S (w)@i(zzw)dw
where ¢(@, \) > 0 is a constant chosen so as to make the second

operator unitary.
The quaternion Weil representation is denoted T(D, \) (although
all choices of )\ give equivalent representations). Let f e L*D).

Then

15
[T(D, A) <0 1> S ](z) = 0y(bvp(2))f (2)

01
{T(D, N (_1 0) f}(z) = —e(D, M| o, Ew)dw .

Again ¢(D, ) > 0 is chosen so that the second operator is unitary.
We have the well known decomposition (see [2] or [7])

76, \) = —L_7(6, %, )
n/re

CAvo
where the representation space of H(f, \, v) of T(9, », ) is given
by
{Fe LMtV 0)):Vzet(V 6), YaeC’, f(za) = f(2)y(a)} .

Similarly
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(D, ») = L7, U).
Uerl

Let 6, be the character of U. Then the representation space of
T(D, n, U) is

HU) = {1 ¢ IXD): | femitnar = f@)} .

For U1, H(U) consists of supercuspidal summands. We can
write the vector space sum

HU) = H(U)D HU)D H(U)D H*(U) .

Here H(U) ={fec HU): f(x) #+ 0=y ,(x) € 6(t*)?}. Now suppose U
is of type 6 for some fc{e, x, en}. Let {¢, 0"} = {e, x, ex} — {6}.
From Proposition 1.5 of [4], we may conclude that HYU)&@ HU)
and HY(U)D H”'(U) are both G-invariant. (See also Lemma 4.1
of [3].)

5. From [5] and [7], we know that all supercuspidal repre-
sentations of G are induced from some compact open subgroup. For
suitable n, we may assume that T4, A, ) is induced from K=SL,(0).
Let the inducing representation be denoted by S, », 4. The
object of this section is to give explicit formulae for matrix coeffi-
cients of S, », 4) at generators of K. To do this we must pick
out an orthonormal basis of the representation space of S(4, A, ).

Let 4 have conductor C/ =C’N 1 + p;). We will exclude the
cases where y+eC* (or C=) and 4*=1. Then choose ) to be of
order % (i.e., » = un™ where u €0*) where

(—3, if 6=¢
nzi*(é%-l), if0=m.

From [2] or [7] we see that this is the “suitable choice” of . Now
set

, (s if 0=¢
s+, ifo=x.

Let Hy(s) be the space of all functions supported on o, and constant
on cosets of py’. Let Hy0, N, v) = Hy(s) N H@, N, ). Hy0, \, ¥) is
then the representation space of S, N, ++). The action is simply
the action of T(6, \, ) restricted to K.

We now construct an orthonormal basis of H,4, \, +). Let
Jy(s) be a complete set of orbit representatives in o,/pi — mo,/p
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under multiplication by elements of C?. For each zecJy(s), we
define

7(s, O)r(), for zeza(l + p;’)
0, elsewhere .

f@) =

Here, 7(s, #) > 0 is chosen to make f, a unit vector. We do not
need to compute it explicitly.
For o and yeJ,(s), let m%(g) = (SO, N, W(@)f.\fry- We will

now compute m}, for generators of K = SL,(v). First let g = 01
where b€o. Then

) Dy(byy(x)), if x =y
m,(9) = .
0, fxxy.
Now let g = <_g (1)> We write

o=, [(_* ) forms
zy e ~10 xJ Y .

.

Let vy(n') be the measure of p}’. Then

ml(g) = vo(n)e(d, Mp@)sgn(—n) 3 (@)D (zy(Fra)) .

ozc—:(]ﬁ[(is
Since
¢ if 6 ==
c(0, \) = .
g, if9=c¢
we have

PROPOSITION 5.1. Let

2

s .
—— —1,ifb0==x
95(8):{
—8, if 0 =c¢.

Then

./ 01
mi| 0) = ¢ pO)sen(—3) B p(@0iFa) .

aecﬂlcg

6. To describe the representations T(D, n), we wish to find
their irreducible subrepresentations. Since the representations
S, \, 4) induce irreducibly from K, to find copies of T8, \, +) in
a representation it suffices to look for copies of S(4, ), +) in its
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restriction to K. This we shall do by comparing matrix coefficient
functions.

We shall try, insofar as possible, to imitate for the representa-
tion T(D, \) the construction of §5. We shall define vectors F,
which transform nicely under the restriction of T(D, ») to K and
then study the corresponding coefficient funections.

Let U correspond to a character + of C’ with conductor C?.
Choose A of an order determined by s as in §5. As in §3, let

_ {23—1, if 0=c¢
o s+1, ifo==x
so that I',, is the largest congruence subgroup of I" contained in

the kernel of U. Let the set of C’-orbit representatives Jy(s) be
imbedded in D in the natural way mentioned in §2. For z € Jy(s), set

Lo(VR(8)q~""2, for xezy(l + PY)
0, elsewhere .

F.(x) = {

Here R(s) > 0 is chosen to make ||F.,||; =1 and P"*® is the smallest
power of P containing z.

It should be noted here that the F,’s do not necessarily span
a K-invariant subspace of HYU)& H®U). The unfortunate case
is when # = ¢ and s is even. We shall disregard this problem for
now and go on to compute matrix coefficients in all cases. L

For geK, let Mi(g) = <T(D, \)(g)F,|F,>. When g = (o 1) we
get an easy result:

LEMMA 6.1. Let U correspond to qp«e@” and let $eC’ be any
character with the same conductor as «. Then Mjg(& ?) mw<0 1)
where b €o.

Proof.
M”(l b) _ {@;(bvp(x)), ifx=y
“\0 1 0, ifx+y.
Since for z e Jy(s), vp(@) = ve(x), the result follows. O

Thus to distinguish the various representations, we must

evaluate the coefficient functions at g = (~(1) (1)) Roughly speaking,

this element acts as a Fourier transform, so we are obliged to
compute various character sums. Recall the groups H and B(U);
H was defined in §3 and then B(U) was defined by B(U) = C°H.
Let «#,(U) = B(U)/(1 + P™). Then
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i/ 01 —_
o = | (7 o) 7 [

01

= R(s)g- W2V w2
(8)g re%m)[(—l 0

)]F ]@mm .

Now ¢(D, ») = ¢ so

M;(9) = —R(syiq=@2viens0 3% Xy(0)D(zpyad¥)Xy(7)

7r6e @y (U)

= —R(syq e Zy(U) (deg X)X XAp(8)Pi(Try20) -

sezpy (U

Since R(s)’q~*|<#,(U)| = 1 we have

LEMMA 6.2.

01

My o) = e ety S i)
— se@y(U

It is this formula which we must evaluate more fully. We
now consider several cases. First let 4 = = and assume that z and
y are units in J.(s). Then

01

sz(—l 0) = —q " 3 Ay(7)Di(Tpyxd) .

deg ()

From §3 we see that the elements of <& (U) can be identified with
pairs (a, h) where aecC*/C: and hes7Z= H/1 + P¥). Morever
elements of 27 can be expressed in the form

1+ bij™ — (_1)3/2_;_1)2758/2 +4i 3 b5

n=8/24+1

where for all n, b,e SNt. Thus

MJ{,( 0 1) = =g X (M0 gra) 3 Pilrsyrath — 1)

—10 aeCmCcT
where U corresponds to q[re@“. Consider the inside sum over S#.

(x) = > Ox(zpyxalh — 1)) = ¢** >, @1(—?/%&(—1)’/2&2%’/21)2)
hesr sEsnt

where & = x1 is the image of a modulo C*. Now let o be the
character of order 2 on the group of units of o, whose kernel is
the squares. Then

(x) = —o(Fx)o(a)sgn.(—\)p(w)g”” .
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Thus we have

LeEMMA 6.3. Let § = and assume that x, ye of NJ(s). Then
with o as above and Uel’ corresponding to + € C* we have

01
M:;(_l 0> = o(gu)g~ " p(m)sgn(—n) X (Yo)a)Pi(z(Fra)) .

aecT(Ch

LEMMA 6.4. If x and y are both elements of p., then

; 01 01
w12 2]
-10 -10

where U corresponds to + as before.

Proof. If either x or y is in p,, the expression (x) no longer
depends on «. Thus

2 (po) (@)@ (z(Frar))

T
aeCT|Cy

is a common factor of mY?’ and MJ7. If both x and y are in p,,
then this factor is zero since @,(z.(¥xw)) is constant on cosets of a
subgroup of C* on which 4o is nontrivial. |

Now let § =¢. Thus we take Uel’ to be of type e correspond-
ing to q,zreCA“. Let 4 have conductor C:N (1 + p). Then set M=
2s — 1. We consider cases according to the parity of s. First let
s be odd. Then deg¥, = 1. A simple computation gives

01 _

MJ;( ) = —q " 3 Xy(0)P(TrYx0)
'_1 0 sezy(l)

= —q " 3 [Y(a)0(rygra) D, D(tryrath — 1)] .

accelcy &
Now X is chosen according to the prescription in §5. Thus for s
odd, sgn.(—x) = —1. In this case, @,(t,7xa(h — 1)) =1 for all he
&#. Thus we have
LEMMA 6.5. Let s be odd. Then
o 01 \ —
Mi\ _ o) = send—Mp(E)a™ S v{a)D(ryaer) .

The case when s is even is more involved. From §3, we recall that
deg X, = q. Therefore by Lemma 6.2
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01 . _
M, = —q™ 3, Xy(0)@:x(zrY0) .
—10 3e gy (l)

We shall simplify this sum and find

LEMMA 6.6. Let s be even. Then
sgn(—MpE)g X Yw(a)@(ryza), if yret
0 1 aeCslcg
—-10/ l—q—H > @)t gra), if gret.

aeCi/C;

Proof. We need to find an acceptable parametrization of the
elements of <Z,(U). Recall that 6e B(U) is of the form 6 = ah
where acC* and he H. For ae(C*, we have a = a,0w,(b) (modulo
C;) where o, SN C*, p is a representative of C;_, in Cy, and w,(b) €
C: is as defined in §3. For he H we have h = p(B)h, where p(Q)=
1+ 857+ 1/2)ev (B, Be S, and hoe HN1 + P*. As before, let
& = H|I'y and also let 25 =[HNQ + P)|/"y. 57 is given by
elements of the form

25—2

14+ > B.J"

n=s+1

where B,€S. Now

Mﬁ( 0 1> = —q 3 Z Ly(ah)@y (7 gra)@,(Trgzalh — 1)) .

-10 aeCEICE

We choose v e o* such that (w,(b)) = @,(x*'vb). Let Z: = C*/C: —
[£C:/C{]. Then

01
MJ;< ) = —q¢® 3 (@)Dt jra) Z Oy (tryra(h — 1))

—-10 aexC; 0]

— 7% 3% Xp(ak)Py(zryra)dx(zryzalh — 1)) .

€
aeZ

Let us assume for the moment that #ref. It is easy to check
that for a e =Cf, the expression @,(z,52a) Dicsr Ox(toFra(h — 1)) is
constant on cosets of C:_,. Hence the first sum in (**) vanishes,
Thus

0
Mxﬁi(_ 1) =0 3 3 Xo(ah)@i(z,Gea)@y(Tsgeath — 1)) .

1 0 anE hesr

Let aeZ; be given in the form a,0w,(b) where o, = 1, peC;/
C:,, and w,(0)eC; ,/C;. Let a, = r + #¢. This yields
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01
MJ;( ) = 3, 3 — ¥(a0)P:(7* " vb)P,(T Y x 0w, (b))

—-10 agEEl 5b
: < 52 oi( ) )(D;(z‘l,?jxao% vs(ﬁ)n“‘» .

The first factor of each term can be written

3 3% — @) P ub) D2 Fasteb) -

Hence if the term corresponding to a, = » + ti is to be nonzero,
we will have —ov = 2ywxte. This fixes . The second factor then
becomes

55 O~ rTani(@)0: (aelr + t)v (@) )

BeS hesry

which simplifies to ¢°. Hence

MJ;( 0 1) = —q > y(a)y(zYxa) .

-10 ae(tr+tz)Ci/C§

But this is just

sgn.(—N)g— 3 P(a)Pi(rryra)

aeCe|Cl

since for s even, sgn,(—X\) = 1 and all terms vanish for which a¢
(E£r + ti)C:.

Now assume ya¢f, that is, ¥ = m + ni where » is a unit.
Consider the formula (x%). It is no longer necessarily true that
the first sum vanishes. In any case it can be simplified to

—q 3 P(a)@i(rryra) .

acCilCy
The second sum in (**) is

—q7* >, 3, Xy(ah)®i(tryxa)@;(cryralh — 1))

c hesr
lJteZ‘s

= —q QZ# (Ep‘fb——w(aop)@z(n"lvb)d)x(fpgwa))

' ( > 50 (7:““1 2 2(8) )@( rpyxa% v.(8) )) :

Reasoning as before, we see that the first factor in each term is
zero unless 2mte + 2nre = —v. In that event the second factor

becomes
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s 5 0w (%) w(8)) = —a*. O

he.cqy BesS

7. We now state and prove the main result. Let Uel be
chosen Awhere U is nontrivial and of degree d. Let U correspond
to 4»€C? in the manner of §3. Choose A ef* and set

,_{m, for 6 = ¢
en, for 6 #¢.

Let o€} be the character of order 2 whose kernel is the squares.
Set

. {q,z», if 9 =¢ or —1e(f*)?
Jo, if 0 # e and —1¢ (£°).

THEOREM T7.1. T(D, n, U) = dy T8, N, +) D T@, N, ¥)].

LEMMA 7.2. To prove the theorem, it suffices to consider the
case where N is determined by ~ as in §5.

Proof. Let an, and ), in £* be given. Then there exists
an element g,eGL,(f) such that T(4, \)(9,99:") = T(6, \)(g) and
T(D, M)(g.99:") = T(D, \;)(9). (See Lemma 3.3 of [1].) N

Now let Uel be fixed with corresponding '511'66'9. Let M be
determined as in §3. Let V, be the space of functions on D
which are supported on A and are constant on cosets of P¥. With
» chosen as before, we see that V, is a finite-dimensional K-in-
variant subspace of L*(D). For d€{l, ¢, x, en} set HI(U) = H}(U)N
V.. Thus H}U)® H{(U) is also K-invariant. The following
lemma can be derived from basie properties of T(D, \).

LEMMA 7.3. Assume that WC HY(U)@ H(U) is isomorphic to
some H(0, N, p). Then

(a) HYU)@ H(U) = d*H(0, \, 0)-

(by H(U)P H”'(U) = d*H(O, N, p) where {0',0"}={1, x, ¢, ext} —
{1, 6}.

() HXU)D H)(U) = d*Hy0, \, ).

Since we know that for U =1, T(D, n, U) consists entirely of
supercuspidal summands, we can reduce the problem to that of
finding p.

The method we use is to compare directly the matrices operat-
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ing on H,(0, \, p) with those operating on H}U) @ HJ(U).

First let 6 = ¢ and let s be odd. Then the vectors F, span a
K-invariant subspace of H{}(U) @ H:(U). This is because the matrix
given by MJ(g) is identical with the unitary matrix mY(g) for all
ge K. This additionally shows that 4 = p and proves the theorem
in this case.

Now assume 6 =7 (or ex). It is not hard to see that the

matrices given by mi@(_(l) %)) and M,‘;(_(l) é) are conjugate by a
diagonal unitary matrix. Since the matrices for other generators
of K are equal and diagonal, the theorem follows.

When 6 = ¢ and s is even, we need to say more. When yx¢f,

ML <__(1) (1)> is smaller by a factor of ¢ than the corresponding

ml”j _g (1)> Since all representations are unitary we must conclude

that {F,:x € J.(s)} does not span a K-invariant space when s is even.

Let J.(s) = XU Y where H;(U) contains {F,:xe X} and H(U)
contains {F,:ye Y}. We can safely assume that yz et if and only
if x and y are both in X or both in Y. We need to find a set
{F:ye Y} such that {F,,xeX}U{F,:yeY} spans a K-invariant
space. The following lemmas are derived from the constructions
of the functions F', and f,, x€J.(s), and the formulae in [4].

LEMMA 7.4. HU) is the orthogonal direct sum of eigenspaces
W, of «I(é Z{) b eo}. The dimension of each W, is d*. For yeY,
F,e W, and W, is spanned by the left and right translates of F,
by elements in I.

LEMMA 7.5. Fix y,€ Y. Then for each ye€Y there exists a
g, € K such that

@) [T N ¥)9)ISfy) = S

(d) [T(D, N, U)g)F,,) = F,.

Let W be the irreducible K-space generated by {F,:xe X]}.
Since s # 1 there exists « such that m?f?,o(_(l) é) # 0 and therefore
MJ{,0<_2 (1)> # 0. Hence we may pick F, ¢ W, such that F, e W
and || F,|l.=1. For yeVY, set F,=[T(D,x U)g,)IF,). The set
{F,, FpoeeX, ye Y} is~thus a basis for a K-invariant subspace of
HY(U)D Hi(U). Let {M.} be the set of matrix coefficient functions
on K with respect to this new basis.

LEMMA 7.6. There exists a constant ft + 0 such that F,=pF,+
P, where P, is orthogonal to F,.
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Proof. For each ye Y, <F~’yiFy> = <F~'yO}F

Yo

> sinee T(D, », U)(g,)

is a unitary transformation. If g were zero, then all ng<_‘1) %)

would be zero for ze X, y€ Y. Then mlﬁ,(_g %) would also be zero

in these cases. This contradicts the irreducibility of T(e, N, +) for
= 1. (See [2] and [7].) ]

LEMMA 7.7. There exists a K-space isomorphism a:F,— F,
for each yeY.

Proof. By Lemmas 7.3(c) and 7.4, we can find such a for y=y,.
Since a commutes with action by K the lemma follows. O

LeMMA 7.8. For x and y both in X or both in Y we hawe
~ 01\ -/ 01
iy (o) = Mu( 1)

Proof. For » and yeX it is clear. For x and y in Y, use
Lemma 7.7. M

LEMMA 7.9. Let € X and ye'Y. Then
- [ 01 /0 1
M = p' M} .
Ay o) = ) )

Proof. Let w be the projection of [T(D, N, U)( 0 1)](&) on

~10
W, Then w = ng,'(_(l’ %)F’y: ML(j é)(‘awaLPy). Now (w|F,>—

M, <~(1) (1)> by definition and is equal to yM;;( ~§) é) by computa-
tion. 1

The fact that the functions MJ;(_(l) (1)> and ml’@(_(l) (1)> form

unitary matrices forces |[p¢| =q'. It is now clear that these
matrices are conjugate by some diagonal unitary matrix. Theorem

7.1 follows. [
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