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An n-dimensional stochastic process &(f) is observed. It
is known that &({) has the statistics of an n-dimensional
Brownian motion with any one of possibly »n-+1 drifts
Aoy +*y A, (A, are given mn-vectors). We observe the process
at a running cost, per unit time, given by ¢, when the drift
is 1;, and after some (stopping) time r make a decision
which hypothesis to accept; the hypothesis H; means ac-
cepting the drift 2;; the drift changes in time in accordance
with a Markov process with n--1 states and a given trans-
ition probability matrix. The problem of finding the opti-
mal stopping time and optimal final decision leads to a
variational inequality for a degenerate elliptic operator. In
this paper we study this variational inequality and the cor-
responding free boundary. We also consider, by purely
probabilistic methods, the case where £(¢) is k-dimensional,
k #+ n. The outline of the main results is given at the end
of §2.

1. The sequential testing problem. Let ¢,;(00=<1, j <n) be
real numbers such that ¢,;, =0 if ¢+ 7, ¢,; <0, and >7.,q,; =0
for 0 =<7 =n. In a probability space (2, &, P) we are given a
Markov process 6(t) = 6(t, w) taking values 0,1, :--+, » and having
the infinitesimal matrix (g;;). We are also given an n-dimensional
Brownian motion w(f) (with w(0) = 0) independent of the process
o(t). Let xy, Ay -¢+, A, be n-dimensional vectors which span R",
that is

(L) N — Ny de — Mg, “° 0, Ay — N are linearly independent .

Consider the process &(t) in R™ given by
(1.2) d&(e) = dw(t) + ]go Lioy=gndt

that is, on the set 0({, w) = 7 d&(t, w) = dw(t, @) + \;dt. We set
T, =0((s), 0=s=1).

When 0(t, @) = j we say that the hypothesis H; is satisfied (at
time t). We shall be concerned with the problem of deciding which
hypothesis to aceept at a minimal cost. We follow Bayes’ formula-
tion in setting up the problem:
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The observed process is &£(t). We are given an a priori proba-
bility = for 6(0), that is, we are given

(1.3) T= (T @y -+, ), =0, Som,=1
=0

and make the initial assumption that 6(0) = j with probability z;.
This determines a probability P* on the space of paths (6(t), w(t))
with w(0) = 0, and

(1.4) PH0)=j)=m;, 0Z5=n.

We shall denote the expectation with respect to P~ by E*. The
running cost (per unit time) of the observation of &(¢) is a given
positive number ¢; if 4(t) = 5. We observe the process &(¢) for an
amount of time z, where = is a stopping time with respect to .#;;
the incurred cost is then

B[ | fowyat |, where f)=¢; 0=z ).

At the time t =7 we make a terminal decision d(®w) as to which
hypothesis to accept; d(w) = j means accepting the hypothesis H;.
The variable d(w) is taken to be &, measurable.

Set

(1.5) WO,d)=a, if d=4,0%i (a,>0),

i.e.,, a; is the cost for erroneously accepting the hypothesis H,.
The cost of the terminal decision is

E[W((z, w), dw))]
and the total cost for the decision 6 = (z, d) is

J.(5) = E* U FO®)dt + Wz, o), d(a)))] .

More generally, introducing a discount factor a, @ = 0, the total
cost becomes

(1.6) J.(0) — E”H:e—”‘f(ﬁ(t))dt + e W(l(z, w), d(w))] .

The problem is to study the least cost function

1.7 Viz) = ir;f J2(0)

and to find an optimal decision & = (%, d), that is,

(1.8) J(6) = V(x) .
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This problem is called a sequential testing problem of n + 1 simple
hypotheses H, H, ---, H,. The case where

¢ does not depend on ¢, that is, ¢;; = 0 for

(1.9) . i
0=4,7=mc=¢c>0 for Zi=Zn

will be called the special case; more refined results will be proved
for this case.

The sequential testing problem in the special case with n = 2
has been studied in detail (see Shiryayev [15] and the references
given there). In the case of discrete times the problem (in the
special case) was studied by Wald [16], Chow and Robins [7], Shir-
yvayev [14], Kiefer and Sacks [11] and others.

Analogously to the case » =2 we introduce the a posteriori
probability process

7t<t) = (ﬁo(t>y nl(t), Tty n-'n.(t))
where
w;(t) = PO@t) = 5.7 .

Introducting the simplex in R"*

., = {n= (Toy Ty + 22y T0); T2 0 i‘,ni: 1}

it is clear that =(¢)e Il,., for all ¢ > 0. The process 7(t) was studi-
ed by Shiryayev (see [13]) and by Anderson and Friedman [2]. It
is shown in these references that #(¢) is a Markov process with
generator

Mu(z) = —;—léo %3 < ; Zi‘, 7\,k7l'k) .

<)\; - 2 T )g ua(ﬂ.) + Z 4.7 ag;;z)

(1.10)

and (in [2]) explicit formulas are given for x,(¢) in terms of &(¢).
In particular, when (1.9) holds,

7 = 7|3 maab)

(1.11) 1
23(®) = exp{(v = M)-£() — (I — it

As in [2] [13; p. 167] we can express J.(0) in terms of the pro-
cess 7(t):

(112) J0) = B {{ e hiz®)it + e3 (1 - mdDadu-a}
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where h(z) = D%, ¢;7,.
Set

J(7) = ir.lif J:(0) where (z,d)=2¢.

For a given 7z the optimal d = d(w) is such that it minimizes
> — w(r(w)))a,. Consequently,

(1.13) J.() = E"U:e“"‘h(x(t))dt + e""g(TC(z‘)):\
where
(1.14) g(z) = min {a,(1 — 7))} .

The problem associated with (1.7), (1.8) thus reduces to the
problem associated with

(1.15) V(x) = inf J.(z)

(where V() is the same as in (1.17)) and
(1.16) J(7) = V(x),

where 7, ¥ are stopping times with respect to .#,.

In the sequel we shall study the hypothesis testing problem in
its formulation (1.15), (1.16). For simplicity we shall also always
assume that a > 0; the results in case @ = 0 are still valid, but re-

quire some changes in the proofs; we consider this case briefly in
§10.

2. The variational inequality. Let I7,., = int I7 4.

As in [2], the function V(x) in ﬁ”+, can be characterized as the
bounded solution % of a certain system of differential in equalities:

Mu—au+h=0 ae in i,
2.1) w®) = Mr) in I,
(Mu — aw + h)(u —g) =0 a.e. in I, .

Such a system is called a variational inequality (for a general study
of variational inequalities see, for instance, [3] [9]).

We recall [2] that, because of (1.1), M is a nondegenerate el-
liptic operator (in n independent variables) in ﬁ,,+1. It degenerates
however on the boundary o/7,,.

LemmA 2.1. (a) If = = w(0) belongs to I,., then 7t(1t)esﬁ,“L1 for
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all t >0, and (b) if 1.9) holds and if w, = 7,(0) =0 for some 1,
then =, (t) = 0 for all t > 0.

The assertion (a) follows from the formula for z,(f) given in
[2]. The assertion (b) follows from (1.11).

From (a) it follows that no boundary Dirichlet conditions are
needed to be given on oI1,., in order to solve the variational in-
equality (2.1). The solution of (2.1) can be constructed as follows
(ef. [2]):

For any ¢ > 0,¢ > 0, let

(2.2) I, ={mwell,y,,w;, >0 for 0=1i=<mn}
and let a.(t) be a C= function in ¢ satisfying:
B =0, g't)=0; BH—0 if t<0, ¢,0,
B(t)—— 0 if >0, e¢l0.
Consider the elliptic problem

—~Mu + au + 3w —g)=h in I,

(2.3) R
w = on oI,

where @ is any smooth function such that
(2.4) 0=p=yg.

This problem has a unique solution u = u,.. If ¢g(x) were a func-
tion in W27, for any 2 < p < o, then one can show, by standard
techniques for variational inequalities, that

(2.5) s, — u; uniformly as ¢—— 0,
where u, is the unique solution of the variational inequality

—Mu +au=~h ae.in I, ,
w=g in I,
(2.6) (—Mu + au — h)(u —g) =0 a.e. in I},
w=¢¢ on oI, ,
we Wiil,) , weCll;.,) .
In the present case g is not even continuously differentiable.

Since however it is the minimum of linear functions in the z,, it is
convex. Thus, in terms of, say, =, ---, 7@,

2
( o'y )is negative semidefinite matrix ,
o, 07 ;

where 0°g/ow,0; is taken in the sense of distributions. By [4] it
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follows that
| s e Loy < C i G,

where C is a constant independent of 4§, ¢, and then (2.5) is still
valid. It follows that

2.7 [Us 2oy = C .
We now take 6 — 0 and deduce (as in [2]) that
(2.8) u; — % uniformly in compact subsets of ﬁ,m

where u is a solution of the variational inequality (2.1); further
(by a probabilistic argument),

2.9) % has a continuous extension into 17,,,,
and, by (2.7),
(2.10) we Wil .

The uniqueness of the solution # subject to the smoothness condi-
tions (2.9), (2.10) follows (as in [2]) by using Ito’s formula.

We recall that u can also be obtained as follows:
(2.11) % = lim lim u, , .

&0 8—0

Let
S={rell,; wrn) =g}, C={well,.; ulx) < gxn)}.

As in [2], V(x) defined by (1.15) coincides in 1I,., with the solu-
tion » of (2.1), and an optimal stopping time 7 (as in (1.16)) is
given by

(2.12) 7 = hitting time of S by the process n(t) .

Thus the optimal strategy is to continue while z(¢) is in C and to
stop when =z(¢) hits S. For this reason the set S is called the
stopping set and the set C is called the continuation set.

In the terminology of variational inequalities, S is called the
coincidence set, C is called the mnoncoincidence set, and ¢ is called
the obstacle. The set

I = Iol,m N oC (0C = boundary of C)

is called the free boundary.

The purpose of this paper is to study the sets C, S or, equi-
valently, the free boundary 7.

We shall denote by e, the vertex
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(61:0; 51’1, Ty azn)

of I7,.,(0 =1 = n).

In §3 we prove that each vertex e; has a I7,.,-neighborhood S,
such that S;cS. In §4 we prove some auxiliary results needed for
the following section.

In §5 we study the set

(2.13) S, =Sn{rell,.; wr)=ad — x,)}
under the assumption that
¢:=0 for 0=k=mn.

Introducing the coordinates

(2.14) v, =2 A<=

0

we prove that I, = 1°7n+1ﬂa;5’i can be represented in the form
(2.15) Y, = ’l/fz'(yly oy Yimsy Yidy * 0ty Yn)

where +; is analytic.

In §6 we specialize to the case (1.9) and prove that each S; is
a convex set and u(w) is a concave function.

In §§7, 8 we study the asymptotic behavior of the solution
when (1.9) holds and ¢ — 0. It is shown that 0S; lies within a d,c-
neighborhood of e, and outside a d,c-neighborhood of e¢,. Further,

(2.16) EF ~<Zn‘, fmri>logl , —1—7,- = {min |», — N[}
i=0 c 2 k%t

where 7 is the optimal stopping time, and

2.17) Zuley) — ) () = u(w)

where #(y) is the solution of a certain variational inequality; the
free boundary for % is also studied.

In §9 we consider the behavior of the solution as ¢— . The
case o = 0 is considered in §10. Finally, in §11, we extend some
of the results of the previous sections to the case where w(t) is
k-dimensional, for any %; here the methods are purely probabilistic.

We would like to thank Professors J. Sacks and A. Shiryayev
for several helpful conversations.

3. S contains a neighborhood of the vertices. We always
denote by wu(z) the solution of (2.1) (which satisfies (2.9), (2.10); re-
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call that w(x) = V() if well,u,.

The operator Mu can be written in terms of the tangential
operators of I7,,, (considered as a submanifold in R*+!). Observe
that on I7,.,

ZO 7T, =1
and, consequently, the operator
< 0
o ——
; oT;

is tangential if and only if >, a, = 0. We introduce the tangential
operators

0 0

'DO'm. =
o7, 0T

1=m=<mn)

and the normal operator

~ n a
D = ——
g‘» o7,
Substituting
P 2 1 1 &
3.1 = — (am — D, D
3.1 or; ,,le n+1>°+n+1

into Mu we discover that the coefficients of D?, D,,D vanish (as
indeed they should) and that Mw takes the form

3.2) Mu= % s ninj(x,. -3 x,,nk)(xj -3 x,n,)DOiDoju

1,5=1

— 2 25 Qi Doju

§=11=0
Another useful coordinate system is given by (2.14), i.e.,
(3.3) p=2 1=5i<n).
T,

(The role of m, is incidental; one can similarly work with the co-
ordinates y, = 7,/z;, 0 <1 <mn, 1+ j, for any fixed j.) It maps
IT,., onto

Ri={y=W, -, ¥); ¥y; 20 for 1=j=mn}.

It is easy to compute that
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(3.4) ou = 750( D, — >, 7z-'kDolc>
0Y; le=1

and that in the y-coordinates Mu becomes (cf. [2])

Lu=2L S 4.4 ._@_ 1 _ou_
=3 ;1 LYY s 50, ng LYY P
(3.5) w ou
+ Z ZO‘J (Ql 7 QZ Oyy)yz a
j=1 1=

where 9, = 1 and
(3.6) Y=1+wy+-+9.,
(3-7) K = (7\11' - 7Vo)'(?‘ij - )\,0) .

We shall need the following comparison lemma:

LEmMmA 3.1. Suppose that % is a function satisfying the vari-
ational inequality (2.1) in a region II CII,., with g replaced by §.
I

g=zg on I,
#=u on oIlN ﬁ,m .

d % is uniformly continwous in II, then % =w in II. Similarly,
if g=gon I, 8=<u on il N1l,., then & < u in II.

Notice that we do not assume that @ = u (or # = u) on 8/ N
a”’n-)—l'

Proof. The function % can be obtained as the limit of solutions
i, of variational inequalities in 7:,,N IT (cf. (2.6)); the proof is the
same as for u. By a standard comparison theorem for variational
inequalities, %, = u. Taking 6 — 0, the assertion follows.

THEOREM 3.2. Assume that ¢; > a,9;,; for 0= j < n and some
t. Then there exists a II,.,-neighborhood S, of e, such that S;CS.

Proof. It suffices to prove the assertion for ¢ = 0. The proof
is by comparison of » = u — g with a function z which vanishes in
an R;-neighborhood of ¥y = 0. Notice that near y = 0
(3.8) g =a(l—m) =W+ -+

Since M1 — ) = — 3%, q,7;, v satisfies:
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—Lv+av =,
(3.9) v=0,
(=Lv+av — p)v=20

a.e., if ye R}, |y| £ R*, where R* is sufficiently small and
(3.10) =3 (0, — ag)T — ag >¢*, ¢ >0.
1=0

We have to show that
(3.11) vy)=0 if yeR:, |lyl<R

for a sufficiently small R.
Let (ef. [10])

—60—Y|-N if R<r<R,,

0 if »r<R

where 0 <68 <1, N>0, r=|y|. We compute that (9z/or) < 0 if
R<r <R, so that 2 < 0. Also '

z=%z'=0 if »r=R.
If we show that
(3.12) = — Lz + az satisfies v <y, R<r <R
and if also
(3.13) 2(R,) £ —K where K = supwv

then, by Lemma 3.1, z < v if 0 < r < R,. This implies that 0 < v
if 0 <r < R, and (3.11) follows.
To establish (3.12), (3.13) we compute

lL(Iog%) <C
o{or2) | =

It follows that
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vy=—Lz +az = CJ\; +az < CJ\; .
log = log—=
ogR ogR

Thus it suffices to satisfy (using (3.10))
(3.14) Cl‘i = ¢,
log =
og Z,
and
N log‘l
@15 A —oM)-Ns-K |M= By o4
- log%

Choosing M sufficiently small so that

M’ — 6M
1—-906

IA

1
2

and taking N > 2K, (3.15) follows. Defining R, by (3.14), the proof
is complete.

4, Auxiliary results.

DEFINITION. A point 7'ceﬁ,ﬂr1 is said to belong to the 7idge R
of the obstacle g if g is not W*= in any neighborhood of z.
Thus, © = (%, -+, @,) € R if and only if

ol — ) =a;(1 —x;) for some ¢ # 7.

The above definition is analogous to the definition used in elastic-
plastic torsion problems [6] where g is the distance function from
the boundary of the domain.

THEOREM 4.1. The ridge is contained in C.

Proof. Suppose % = (%,, ---, %.) € R and, say,

a’l(l - ﬁ1) = az(l - ﬁz) .

If 7€ S then

Fiu —a,(1 — =) =0,
Vi — a1 — ) =0

at 7, since u —a,1 — ) <0in I, and u@) — a1 — %) =0, 1=
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1, 2. Thus
Plaw, — a,m,) =0 at 7.
But
0 0 _ 0 0 \a.¥: — &Y,
Y 1Ty — AeTly) = -
< oY, Y, >(a ) < oY, 0Y: / Y
—hta .
Y =03

a contradiction.

LEMMA 4.2. Assume that ¢., =0 for 0 <k < n and some i = 1.
Then

0

(4.1) 3.

[Yu — a1l —7)]=0.

Proof. It suffices to prove (4.1) for ¢ =1. In §2 we may re-
place II., by any other sequence of domains which increase to
II,.., and the boundary values @ on dIl}., by any continuous funec-
tion @ satisfying 0 < @ < g. We shall choose I7}., so that in the
y-coordinates it becomes

4.2) G,;z{y;5<yi<%for lgign}.

Let

V=1 — a(l —w)
z2=Yv

and choose @ as follows:

w; =0on y,=0;

Yu,, on each face y,=dor y,=1/0 Q=i =< n),is a
(4.3) monotone increasing function of y, such that Yu, = Yy,

and Yu, =0 at y, =6, Yu, = Yg at y, =1/8; Yu; =

Yg on v, = 1/0 .

Then, on y, =0
0

Y,

(Yu;) = 0 (since u; = 0 on y, = 9, u, = 0 elsewhere) .

Also
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a1Y(1 — 7[1) = a1<l + Yot +yn)

so that
0
(4.4 — (0, YA — 7)) = 0.
0Y,
Consequently
0% s
(4.5) >0 on y,=9o.

oY
On y,=d or y,=1/0 (2 <7 =<n) we have, by (4.3),
0

1

(Yu,)= 0.

Using (4.4) we again get

0%
oY,

(4.6) =0 on y, =06 or y, = 210,

Q/JII—*

On 9, = 1/6, 2 = 0 by (4.3). Since z < 0 elsewhere, we obtain

.M 92 >0 on y=21.

0Y 0

Denote by C; the set where u; < g. Then, in C;,

n

My —av = =2 (¢; — a,q;,)7; + aa(l — 7)) .

Recalling that Lv = Mw where L is defined by (3.5), and substitut-
ing

v 1 d% __l_az~1az+_2_z
0Y .0 ; Y oydy; YR oy, Y®ooy, Y

we find that
(48) Loz — Qg = —i (02‘ - a’lQi,l)yi + aal(Y - y1>

where

n 2, %
4.9) Lg= LZ LYY gz 2 20(%u5 — Q0¥ )Y 0
2 i,5=1 0Y,0Y; J=11=0 5’_Ijj

J

+ ;@ QY% -
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Differentiating (4.8) with respect to y,, we obtain the following
equation for w = 0z/0y.:

(4.10) Lyw + Zl Lol + 2% 23005 — Qio¥ )Y ow aw
ayi i=0 §=1 ayj

= —(¢, — 0,0;,) = —¢C, .

From the maximum principle it then follows that w > 0 in C; pro-,
vided w =0 on 4C,. In view of (4.5)-(4.7), w=0o0on oC,NG;. We
next show that

(4.11) w@) =0 if yeoC, N (intG;).
Indeed, since % € oC; N (int G,),

(4.12) u, = a;(1 — 7)), Vu,=V(ad —=x)) at ¥,
for some ¢ for which g = a,(1 — «,) at 4. Writing

o0z

8y, 3. [Yua — a; Y1 — 7)) +

w =

[a, YA — =],

" ou

we note that the first term on the right hand side vanishes by
(4.12), the third one vanishes by (4.4), and the middle one is equal
to

if 11,
=0 if ¢=1,

we conclude that w(y) = 0.
It follows that

—a,(1 — )] =0 in GC;; hence also in G, .

Taking 6 — 0, the assertion of the lemma follows.

REMARK. Recalling (8.4), we can rewrite the assertion of
Lemma 4.2 as follows:

(4.13) (Du— Zmbu) Y - al — 7] 0.

If we replace the role of ¢, by another vertex, say e,, the corre-
sponding differential inequality
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(Do = Sl ) (¥ — al — 7] 2 0

(where D,; = d/ox, — d/ox;) coincides with (4.13); thus we do not get
any new inequality.

5. The free boundary is analytic. We continue to use the y
coordinates (3.3).

Denote by G; (0 < i = n) the open components of I7,.\R with
0G; 2 e, and set

the definition of S; is the same as in (2.13). Denote by G, S,, C,
the images of G,, S,, C, respectively in the y-coordinates. Denote
by R the image of the ridge R in the y-coordinates. It is easy to
check that if ¥ = (¥, -+, ¥.) € G, then there is a line segment

Yy={y;y; =¥; if j=4,¥0—-B<u:=¥} (B>0)

which belongs to G, and its left end point lies on .
Suppose now that

(5.2) ¢:=0 for 0=<k=n and some i=1.

By Lemma 4.2 we then deduce that if

(5.3) u@ — 9@ <0, yeb,
then
(5.4) w(y*) — g(y*) <0 for any y*ecv.

Thus the open set C, is connected to E. Since R belongs to C, by
Theorem 4.1 it follows that C; is connected.

The previous argument involving (5.2), (5.3) shows also that
there exists a function (Y, -+, Yi-1, Yits, ***, Ya) Such that

(5.5) C;z ={yec Gi; Yo < Wiy =y Yimay Yitry " " Ya)} .

We can thus state:

THEOREM 5.1. If (5.2) holds then C; is connected and it is a
subgraph in the sense of (5.5).

We next prove that +; is analytie:

THEOREM 5.2. If (5.2) holds then +; is analytic. More precisely,
if
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gz = 'ﬂki<z717 Ty gi—‘ly ?7{4—1, DY ?770) ’
@y -+, Yu) €int BT
then «; is analytic at (&, -+, Ji-, Jiss, -, ¥z). Thus the free

boundary in the interior of G, is analytic.

The proof of Theorem 5.2 given below is based on a method of
Alt [1].

Proof. It suffices to prove the theorem for i =n. Let 9 =

Yy **+, Ynr) and consider the function
C=al~—m) —u
in
Doy = {8 < Y < ¥, ¥ — wsl < 00} .

Here y; is a fixed point with positive coordinates, 8 < 4. (), ayd
V.(¥)) — B, p, are sufficiently small so that D, is contained in C,.
We have { >0 in D,, { =0 on y, = +4,("). By Lemma 4.2,

(5.6) 9¢

<0
Y.

in D, .

Consider the function

— 49
B=10 Oy, Y

(5.7

in D,,, where >a; <1 and 4 is a sufficiently large positive con-
stant to be determined later on. We have (ef. (4.8))
L — ol =3 (6 — 0ugen)y: — a0 (Y — ) =k .

Differentiating with respect to v,, first when &t = » and then when
1k n—1, we get

L) + Bttt 5) = @y = :yE = O
Ll gy) + Sty 5p) = afp = G0+ W
where
5

= g (Bin — Li)¥s

0Y:0Yy,

where A, A, are linear functions, and

T 3P SRS

=1 0Y;
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ok
oYy

= Ck - a‘nqk,n - aa”n .
Since £ e Wi, M, is bounded and consequently,
(5.8) In=Ly+ Zuy—gg- —an = —Ac, + B

where B is bounded indepedenntly of the «, and A.
We choose A sufficiently large so that

(5.9) Ip< -1 in D,,.

Now let p be any number < p, (for instance p = p,/2) and de-
fine

DP = {B < Yn < "/’/‘n(y,)’ ‘y’ - yf” < 10} .
Denote by 0D, the boundary of D, and set
Iyo ={yedD,; y, < ¥.(y) — o},
Lpo = {yedDy; 9,(¥) — 0 < Yo < (¥} .
Define 6D,,,0 5,5 ['s,,, similarly with respect to D,,.
For any sufficiently small ¢ > 0 we have, by (5.6),
(5.10) >0 in I, ,UTl,,

provided A = A(o) is sufficiently large. We claim that if ¢ is suf-
ficiently small depending on p, o, then

(6.11) =0 on [,,.

Indeed, suppose (5.11) is not true. Then there exists a point y* ¢
I, , such that 7(y*) < 0.
Consider the function

T=n+7y—y** (+>0).

If v is sufficiently small then L% < 0. Therefore, 7 cannot take
negative minimum in D,. But since 7(y*) <0, 7 > 0 on Lop0 (by
(5.10)) and on y, = 2,(y¥’), there must exist a point el 0.0 SUCh
that 7/(§) < 0. Thus

n—1 ac aC
— A
Z i aylc ay'n

+ g —y*F<0.

Recalling that —A(0{/oy,) > 0, and that

S 0e) on I

0Ys fore
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(since (e Wi and F{ =0 on y, = v,(¥")), we deduce that
(5.12) (0o — o) = Co

where C is a constant independent of g, p, 0, A. Consequently,
if o is sufficiently small so that (5.12) is not true then the inequal-
ity (5.11) is valid. It follows that =0 on 0D,. Applying the
maximum principle we conclude that » > 0 in D,, i.e.,

n—1
(5.13) S, a"j iy gj >0 in D,
=1 k s

Denote by K the cone

{y; Yn < —ii’%} .

The inequality (5.13) implies that if
T=, ¥ Tu=4#)
then { > 0 in the cone K + %. Thus, if 7, = +.(9") then
Je K+ 7,
i.e.,

~ o x _19 =7 ~yl
M>7l
o> "

or equivalently,

e o 19 =¥
V(G > (1) -

Interchanging # with % we deduce that

) — gy < L8 =T
[9a(F") — (@) = Y
that is, 4, is Lipschitz continuous.
By a general result of Caffarelli [5] it then follows that +, is
a C' function and then (by Kinderlehrer and Nirenberg [12]) also
analytic.

REMARK. It is clear that Theorems 5.1, 5.2 extend to the case
where (5.2) holds with ¢+ = 0. Instead of using the coordinate trans-
formation (3.3), we take y; = w;/n; for 0= j<n, j+# j, for any
Jos Jo# 0.

6. The special case (1.9). In this section we obtain additional
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results in the special ease when (1.9) holds. For any 0 < 5 < #n, let
7[:.;' = (7[0; Ty 0y Wiy Wity ** %y ﬂn)

and denote by #;(z}) the solution of (2.1) corresponding to the pro-
blem with % hypotheses H,, 0 <1 < #n, 1 +* j.

THEOREM 6.1. Suppose ¢q,; =0 for 04, j=<n. If m, >0,
w; | 0 then

(6.1) w(w) — @;(7s) .

REMARK. Recall that boundary values for « were not prescrib-
ed (on 0I1,.,); in fact, in I7,,,,

u(x) = inf EBO e ())dt + e‘“’g(ﬂ:(f)):| = V(@)

and, as shown in [2], the middle term is uniformly continuous in

II,.,. This implies that % has a continuous extension into 4I7,.,,
which is denoted again by . What we have to prove is that this
extension, when restricted to 7; = 0, coincides with % (x}).

Proof. If suffices to consider the case § =n. Let n’ =« and
#(w')y = A, (x,). We denote by 7z, the exit time of =(¢) from II}...
We shall compare the cost functions

J(z) = Eﬂmce-atdt + e g(a(@) e,
0
+ 6P eae, |
J(T) = E“'Urce"“‘dt + e"”gl(ﬁ)]

where #(t) = (#y(t), - - -, Tuoill), T,.(t)) is the process z(t) with #(0) =
(z', 0) and

g\(m) = min {a,l — 7} .

Recall [2] that
6.2) ic,s(?r) = 'irrlf J(7)
w(n') = 1r_1f Jo(T)
where ¢ varies over all #, stopping times.

By Lemma 2.1, 7,(t) = 0.

In what follows we shall use a model of the Markov process
associated with z(f) in which the probability is fixed, say P, and
the initial condition 7(0) = = varies; for each =, n(f) is the solution
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of the stochastic differential system associated with the generator
M, and the initial condition 7#(0) = z. Working with this model, we
can replace E~, E* by FE, and we shall compare J.(z), J.(7) with
the same z. We have (see, for instance, [8]), for any T > 0,

(6.3) Esup |z(t) — 7@ = Cyxy, C, constant .
02T

By Lemma 2.1, for any 7 > 0,
(6.4) Ple, < T]<y if n(0)=(m, -+, 7)), © >0

provided 6 is sufficiently small (depending on %, 7).
Next, by Lemma 2.1 and (6.3),

(6.5) Egz@®) — g.@@) = Cmr, if 0<¢=T.
Using (6.3)-(6.5) we find that

| J(7) — Jo(o)| = CCprr,, 4+ Ce™" + Cy)

if ¢ is sufficiently small, depending on 7. Recalling (6.2) we get
fu(m) — @) = CCurm, + Ce2" + C7n .

Taking 6 — 0 and ssing (2.8), we obtain
fu(m) — w(x")| = CCuxr, + Ce*" 4+ C) .

Taking =, — 0 we conclude that
lim sup |u(z) — #(x")] < Ce=* + Cy) .

Taking 7 — 0, T — <o the assertion (6.1) follows.

THEOREM 6.2. If (1.9) holds them each set S, is a convex set
and the function u(zw) is concave.

The proof is analogous to that for the discrete case [16].
Proof. Let x', n* belong to I,., and set
T=axrt+0 -7 <A<,
We can write (1.6) in the form
6.6) TG =3 rciE{csre*”dt + o= Wo(w), d(a)))} ,
=0 0
where E? = E* for = = e¢,. Writing this relation for a specific § =

(z(w), d(w)) and 7# = x', 7 = 7, and multiplying the first relation by
» and the second one by (1 — \) we obtain, upon adding these re-
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lations,

M1 (8) + 1 — N)Jo(0) = fl w4+ = ME)DE- -]
(6.7) . =
=2 TE ] = B = J20)

here =i, z?, #, are the ith coodinates of x', @? # respectively and
the expression [---] is the same as in (6.6).
Suppose now that = and #*> belong to S,. Then

a(l —m) = J.0), al —z)=J,0).
It follows from (6.7) that
a(l — &) = J:0) .

Thus 7 € S, and, consequently, S; is a convex set.
Next, (6.7) gives

inf J2(3) = M inf J(6) + (1 — ) inf J ,(3)
L] ] )

i.e.,
w4 (1 — 7)) = w@) = w(zh) + A — Mu(@d),

so that u(z) is concave.

REMARK 1. From Theorems 6.2, 5.2, 8.2 we deduce that each S,
is a convex domain containing a I7,,,-neighborhood of e, and 4S;N

o

Il,,, is an analytic manifold.

REMARK 2. For any numbers «,, (0=i=n, 1=<k=1) the
equations

;ai,k% = Olo,k<1 <kZlLy = &)

7o

hold if and only if
ST — =0 1<k<1).
i=1

Since also >\, 7, = 1, it follows that the mapping (3.3) maps planes
onto planes and lines onto lines. It also maps segments onto seg-
ments. It follows, in particular, that

(6.8) (3.3) maps convex sets onto convex sets .

Consequently, by Theorem 6.2, the image S,(1 < 4 < n)in the y-space
of the coincidence set S, (in the m-space) is a convex set.
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7. Asymptotic estimates for ¢ — 0. For any v > 0 set

@.1) Ni={rell—-vsm <1}, No=UN.

THEOREM 7.1. Assume that (1.9) holds. Then there exist posi-
tive constants 6, 0, independent of ¢, a, such that for all ¢ suf-
ficiently small,

(7.2) N;,cSCN;, .
Proof. Set
(7.8) =37,

Using (3.2) and the relation >}%.,¢,; = —¢;, we find that (for
general ¢, ;)

@4 Miogr) = — 2|3 S 0w —wma| - = Siaum
Since

g: ,-Zl N — M), = 0, by symmetry ,
and since

2
— 2
._72'0

Z‘i N — X7,

n 2
Z{ N — N7
we obtain upon recalling (1.1), that

(7.5) —qFf — K@i < M(log r) £ — K75 + |qoolmo/r (@5 = max Q:0)

where K,, K, are positive constants depending only on the ..
N To prove the second part of (7.2), consider the funection, in
I = O, ,N{r <1/(n+ D},

ar if 0Z7r=R,
vr) = eslogr + A—r if R<r<—2_
n+1
where A, R, 6 are positive constants. We choose 4, R asYfunctions
of 6 so that v becomes C! at » = R, i.e.,

%3_1=a0, c6log R+ A — R =aR;

0 is a positive constant (independent of ¢) to be determined. Thus
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0 1 . . .
7.6 R=_F° R f ¢ is sufficiently small),
(7.6) T ( <n+11 ¢ is sufficiently )
@.7) A=cd+ cologBtd
)

Notice that /7 c G,. The condition

1
7.8 0
78 v<n+1><
is satisfied if
1 1
o1 + A — 0,
¢ Ogn+1 n+1<

i.e., (in view of (7.7), if ¢ is sufficiently small. We also easily find
that

(7.9 v = ¢d logla, + 1) .

Using (7.5), (7.7), (7.9) and the conditions (1.9), we find that,
if R<r<1/in+ 1),

co

Mv—ow‘—K-——
(n + 1)

— «ed logla, + 1) > —e¢

provided ¢ is sufficiently small (independently of ¢). We also have

1

V< ar = if R<r .
’ g 7<n+1

Thus, we can apply Lemma 3.1 with # = v and conclude that v < «
in /7. Since v < g if » > R, the same is true for w. Thus SN G,
is contained in N,,. Similarly one can prove that SN G, is contain-
ed in N;, for any 7= 1.

To prove the first part of (7.2), let

@) a.r if 02r£R,,
wy(r) =
0 cologr + A, if Ro<rZ1.

This function is C! at » = R, if

Ro':géy

Q

Ay = ¢d + ¢dlog
co

Using (7.5) and (1.9) we get, for R, < » < n/(n + 1,)
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Mw, — aw, < __ Ko < —¢

= T+ 1y

if ¢ is sufficiently large (independently of ¢).
Similarly, we define functions w, for each 1 < ¢ < n and take

(7.10) w = min w, .

0zi=n

Note that if » = n/(n + 1) then certainly w < w,. Thus, if w = w,
then » < n/(n + 1) and, consequently,

Mw, — aw, < —c¢ if further » > R, .

The corresponding result is true for each w,.
It follows that outside the (c¢d)-neighborhoods of the vertices e,

Mw — aw < —¢

where Mw is taken in the distribution sense.

We can now apply Lemma 3.1 (whose proof extends, by appro-
ximation, to the case where # is only Lipschitz continuous and M#
is taken in the distribution sense). It follows that u < w, and the
first part of (7.2) is established.

REMARK 1. The proof of the second part of (7.2) extends to
the case where, for some 17,

1q,:] = (n + 1>rlge}x (@r.—a) ;

it gives the relation

SNG;,CN;, .

REMARK 2. From the proof of the first part of (7.2) we see
that the funection

Wir) = log fe— <r = LZ:‘; Ty € > 0)

satisfies MW, =< —A if e < r < n/(n + 1), where A is a positive con-
stant independent of ¢. Define W, in a similar manner with re-
spect to the vertex ¢;, and set

= Lmin W, .

0si=n

Then MW < —1 in

Na = Hn';Ll\NE .
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Also W =0 on aN.N IOLM. Denoting by 7. the hitting time of N,
by the process w(t) it follows, by comparison, that

E ., £ W(n) .
Thus

(7.11) Er, < A, log % for all Tell,,, .

In the following section we shall obtain a more precise result as
e—0.

REMARK 3. From Theorem 7.1 it follows that
(7.12) u(w) = Ay

for all ¢ sufficiently small, where A, is a constant independent of e¢.
In the following section we shall obtain a more precise result as
¢c— 0.

8. Asymptotic estimates for ¢ — 0 (continued).
THEOREM 8.1. Suppose (1.9) holds. Then, for any well,,,
€ 1 1 1/2 1 .
(8.1) Er, = <Z VT )log—— + 0(<log—~> ), —=7; = {min|x;, — N[}
i=0 e e 2 ki

as € — 0.
The analogous result for discrete processes is given, for instance,
in Kiefer and Sacks [10].

Proof. Set z = 7.. Then 7 is the first time ¢ such that

maxw;(t) =1 —¢.

0sj=n
Using (1.11), the last inequality becomes

T ety — THES e
max {1 4 Z Lk oQp=25)-6(5)=1/2012¢ | 11,12)} =1—¢,
0sjsn k+3j ﬂ,'j

or

(8.2) min max e®e—4-é0-120%:12-12;1" = Cg

0sjsn  k#j§
where C is a random variable, B, < C < B,, and B, B, are positive
constants independent of ¢ (but depending on the initial point =.
Taking the logarithm on both sides of (8.2) we conclude that
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8.8 min max 0w = %)-6e) — =l = i)} = —logL

0=jEn

+ 0Q1) .
Recalling that

(8.4) E'c = 3imB'c

we proceed to evaluate E'zr for a fixed [. With respect to the pro-

bability P?,

(8.5) &) = w(t) + nt a.s.

Thus, the stopping time 7z is the hitting time of some region @ by
the process w(t).
We claim that for any hitting time ¢ of a region Q,

(8.6) E |\w@)| = 2n E,r + |2|°.

Indeed, if @° = R"\Q is a bounded open set then, since both sides of
(8.6) are harmonic functions in @° taking the same boundary values
|z|* on 0Q°, they must agree in @°. If @° is unbounded then (8.6)
follows by approximating @° by bounded open sets.

From (8.6) applied with « = 0 it follows that

8.7) EYw(t)| = @n)(E,7)" < C, (10;;%)1/2 (C, constant)

where (7.11) was used.
Combining (8.3) with (8.5) and using (8.7), we find that

(8.8) min max {(M — Nj) N — —(m [z — |)vj|2)}E‘z-

0£jsn k#j

1/2
= —logi + 0(1) + 0(<logl—> ) .
€ €
Next, one easily checks that

1 e
ma [ g e g
max {0u — M) h — 2 (el — IA)) = 0w — %)M — L (It — 1219
k+#3 2 2

1
E[

WD T I Jy

Using this in (8.8), we obtain

[% min [ — Ml{l B'r = log—i— + 0((101;%)”2) ;
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recalling (8.4), the assertion (8.1) follows.

We wish to study the behavior of the solution w(x) in a neigh-
borhood of a vertex e, as ¢ — 0. It suffices to take 1 =0. It will
be convenient to use the coordinates (3.3). We also set

u(y) ~u(fr), Yl =Y+,
o*u
0Y.0Y;

(8.9> LO/M’ - Z Auzgy J]

The funetion wu(y) satisfies the variational inequality, in 0 < |y| < 6,
0y = 1/(n + 1),

Lou+i é#w%% Ju —au+c¢=0,
Y'L'erI ayi
(8.10) u= Syl
Y
1 & 0
<L0u 4+ i’_uz:"x LYY a;jj — au + c>(u — a"'}ijt) =0.

Consider the variational inequality in R;;

Ly —auw+1=0,
(8.11) U= alyl,
(Lol — aft + 1)(@ — aly[)) =0,

subject to the growth condition
(8.12) wy) =0y as |yl— .

THEOREM 8.2. Let (1.9) hold. Then there exists a unique solu-
tion #(y) of (8.11), (8.12); further, 0 =< u(y) = C for some constant
C, and

8.13) WY L 5y) as e—0,
¢
uniformly in y in compact subsets of int R;.
Proof. For any A > 0 let #, be the solution of the variational
inequality, in |y| < 4,

Lo, —ait, +1=0,

77"4 é aolyl ’

(8.14) (Lo, — oy + D@, — ay)) =0,

i, =0 on ly|]=

It is easily seen that
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B,z 0, Wy if AT.
It follows that
(8.15) w(y) = liTrg T4(y)
exists and it is a solution of the variational inequality (8.11).
We can represent %,(y) in the form
(8.16) Wi(y) = inf J, A7) ,

ard

(8.17) J, A7) = EyHo odt + aoly(t)le—‘“L«A]

where y(t) satisfies
(8.8) dy(t) = o(y@)dw@®) , y0) =y (yeintR;),
for some n-dimensional Brownian motion 4(t), and
o= ("), 09=v,y,, él‘, VuVir = iy Yii = Yii s
74 is the exit time of y(t) from the set |y| < A.
We claim that for all 1 < 4 < oo,

(8.19) Ele "1 < —%for some constants A, >1, C>0.

Indeed, by comparison
E e < W(y)
provided

LW —aW =0 for |y|<A4,
W=1 on |y|l=A.

Taking

W) = %<y1~+---+yz)

where C, is a constant independent of A and A > 1, » — 1 sufficiently
small, the assertion (8.19) follows.

Taking 7 =74 in (8.17) and using (8.19) and (8.16), (8.15) we
conclude that

(8.20) #(y) = C (C positive constant) .
Using (8.10) we find that the function
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w(y) = 4.
c

satisfies the variational inequality, in 0 < ¥ < é,/c,

ow,

Lowc_l_"_—__ Eluzywyj —awc+120)
1+ cy|* ! dy;
(8.21) w, < _Sl¥l
1+ cly|

ow, @, Y]

L S J— WYY —=—aw, + 1 e — —22 L ) =0
(Lo TS e Sy — e+ 1) (. = )

Hence we can write

(8.22) w(y) = inf Jj, 4(7)

where

caTd
Je =B [S —atg @ Yo(7) | e
,a(7) W), € %Y + 1+ oy.0)] € <74

+ m(yc(ﬂ))ewf,zy]

(8.23)

where y,(t) is the solution of the stochastic system
(8.24) dy.(t) = o(y.(£)dw() + b.(H)dt , v.(0) =y,

the matrix o(y) is defined above,

bc = (bc,i) ] bc i Z ﬂ”yz% ’

1 + clyl
T4 = ¢4 A 74, 7 is the exit time of y,(t) from the set |[y| < A. Notice
that 74 is a stopping time with respect to the o-fields o(@(s),
0<s=<t), t=0; here A is any fixed positive number < j,/c.

Analogously to (8.22), (8.23) we can write

(8.25) (y) = inf Jy,a(?)

where

T, u2) = EUA e=*'dt + ay|y(c)le=" Lcza
(8.26) 0

+ UYLz |
By standard arguments, for any large T > 0 and small » > 0,
8.27) EJsup |0.t) — yOFI S 7 if eSaln, T).
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Next, the proof of (8.19) shows also that

A*E Je=¢] < C for some »>1, C>0

provided ¢4 < 1/C* where C* is a suitably large positive constant
(independent of ¢, A). Hence

AE,[e==*] < C provided c4 < C% .
It follows that
a7 . 1
(8.29) Bl <7y (if oL

provided A is sufficiently large.
Note that

lyDI = A, g =A if <7,

Now fix A such that (8.29) holds and then fix T sufficiently large
(depending on A but not on ¢) such that

N AC) . —4
[9:() ] T+ cly.(0)] <n if 77,
(8.30)
Ae < 7.

Using (8.27), (8.29), (8.30) and (8.20), and recalling also (by
(7.12)) that

]wc] é A2 ’
we deduce from (8.23), (8.26) that
(8.31) | (@) — Jyu(@)] = C7

provided ¢ = ¢,.(n, A); ¢, and C are independent of 7 and C is inde-
pendent of ¢, A. Recalling (8.22), (8.25), we get

(8.32) lw.(y) — &)l = Cn,

and the assertion (8.13) follows.
It remains to prove that any solution i#(y) of (8.11), (8.12) must
coincide with %. From (8.19) we conclude that

(8.33) E[[dyc))e"]— 0 if A— co.

Using (8.33) we can now repeat the argument which gave (8.32),
with w,(y) replaced by W(y). We thus deduce that
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|i(y) — @i(y) < Cyp for and 7 >0;

hence % = 4.

From Remark 2 at the end of §6 we have that the component
of the coincidence set of w,(y) which contains y = 0 in convex. We
also have:

THEOREM 8.3. The coincidence set S of #(y) is a convex set.

By Caffarelli [5] it then follows that the free boundary aSn
int R} is analytic.

Proof. It is easy to check that if y — 7 by (3.3) then ¢y — 7° =
(w5, - -+, @) where

834) mi=—T0  gi=—"C  1<i<n).
( ) ° 7w, + ¢c(1 — m,) 7r0+c(1~7t0)( )

Setting #(x) = %(y), uw(w) = u(y) we then have, by Theorem 8.2,

(8.35) %%l—ammasc—am

Set T=m — e, T =x° — e, Then, as easily checked,

36 Fo—=__ ¢ =
(8.36) S e
and
(8.37) 7 = 1 7

. SRS
¢+ (¢ — DTS
where
ﬁz(ﬁm.”,fn)! ﬁc:(ﬁg;"',ﬁ;)'

Now, by the concavity of wu(z) established in Theorem 6.2, for
any two points 7, 7 and 0 < N < 1,
838)  Lani + 1 - v = Loa@E) + (1 — MaE)

¢ c

where T =% —¢, T=7 — ¢, and @) = u(x) for any ©. We can
write
(8.39) MO+ A —NT =7, T=%—e,

where, by (8.37),
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AT+ (1 — N)T
¢+ (c — DO + (1 — N7

(8.40) T =

The point 7 depends on ¢; as ¢ -~ 0

A 11—
~ 1+, A 1+ 7y, 2~
(8.41) T—— " 1% Tt 1_x £=T7,
1+ x, 1+ 7. 1+ rw, 1+ 7.

T=7T—e¢,

as seen using (8.36).
Using (8.35) we see that the right hand of (8.38) converges to

MIER) + 1 — NIFE) as ¢c—0.

As for the left hand side, using (8.39)-(8.41) we find that it con-
verges to #(7), where %(T) = #(x) for any =. Hence

(8.42) NIUE) + (1 — VER) < 34(F)

ST

where % is the same linear combination of x, # as % is of 7, 7 in
(8.41). As A varies from 0 to 1, the points 7 fill the entire interval
connecting T to 7. )

For the obstacle of # we have equality in (8.42) (since it is a
linear funection). It follows that if # and % are in the coincidence
set of %, then so is the entire interval connecting them.

Since the coincidence set is convex in the =x-space, it is also
convex in the y-space.

We denote by C the continuation set for 4.

LEMMA 8.4. Suppose (1.9) holds and

(8.43) t;=0 for 255 0.

Then

(8.44) a" (i(y) — ajy)) <0 in C.
v,

Proof. Denote by 4, the solution of (8.14) subject to a dif-
ferent boundary condition, namely,

(8.45) @, = 0(4) .
Representing 4, as a cost function and using (8.27), we find that

@A(y)—ﬁA(y)—"—’O if A— co .
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Hence

a,(y) —a(y) if A—— .

Next, suppose we replace the domain [y]| < A by the domain
(8.46) fyeR;,0<y, <A for 1 <1< m}

and denote by wu% the solution of the variational inequality (8.14) in
(8.46) subject to boundary condition (8.45). Then again we have

(8.47) wi(y) — a(y) if A—— oo .

(This follows, for instance, by working throughout the proof of
Theorem 8.2 with the domains (8.46) instead of the domains |y| < A.)

Denote by u; ,(y) (0 < 6 < A) the solution of the variational in-
equality (8.14) in the domain

(8.48) {yeR,o0<y; <A for 1=Z1=n},

subject to boundary conditions
(8.49) %s,4(y) = 0(4) .

Then, for each fixed A, we clearly have

(8.50) U, a(y) — ui(y) if 6—0.
Set
(8.51) V= Uy — Gl Y.

We choose the boundary conditions in (8.49) such that v < 0 and

v=0 on y, =29,
(8.52) v,=0 on y,=0 andon y, =4 2=it=n),
v=—C*A on y,=A (C* positive constant) .

Consider the penalized problem corresponding to the variational
inequality for v, namely,

(8.53) Lyw, — av, — B.(v.) + 1 — aay| =0

(where g, is as in (2.8) and 3.(0) = 1). Using (8.43) and the condi-
tion ». = 0 on y, = 6, we find that

o™,
oY:

(854) Y = Be(O) -+ aol'y[ —1>0 if Y, = 0 ’

and similarly
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2,
8.55) 1, g;’ = —aC*A + (—C*A) + ajy| —1<0 if 5, =A4
provided C* is sufficiently large (independently of A).
Differentiating (8.53) with respect to y, and setting z = dv./0y,,
we get

Lz — az — Bl(v)z — ag, =0 .

It follows that z cannot take a positive maximum at an interior
point. Furthermore, from (8.54), (8.55) we deduce that z cannot take
a maximum on the parts y, = 8, ¥y, = A of the boundary. Since, by
(8.52) 2z < 0 in the remaining parts of the boundary, we conclude
that

2(y) < 0 in the domain (8.48) .
Taking ¢ — 0 we get

2ty — agyl) = -2

ayl ayl

=0.

Taking 6 — 0 and using (8.50), and then letting A — - and using
(8.47), the assertion (8.44) follows.

‘THEOREM 8.5. Suppose (1.9) holds. Then the stopping set S of
@ contains an (int Ri)-neighborhood of the origin. If
(8.56) Lo =0 for some i and all k # 1

then the free boundary I’ = a5 N(int R}) of @& can be represented in
the form

(8.57) Yi = Py * 5 Yimty Yity " s Ya)
where @, 1s analytic.
The proof of the first part is the same as in the case of

Theorem 38.2. To prove the second part, say for k=1, we use
Lemma 8.4 and proceed as in § 5.

REMARK. Denote by S, the connected component of the coinci-
dence set of w.(y) = u(cy)/c which contains y = 0. Introduce the
free boundaries

I,=dS,n(@ntR), I'=405n(intR})

where S is the coincidence set for %. The sets S,, S are contained
in |y| < R, for some R, > 0. Introduce polar coordinates (|y|, 6) =



SEQUENTIAL TESTING OF SEVERAL SIMPLE HYPOTHESES 83

(lyl, 0, ---,0,_) in R} and a truncated convex cone
K={y0<|yl=R,0eGy};

G, is such that 0K/{0} is contained in int R;. Since S, and S are
convex sets we can represent I",, I in the form

(8.58) Ielyl = p.0); I 1yl = po) .
From Theorem 3.2 we deduce that, for any ¢ > 0,
(8.59) lw.(y) — G| <e if yekK,, ¢=c,9),
where K; is a d-neighborhood of K intersected with int B}; 6 > 0.
We claim that
(8.60) l0:.(0) — P(0)] < Ce¥* if 0e@,;

this gives a rate of convergence of the free boundary of u(cy)/e to
that of #(y).
To prove (8.60) note first that
K,nS contains S,. = {K,N S, minus a Ce">-neighborhood of

(86D KnS}.

Indeed, if y& K, NS then (cf. [5])
sup# > ¢
B

where B is a ball with center y and radius Ce'?; hence, by (8.59),
sup, w, > 0, i.e., y&S,..

Next p,(0) is uniformly Lipschitz in ¢ for (Jy[, §) in K;, and
small ¢, since K;N S, is convex and contains a fixed K;-neighborhood
of y=0. Also p(¢) is Lipschitz in 6. These facts together with
(8.61) and its counterpart with S, S, interchanged, give the asser-
tion (8.60) with a suitable C.

9. Asymptotic estimates when ¢ — o, Define, for any ¢ > 0,
9.1) D, = {e-neighborhood of the ridge} N /7,+, .
THEOREM 9.1. Suppose that (1.9) holds and ¢ = aa,(0 <1 = n).

Then there exist positive constants B, ¢* independent of «, such
that, if ¢ > c*,

9.2) C is contained in Dy, .
Thus
(9.3)  u(n) = g(w) outside the Blc-neighborhood of the ridge .
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Proof. Suppose #° = (m), @}, ---, 7o) is in G, and dist.(z’, R) =
Bje. Let
w(r) = —de|T — T + a,(1 — 7,)
where % = (x, -+, @,), & = (n}, ---, 7). Clearly w lies below the

obstacle g in G,. Since

B

dist.(z°, G)) > = (1=1),
c

in each G, w decreases at a rate

= el -7 —a,=B6 —a,> A, (4, = maxa,)

provided
(9.4) Bo > 24, .

This rate of decrease is faster than the linear rate of decrease of
the obstacle g in G,. Hence w lies below g.

Next, w < 0 outside some (4,/1 ¢)-neighborhood N (in 17,.,) of
7°. We now compare w with » in N. By the calculation leading
to (7.5) we find that

Mw — aw > —K,eom2 — aw > —c¢

if ¢ is sufficiently small independently of ¢; we use the fact that
aw = aa(l — ) < —ilaaoc = —i—c in N.

Since 4 = w on 0N, Lemma 3.1 implies that v = w in N.

Since w = ¢ at n° it follows also that u(n®) = ¢g(x") provided ¢ is
sufficiently small and provided (9.4) holds. This completes the proof
of (9.2) for points in C N G,; the proof for CN G, (1 = 1) is similar.

Denote by G any compact subset of I7,., and set

D. = {e-neighborhood of the ridge}n G .

THEOREM 9.2. There exists a positive constant A (depending on
G) such that, for all ¢ sufficiently large,

9.5) C contains D, .

The proof is similar to the proof of a corresponding result in
[6; §4] for the elastic-plastic torsion problem.

Proof. Suppose 7°c¢D,,,N G, and 7°¢ C. Suppose for simplicity
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that z° is close to G, at least as much as it is to any other G,,
1 > 1. Take points n'eG,, n*€ G, such that n° is the center of the
segment n'n?, |7t — 7% = Ao, 0 = dist.(z°, R); A, is chosen so that

—[g(@*) + g(z") — 29(n")} = A0 ;

both A,, A, are positive constants depending only on a, a@,. Since
w(m) £ g(wY), w(xm® £ g(@), u(n’) = g(z°®), we obtain

Ao = —[u@®) + w(x@) — 2u(@’)] £ A0%ulpeew

where N is some neighborhood of z°. By standard estimates for
variational inequalities [4], the right hand side is bounded by A.o%;
here A,, A, are positive constants independent of ¢. It follows that
o = 1/(A,ce), and the proof is complete.

10. The case @ = 0. For simplicity we shall assume in this
section that (1.9) holds. Since ¢ >0, if E°r is sufficiently large
then J.(r) > V(x). Thus we may write

(10.1) Vir) = Eipi; J=(7)

where K, is some sufficiently large positive constant (depending
on ¢).

The existence of a bounded solution (and, in fact, uniformly
continuous in IQI,,J,I) for the variational inequality (2.1) with a =0
is proved in the same way as for &« > 0. Theorem 3.2 remains valid
with the same proof when a = 0. Defining ¥ by (2.12) and recal-
ling (7.11) we clonclude that E*F < . But then we can apply Ito’s
formula in order to deduce that w(z) = J.(F). We also get, by Ito’s
formula,

w(m) < J(7)

for any stopping time r with E*r < K,. Using (10.1) we deduce
that

(10.2) wm) = Vz) = J(F) if zell,.,.

This proves the uniqueness of the solution % of (2.1) when a = 0.
Using (10.1), the proof of Theorem 6.1 can be extended with
minor changes to the case @ = 0. Theorem 6.2 remains valid with
the same proof.
The results of §§4, 5, 7, 9 extend without any changes to the
case a = 0; instead of (7.12) we now have

(10.3) wrm) < Aclog L .
C
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From Theorem 8.1 we deduce (for a = 0) that
€2 1 1 1/2
10.4)  V(x) = (z vim>c log L + 0<c<1og—) )as ¢c—0.
=0 [4 [
To generalize Theorem 8.2, consider the variational inequality

(8.11) for a = 0:

Li#+1=0,
(10.5) =alyl,
(Lot + 1)(% — aiy]) = 0

in R}. A trivial solution is given by a,y|. We exclude this solu-
tion by requiring that

(10.6) #(y) = O(ly’) for some 0<H<1.

THEOREM 10.1. Let (1.9) hold. Then there exists a unique
solution % of (10.5), (10.6); further,
(10.7) 0<% <Clog (y|+1)

Jor some positive constant C, and

(10.8) wWey) 5y
c
uniformly in y in compact subsets of int R;.

Proof. Let

= (@Y it |yl <o,
Y= lal0glyl + B if lyl>6.

For suitable positive constants 6, A, B, one finds that z is a super-
solution, i.e., Lz +1 < 0. Hence

0= u,(y) = 2(y)
where i, is the solution of (8.14) with @ = 0. It follows that
(10.9) 0=y =Clog(lyl +1), u(y =Ilimi,y),

where C is a generic positive constant independent of c.
Next

u(®) = wy(r) ,

where w, appears in (7.10). Recalling the precise form of w,(r) we
compute that
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(10.10) w(y) = LT < W7 < Clog(lyi + 1)
¢ c

provided |y| =< 6,/¢ where 0, is any positive constant (independent
of ¢).

We are now ready to proceed with the proof of (8.31), (8.32) in
the case &« = 0. From (10.9), (10.10) and the form of the cost funec-

tionals corresponding to %, w, we see that we may restrict the z
to satisfy

(10.11) t=7*, Er=Clog(lyl+1)=Clog(4+1).
The last term in (8.23), for a = 0, is bounded by

(10.12) I, =Clog(A + 1)P,[z* < 7] .

Now, for any g >0,

P74 <] = Ple*'0 > 1] < B Je*¢ ']
< (B, [e 7 }{E [efr ]}

where 1/p +1/g =1, p>1, ¢ > 1.

Since the stopping times which minimize the cost functions are
exit times, we may take ¢ to be an exit time. Using the second
inequality in (10.11) it then follows by ([8; p. 43]) that

(10.13)

R . 1
10.14 E 71 <C ded =
(10.14) (7] provided £ = Flogd = 1)
From the proof of (8.19) with » — 1 = pg/C we get
E e < Cly|* < Clyl*
A? A
substituting this estimate and (10.14) into (10.13), we get
_ A/p
(10.15) PlFt < 7] = % .

Consequently, from (10.12), for any % > 0,
I, <n if A is sufficiently large ;

A is independent of ¢. From now on A is fixed. Hence, if ¢ is
sufficiently large (depending on A),

[y.(2)]

v Tm— ly.(o)| < 7.

In order to complete the proof of (8.31), (8.32), it remains to show
that
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(10.16) Elly.) — ly@)|| < 7.
Now, by (10.11), for any T > 0,

Plc>T] < % Er< %log(lyt + 1.

Hence, if y varies in a compact subset,
AE [t > T <7 for a suitable 7> 0.

Since, on the other hand, (8.27) holds, the estimates (10.16) follow if
¢ is small enough. We have thus completed the proof of (8.31),
(8.32).

Suppose finally that # is another solution of (10.5), (10.6). Re-
peating the preceding proof of (8.31), (8.32) with w,(y) replaced by
#(y) and choosing p in (10.15) such that 1/p >0, we find that
.

S
i

11. The case where w(t) is k-dimensional. In this section we
extend many of the results of the previous sections to the case
where w(¢) is k-dimensional; the condition (1.1) is dropped. Thus
the generator M is generally a degenerate elliptic operator in the
entire region I7,.,. We assume, however, that (1.9) holds, so that

(11.1) JA(7) = E“[cgre‘“‘dt + e—‘“g(n(r))] .
0
From (11.1), (1.15) and the strong Markov property we get

V(ﬂ-) = inf Ex{cngfNeﬂatdt + e‘“rg(ﬂ'(f))‘[r<fzv
(11.2) csex 0
+ e N V() ey |

for any stopping time 7.

THEOREM 11.1. There exists a II).,-neighborhood gi of e, such
that S;,C S.

Proof. Set W=V — g in a neighborhood N of ¢, where g(x) =
a,(1 — 7,), and let 7, = exit time from N. Thus, for any stopping
time 7 < 7y

E e g(n(z)) — 9(m)] = E"U:ce—“(M — a)g(n'(t))dt]

- EH ce"“’(-ag)(n'(t))dt:‘ .
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Therefore, by (11.2),

W(z) = V(z) — g(x) = inf E* {S’“"Ve-m(c — ag)(a(t)dt
(11.8) e ’
+oemew W(?t(TAV))I__:TN} .

Note also that W < 0 and that ¢ — ag = C* > 0 if N is sufficiently
small.
The function z defined following (3.11) satisfies

Mz —az+v=0 (with v<e¢—ag),
z2=0,
(Mz — az + 7)z =0,
and
z=w on |yl =R.

Using Ito’s formula we obtain

TAT

2(z) = inf ETU Yematydt - e*”ﬂ’z(ﬂ(fy))l,:w] .
TETy

0

Comparing with (11.8) we conclude that
(m) = W(nm) .

Since z(z) = 0 where © varies in some neighborhood of e, the same
follows for W; this completes the proof.
Theorems 6.1, 6.2 remain valid with the same proof.

LeEMMA 11.2. The estimate (7.11) is valid.

Proof. Because of the degeneracy of M, we need to choose the
functions W, differently than in the proof of (7.11) in §7. For
simplicity we exhibit the construction in case n = 2. Take

W, = log T, —; T, + log 0,7, —: 0,7,

outside an e-neighborhood of ¢, where 6, =1, 6,=3. Thus W,=0
and

MW, = Mlog(z, + 7,) + Mlog(d,7, + d,7,)
= —2lm - 7 + iz — o]

_,A(7T1 + °)° - —A
/r2

IA
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where r = &, + @, and A,, A are positive constants.
Similarly, we define the W, with respect to ¢, and notice that

MW, =0, W,=20.

Hence W = >, W, satisfies MW < —A, W > 0 outside an e-neigh-
borhood of the vertices. This implies, by Ito’s;formula,

and (7.11) follows.
Using (7.11) we can now derive Theorem 8.1 as before.
Theorem 8.2 asserts that

(11.4) wed) _ L 5g) as ¢—0
[

where #4(g) is defined by (8.25), (8.26). The proof can actually be
given by comparing the cost functionals and without introducing
variational inequalities at all. Notice that the crucial estimate (8.12)
remains valid here (with the same proof) and that also the in-
equality

(11.5) uleg)
C

A

A

which is needed in proving (11.4) is true (in fact, taking ¢ — o in
the cost functional which defines » we obtain (11.5)).

The proof of Theorem 3.2 extends to % (cf. the proof of
Theorem 11.1), showing that the stopping set S contains a neigh-
borhood of each vertex. This proves the part

SD N,

of Theorem 7.1; the other part follows as in the proof of Theorem
7.1, since

Mlog r)= — K,7% .

The convexity of S (Theorem 8.3) remains unchanged. Finally,
the results of §10 (the case a = 0) extend with minor changes.

We shall now obtain additional information, taking » = 2 and
w(t) to be 1-dimensional. We also take for simplicity

M=0, =-1, N=1.

Writing 7,(t) in terms of the observed process (see (1.11)) we
easily compute that
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(11.6)

where p; = 7,(0), 7; = w;).
The mapping

a: (&), ©) — ()
is 1-1, mapping the half-plane ¢ > 0 onto a subset of [[, defined by

v

1472

TG > T,

The ridge of ]I is not in the stopping set S and ¢ maps S, onto a
set >;; see the accompanying figure.

¥ oxis
b

Z,

t axs

Take a point ¢ on the t-axis and mark the point A" = (&, ¢) on
0%, with & < 0. Denote by p(t) the distance from A’ to ¢2,; it is
achieved at B’c9X,. Denote by A, B the inverse images of A’, B’
under o.

THEOREM 11.3. As {— o

2

(11.7) o) S log 2l — B8)

Bl — a)
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where o, B are positive constants described in the previous figure.

Proof. Write
A= (750; Ty, 77:2) , B= (ﬁ:o, T, ﬁz) .
Then, as t — oo,

T,—0, 7,—0, =, >,

Tn—1l—-a, Ty,—pB, T,—>1—7.
Setting
T,=¢&, W,=2~¢,
we can then write
Th,=&—"%, Tm=1—a-+v.—c¢,
T=8—0:, T=1—@+d:—¢,
where

8——)01 g—_—)o, ’Ys———)O, 55;""_)0 as t"’—')OO-

From (11.6) we find that

- 2 2 - o 2y 1/2
o= p@) = {—Hlog&@] + [log—@’—mz—]} :

T, T, T, Te
Hence
o= Hiog(r1=La + o) [ + [log%%{%a + o) |

where » = &g, 0(1) >0 as t — oo,
From the definition of B’ it follows that

o= P + o(1))

where

0= nzlin {%[logxi - /@]2 + [logx—g%f%;-:ﬁm .

Set
p@%:%@gkm%+mghmzuu>Qh>oy
Then min p(\) is obtained at
N = B



SEQUENTIAL TESTING OF SEVERAL SIMPLE HYPOTHESES 93

Using this value in our special case of 7, (11.7) follows.
Consider next the point (g, £) = (0, z,) on 4%,.

THEOREM 11.4. As ¢—0

(11.8) 7, ~ log —

v*e?

where v 1s a positive constant.

Proof. (0, z,) corresponds to (m, 7, ®,) where, by Theorem 8.2
and 8.3,

1

Ty~ ——————
14 ve + 7e

Ty~ —— € (i=1,2)

1+’Y1c+72c

and v, = v, = v since 7, = 7,. Since

2 2
T
T = IOg . ’

7. = log >
T, pia1

the assertion follows.

REMARK. Theorems 11.3, 11.4 have the advantage of providing
direct information on the observed process (£(¢), ¢). In case n > 2
we get a similar picture with # + 1 regions X, in the half-plane
t >0 (of the (¢, t) variable).
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