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In this paper we give an explicit description of valua-
tion rings compatible with certain infinite preprimes of a
field. These results are essentially constructive versions of
the results of L. Brocker and E. Becker relating fans and
valuations. We discuss a number of examples in detail,
including the higher orderings recently introduced by E.
Becker. One of several applications is a generzlization of
the theorem of Brocker-Brown charactorizing superpytha-
gorean fields.

1. The main theorem. We begin by introducing the main
definitions and notation of this subject. Let K be any field.

DErFINITION 1. (Harrison[7].) If P& Ksatisfies —1¢ P,P+ PC
P, P-PC P, then P called a preprime of K. In case 1eP, P is
called an infinite preprime of K. The maximal preprimes of K are
called the Harrison primes of K.

Harrison primes were introduced as a possible generalization to
arbitrary fields of the notion of a “prime” that arises in algebraic
number fields. Throughout this paper we shall be concerned only
with infinite preprimes. Following E. Becker [1], [2], [3] we give:

DEFINITION 2. An infinite preprime P is called a preordering if
P = P — {0} is a subgroup of K'. A preordering P is called a fan,
if whenever U & K is a subgroup with P" € Uand —1¢ U, U U {0}
is a preorder of K. Finally, a preorder P is said to be complete if
whenever a®*c P it happens that ae P or —ac P.

In [1], [2], [3] Becker shows that in many cases complete pre-
orderings give rise to valuation rings. Very often, these complete
preorderings are not Harrison primes. Thus it becomes interesting
to know precisely when a preprime induces a valuation on a field.
With this in mind we give:

DEFINITION 3. A preordering P is called a strong fan if when-
ever a ¢ =P it happens that 1 + ae€ PUa-P. We shall call a strong
fan P a wvaluation fan if in addition, whenever a ¢ =P but1+ac P,
then 1 — a € P.
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Finally, one more definition:

DEFINITION 4. A valuation ring O & K, with maximal ideal I,
is said to be compatible with an infinite preprime P if 1 4+ I < P.

We now give the main result of this section:

THEOREM 1. An infinite preprime P is a valuation fan only if
there is a valuation ring OS K compatible with P for which P = I_"/I
is the positive cone of a linear order of the residue field O/ = K.

Proof. First, let P be an infinite preprime, and assume such a
valuation ring O exists. Suppose a ¢ = P. Then as P’/I is the positive
cone of a linear of O/I, we see that a¢ cannot be a unit of O. Thus
as either a€l or a*el, we have by compatibility that 1 +acP
orl+ a'eP. From this we that 1 + ae PUaP. We also see that
in case 1 4+ a e P, we must have that a € I, so that as —a € I we have
1 — aecP. This shows that P is a valuation fan,

Conversely, we now assume that P is a valuation fan. For
xe K' we shall denote by [x] the coset of z in K'/P'. It follows that
whenever =z, y€ K° are such that [x] # —[y], it happens that
[ + y] = [z] or [x + y] = [y]. We also see that if [x] # =+[y], then
[# + y] = [«] if and only if [x — ¥] = [=].

Next we define O(K, P) ={xe K": [x] # =P but [1 + z] = P},
and O)K, P)={xecK:[z] = =P and 2-O(K, P) < O,(K, P)}. Our
task is to show that O(K, P) = O,(K, P) U O(K, P) U {0} is the desired
valuation ring of K. We now check many facts:

(1) xe€O(K, P) if and only if —xeO(K, P).
Proof. As P is a valuation fan we clearly have that x € O(K, P)

if and only if —xe€O\(K, P). It now immediately follows by the
definition of Oy(K, P), that x € O,(K, P) if and only if —x<c O, K, P).

(2) If [x]+ =P, then x€O(K, P) if and only if z'¢ O,(K, P).
Proof. Note that xc O,(K, P) if and only if [1 + z] = P’ if and
only if [1 + 27'] = «7'P if and only if 2~*¢ O(K, P).
(2) If [x] = P’, then at least one of z, x7' € O,(K, P).
Proof. Suppose we have z, weO(K, P) such that xz, x~'w¢
O(K, P). Then [1+ xz]=1[22] and [1+ 2 'w]=[2'w] so that

[# + w] = [w]. Thus, [1+ 2z + 2 + w] = [x2] or [w]. But note that
[+ w) + 21 + 2)] =P as both 2, we O(K, P). This contradiction
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gives (2).

(8) Suppose that z, y € O,(K, P), and that [xy] = =P’. Then aye
O,(K, P).

Proof. We have that [L+ 2] =[1—y]=P. Thus [(1+ 2) —
z(l —y)] = P or —[x]. But as [y] = — P, [xy] # —[z]. It follows
that [1 + zy] = P".

(4) Suppose that z, y € O(K, P) and that [a2y] = P'. Then zye
O,/(K, P).

Proof. Let z¢O(K, P). In view of (1), replacing z by —z if
necessary, we may assume that [2] = —[2], —[y]. It then follows
that [xA + v) + yA + 2) + 2z(1 + x)] = [«], [¥], or [2]. But further, as
[+ (14+A+2]=0D42yz+oc+y+2+ay+ yz+ az] = P,
subtraction yields that [1 4 zyz] = P, —[z], —[y], or —[2]. As
[xyz] = [2] = —[z], —[y], —[2], we see that [1 + zyz] = P’, which
proves (4).

(5) O(K, P) is closed under multiplication.

Proof. (i) If z, yeO,(K, P) then z-y<cO(K, P) follows from
3) and (4).

(ii) If xeO(K, P) and yeO,K, P), then zyeO,(XK, P) follows
immediately from the definition of O,(X, P).

(iii) If =, ye O (K, P), then for any zeO(K, P) we have that
yze€ O,(K, P), and hence that zyzeO,(K, P). It follows that aye
O,(K, P).

(6) If [#] = =P, and either [2 + x] = P or [4+ x] = P, then
[L+2]=P.

Proof. First suppose that [2 + x] = P, but [1 + 2] = [¢]. Then
as[1 + (1 + )] = P, we have that [1 — (1 + )] = P’, clearly a con-
tradiction. Thus if [2 + 2] = P’, it happens that [1 + 2] = P'. Next
suppose that [4 + 2] = P’, but [2 + z] = [#]. As above we have that
[2+ 2+ x)] = P, so that [2 — (2 + 2)] = P’, a contradiction which
proves (6).

(7) If x,yeO(K, P) and [z + y] = =P, then = + y € O,(K, P).

Proof. As[l+z]=[1+y]=P,wehavethat[l+2+ 1+ y] =
P, so that [1 + (x + y)] = P" by (6).

(8) If z,ycO/(K, P) and [z + y] = P, then 2 + y e 0K, P).
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Proof. As[x] %= =P, [y] # =P, but [x + y] = P, we must have
that [#] = [—y]. Let 2eO(XK, P). Replacing z by —z if necessary
we may assume that [2] = [—x]. Then we have P = [(1 + z)(1 + 2) +
QA—yA—-2)]=L2+@+yz+ (x—19y)] As [x— y]=[x], subtrac-
tion gives [2 + (x + ¥)z] = P° or —[x]. As [(&@ + y)z] = —[x], we
conclude that [2 + (x + y)2] = P’, so that by (6), [1 + (x + ¥)z] = P,
proving (8).

(9) If x€ 04K, P), yeO,(X, P), then z + y € O(K, P).

Proof. We may assume that [¢] = P'. First suppose that
[x +y]l=[x]. Let 2zeO,(K,P). Then P =[1+2ay]l=1[1+ xz] =
[ + )@ + 2)] implies that P" = [1 + 2y + 1 + a2z + (1 + »)1 + 2)] =
[+ (@ +¥)z+ 2+ y + 2y]l. We may assume that [z] # [—y]. Then
subtraction shows that [38 + (x + y)z] = P°, [—2] or [—y]. But as
[(@ + y)2] # [—2] or [—y], we have [3 + (& + y)z] = P", so by (6)
2z + y e O,K, P).

Secondly, suppose that [x + y] =[y]. As [1 + y] = P’, we have
that [1 + v + «] = P’, so that z + y € O,(K, P).

(10) If x, ye O(K, P), then z + y € O(K, P).

Proof. Suppose that [x + y] = =P° Then for ze€O(K, P) we
have [1 + x2] = [1 + yz] = P’, so by (6), x + y € O«(K, P).

Next suppose that [x + y] = =P'. If x + y¢ O(K, P), then by
2), (x + ¥)"*e O(XK, P). But now as x? 2y, y*c O,(K, P) we have that
D+2@+y'l=0+ay@+y)*]=[1+yk+y*]=PFP.  Thus
[4 + (2 + 2zy + ¥y (x + y)~'] = P’, from which it follows by (6) that
[1 + (® + )] = P. This proves (10).

We have now shown that O(K, P) is a valuation subring of K.
It is clear by (2) that if x» is a unit of O(K, P) then xre PU —P.
Further, let 2, y € P* be units of O(K, P). Then for any z <€ O,K, P)
we have that [z + 2] = [y + 2] = P'. Thus we have [(z + y) + 22] =
P, from which it follows that [(# + y) + 2] = P". In particular
x4+ y is a unit of O(K, P). We thus have: PN —P={0}, K =
PyU—P, P+PZ P,and P.PZ P. Hence P is the positive cone
of a linear order of K.

Finally we must see that O(K, P) is compatible with P. If
2€O,(K, P), then 1+ ze P’, by the definition of O,(K, P). Assume
that £ € O,(K, P) is not a unit. If [x] = P’, then clearly 1 + x¢ P".
If [x] = — P, then let y € O,(K, P) be such that [—2 + y] = [y]. Then
as [l + x) + (—x + y)] = P’, we conclude that [1 + z] = P or [—y].
As 1 + z is a unit of O(K, P) we have that [1 + «] = P’. This proves
Theorem 1. M
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The following is an immediate consequence of Theorem 1.

COROLLARY 1. A field K is formally real if and only i+f K has
a valuation fan. O

REMARK 1. It is clear that every strong fan is a fan. E. Becker
has also recently proved that the converse is also true. However,
as this result depends upon the nonconstructive results of his paper
[3], we omit a discussion of this result here.

2. Examples. Let PC K be a strong fan. We define R(P, K) =
{xeK:3peP with [1 + px] = P and [1 — px] # P}. We have:

LemMA 1. If »,ye R(P, K), then either xe =P, ye =P, or
xye P,

Proof. Assume to the contrary. Then for some 2, yc K', p,, p. €
P, we have that [1+ px]=I[1+py]l=PFP, [1- pa]=][-2],
[1 — p.y] = [—y], with [z], [y], [xy] * =P'. But then as [l — (p2)’] =
[—2], [(2.2)* — (p2D.y)’] = [—2"y] we conclude that [1 — (p.2)* + (p2)* —
(p2p:y)’] = [1 + pp2yl[l — ppxy] = [—2] or [—a’y]. But as [1+
p..xy] = P or [xy], and [1 — p,p.2y] = P or [—2y] we have a con-
tradiction which proves the lemma. |

We next see that whenever one has strong fan, one can easily
find a valuation fan.

LEMMA 2. If PC K is a strong fan, then either P is a valua-
tion fam, or for any € R(P, K) — =P, PUz-P is a valuation fan.

Proof. Incase R(P, K) & + P, than as 1 € P, we see immediately
that P is a valuation fan. Now let xe R(P, K) — = P'. It is easy
to see that PUx- P is a strong fan. Now suppose that y ¢ =PU £x-P.
Then by Lemma 1, y¢ R(P, K). Thus if [1 + y] = P, we must have
that [1 — y] = P. Also, as Pis a strong fan, we note that [1 + y] =
2+ P is impossible. This shows that PU z-P is a valuation fan. [

In [1], [2], [3] the valuations compatible with complete fans are
studied. Along these lines we give:

LEMMA 3. Let PS K be a complete strong fan. Then P 1is a
valuation famn.

Proof. Suppose that x¢ = P. Then as P is complete, 2*°¢ P.
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Thus if [1 + z] = P°, we must also have that [1 — 2] = P, for other-
wise [1 — 2] = [1 + 2][1 — 2] = [—x], a contradiction. |

Complete strong fans are nice for many reasons. One such rea-
son is:

LEMMA 4. Let K be any field with a valuation subring O, whose
residue class field can be ordered. Then there is a complete strong
fan P < K for which O = O(K, P), and such that P is any given
order of the residue field.

Proof. Take P to be the positive units of O £ K. The result
is then an easy application of valuation theory. l:l

This lemma shows that the complete strong fans (respectively
the complete fans in view of Remark 1 of the last section) of a
field K, give all the order and valuation theoretic information of the
field K. This fact has led E. Becker and the author to suggest that
the notion of “complete fans” be the appropriate generalization of
the “real infinite primes” of number theory.

Let PSS K be a complete preprime, and suppose that K'/P' is a
torsion group. Then the results of [3] show that P is a strong fan.
This appears to be an extremely deep result, and does not (yet) have
an elementary proof. Of special interest is the case where K'/P" =
Z|nZ, with » even which are called orders of level n. (See [1] and
[2] for more details.) In some cases it is possible to give an ele-
mentary proof that these higher orders are strong fans. Along
these lines we give:

LemMmA 5. If P is an order of level 2, 4, 6, or 8, then P is a
strong fan.

Proof. If P has level 2, the result is trivial. If P has level 4,
then we may express K' = +=P'U +2-P" for some z€ K. For such
x, suppose that 1 + 2 = —p or —px for some pe P. In either case
we find that —x e P, a contradiction. Thus P is a strong fan.

Next suppose P has level 6. Then K' = P'U«P U z*P" Ua*P U
2P U a°P for some xe€ K. As P is complete, —P = a*P’. Now
suppose that for p, »,e€ P, we have 1+ xp, = 2*p,. Then 2°p, =
x + 2, = 2 + p,p:'(1 + 2p,). But then we see that for some p; € P,
1 + zp,e — P, a contradiction. Thus, P + xP does not represent any
elements of «z*P.

It is clear that P + xP does not represent any elements of «*-P
or x*-P. Next assume that 1+ap,=2°p, for p, p,€ P. Then as zp,+
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x’pie P, we have that 1/4 4 xp, + 2’pic P. Since P is complete,
1/2 + xp,e =P, from which it follows that 1/2 + xp,e P. Thus
1/2 + 1/2 + «p,€ P, a contradiction. Thus P+ «P S PU 2P, for all
¢ such that xP" generates K'/P'.

We now see in addition, that P + 2*P does not represent «°P, x*P,
or z°P. Soassume that 1 + #’p, = 2p, for some p,, », € P. It then must
happen that for p,e P, 1 — 2°p, = p;, or a°p,, as (1 + 2*p,)A — **p,) €
PUxzP. If 1— o, =, then (A + x*p,)° — (1 — a*0,)°€ —P, i.e.,
6x%p + 22¢°p* ¢ — P, a contradiction. If 1 — «’p, = «°p,, then (1 + «’p,)® +
1 — #’p)*e —P, ie., 2+ 6x'p*c —P, a contradiction. This shows
that if P has level 6, then P is a strong fan.

Finally we suppose that P has level 8. We identify K'/P' with
{P, 2P, °P, - - -, " P}, where 2*P = —P. We first claim that P + z°P =
PU «x*P. For assume that p, + 2*p, = #’p;. Then as p} — z'pi =
(p, + *p,)(p, — **p,) € P we must have that p, — a’p,c 2°P. But now
since (p, + 2%p,)? — (p, — **p,)* = 4a’p,p,, it follows that 2°P — 2*P
represents an element of 2°P, clearly a contradiction. A similar
contradiction results if we assume that P + 2*P represents z'P.

Next we assume that P + «°P represents «°P. As 2P = —2°P,
it cannot happen that P + «*P also pepresents xzP, as then it would
represent 0. Thus P + 2°P represents only P, 2*°P, and 2°P. As in
the above paragraph we find that P — «*P represents only P, —x*P,
and #*P. But now, as P + 2*P represents z°P, we have that P — 2°P
represents —x’P. Thus as P — x*P represents 2P we conclude that
P — z°P represents x°P, i.e., P + «P represents «*P.

Suppose that p, + xp, € 2°P. Then as p: — &*pie P, —a*P, or «*P,
we conclude that p, — xp, e P, 2*°P or 2°P. Clearly p, — xp, ¢ «*P, for
otherwise (p, + ap,) + (p, — zp,) e x*P. If p, — xp,c2°P, then both
(p; + apy)', (P, — py)* e — P, while (p! — 2*p3) € P. Thus: (p, + 2p)* +
(p, — zp,)* — 2(p? — 2*p2)* = 16a*p’pi € — P, a contradiction. Finally, if
P, — xp. € P, then (p, + xp))* — (P, — 2py)* = 8(xpip. + «°p,p}) € —P,
which says that P + xP represents —a?P. This contradicts the fact
that P + xzP already represents x*P.

Thus P + «*P cannot represent z°P. A similar argument shows
that P + «*P cannot represent #P. Thus P + x*P = P U 2*P, and also
P—g*P= Py —2*P. It is now clear that P is a strong fan, for if
P + xP represents x/P for some j # 0, 1, subtraction in one way or
another will contradict what we know about P + 2*P. This proves
the lemma. ™

REMARK 2. An elementary proof of the analogue of Lemma 5
for all higher orders would be very nice, for then it should enable
us to give an effective procedure for finding expressions for the
“Hilbert identities”, which Becker proves in [1] and [2]. Unifortu-
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nately, we have not been able to find such proofs.

3. Higher Pythagorean fields. Recall that a formally real field
is called Pythagorean in case K* + K* = K™ If K™* is a (strong)
fan, then K is called Superpythagorean in {6] or strictly-Pythagorean
in [1]. Generalizing these definitions we give:

DEFINITION 5. K is called m-Pythagorean if K™*™ + K™™ = K™,
and K is called strictly m-Pythagorean in case K™ is a strong fan.

LemMmA 6. If K is strictly m-Pythagorean and if K is 2-Pythago-
rean, then K™ is a valuation fan.

Proof. We denote by [«], the class of # in K'/K™™. Fixx¢ K™,
and suppose that [1 + 2}, = K™, while [1 — 2],,, = [~2]:n- In case
[z]. # = K™, then we have that [1 — 2?], = [—2¥*],, for some yec K",
But as K*+ K™ = K™, we conclude that K™ — x’K™ represents a
multiplicative subgroup of K°'. This implies K™* — 2*K™ represents
2, a contradiction.

Now suppose that [z],= K™ If x =19, we have that
[1 — ¥lm = [~ ¥'}w, s0 that [1 + ¥l = [¥lw, and [1 — ylow = [~ YLom
But then [(1 + %) + 2(1 — ¥)]ow = [¥’]ew OF [ —¥]ou- However, [8 + 4°],n =
2+ A+ )]s = K™, a contradiction. If x = —%°, we have a similar
contradiction. This proves Lemma 6. O

Let S be a set of primes, where for convenience we always
include 1e¢S.

DEFINITION 6. We shall say that K is strictly S-Pythagorean if
for all distinet p, g€ S, K is strictly p-q-Pythagorean.

THEOREM 2. A field K is strictly S-Pythagorean if and only if
K carries a valuation with residue field K, such that whenever ne N
with the primes dividing n in S, K'/K** has at most four elements,
and Hensel’'s Lemma holds for all equations of the form X™ — a
with ae K. Further, if K is 2-Pythagorean, we can require that K
be Euclidean.

Proof. We first assume that for some pe S, K'* is not a valua-
tion fan. Then by Lemma 2, for some ¢ K™ we have [1 + «],, =
K>, [1— 2], =[—x], and KUz -K™* is a valuation fan. We also
note that as [1 — 2%],, = K™ or [—2°],,, it must happen that x*ec K™,
Thus, as ¢ K, x¢ K™, which shows that for all ¢eS that
[1+ #),, = K™ and [1 — «],, = [—#),,. In particular, for all distinet
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», g€ S we have that P,, = K™ x-K™ is a valuation fan.

We next note that O(K, P,,) < O(K, P,) N O(K, P,). First, it is
immediate from the definitions that O,(K, P,) < O,(X, P,,), and thus
that O,(K, P,,) < O,K, P,). But also, if a € O(K, P,,) — O,(K, P,), we
claim that a € O,(K, P,). For we cannot have a '€ O,(K, P,), as then
we would have a*¢O,(K, P,,), a contradiction. Thus ae +P,. Let
beO(K, P,). As ab¢ £P,, and as a-b e O,(K, P,,), we must have that
a-beO)(K, P,). Thus acO,K, P,), showing what we wanted.

Now consider the ring O(K, S, ) = N,.s O(K, P,). We see that
O(K, S, x) is a valuation subring of K. For if a¢O(K, P,) and
a'¢ O(K, P) for p, ¢ € S, we would have a, a ' ¢ O(K, P,,) S O(K, P,)N
O(K, P,), a contradiction.

Next, we observe that if a € O(K, S, x) is a unit, then it must
happen that ac = K'* U +2-K™ for all peS. As x is a pth power
for all peS, a must also be a p*th power which shows that
ac +K*( +2-K* by applying the preceding to the unit ¥ a.
We thus see that whenever n e N with all primes dividing » in S,
that a € =K U +x-K*. It is now clear that K'/K* has at most
four elements.

Now suppose that a, b€ O(K, S, x) are units, and that a¢ K™
As b*e K™, we have that a — b’ K™ U x2-K*. For peS, let
ceO,(K, P,). Then as [a + ¢/2],, = [a],,, and [b* — ¢/2],, = K™, we
conclude that [(a + ¢/2) — (b* — ¢/2)],, = [(@ — b%) + ¢]., = [a],, or — K™,
Thus [(@ — b*) + ¢]., = [@ — b*],, which shows a —b® is a unit of
O(K, P,), and hence is a unit of O(K, S, ). It now follows that for
such a, @ ¢ K, which shows that Hensel’s Lemma holds for the
equation X** — q.

Next we note that in case K’ is a valuation fan for all peS,
then so is K™ for all p, g€ S. In this case we may replace O(K, S, x)
by the ring O(K, S) = N,.sO(K, K'*), and the above argument
applies. By Lemma 6, this is precisely what happens when K is
2-Pythagorean.

Conversely, we now assume a field K carries a valuation as
described above. We must see that for all distinct p, ¢ €S, that
K is a strong fan. Clearly K is a strong fan of K as K'/K™
has at most four elements. Now suppose that a ¢ —K ', and assume
that @ is integral under our valuation. Clearly @¢ —K™ by our
Henselian property, so that 1+ a is a unit. As 1+ ac K™ or
a-K*, it follows again by the Henselian property that 1 + a ¢ K
or 1 +aeca-K*. In particular, we now have shown that for all
ag¢ —K™, one of 1 +a, 1+ a! lies in K This proves Theorem

2. ]

COROLLARY 2. If K is strictly S-Pythagorean, then K is strictly
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n-Pythagorean, for all n with the primes dividing n in S.

Proof. The Henselian properties of our valuation give the result,
exactly as proven at the end of the proof of Theorem 2. O

REMARK 8. In case S = {1}, Theorem 2 reduces to the well known
result of Brocker and Brown characterizing Superpythagorean fields.
See [4] and [5] for details. Also, in case K is 2-Pythagorean, we
see by the Kuclidean residue fields that K must be strictly 2-
Pythagorean, so our Corollary 2 reduces to Corollary 2 of Theorem
27 of [1], p. 68.

A field K is called Hereditarily-Pythagorean if every formally
real algebraic extension is Pythagorean. These fields, which have
been studied closely in [1], [4], and elsewhere, have many remark-
able properties. To mention a few, we give the following:

THEOREM 3. (E. Becker, [1].) The following are equivalent for a
real field K:

(i) K 1is Hereditarily-Pythagorean.

(ii) The absolute Galios group Gal (K/K[i]) is abelian.

(iii) Ewvery algebraic extension of K is of the form

ty ) tog/— | 7% nd
K{Va, ¥a, ---, ¥Ya,] for some t,---,t,eN, a,---,a,eK.

Suppose that K is an n-Pythagorean field. Then we shall say
that K is Hereditarily n-Pythagorean if every formally real alge-
braic extension of K is n-Pythagorean. It follows from Theorem 9
p. 109 of [1] that if K is a Hereditarily-Pythagorean field which is
2".Pythagorean, then K is Hereditarily 2"-Pythagorean. Our last
result is a generalization of this fact.

THEOREM 4. Let K be a Hereditarily-Pythagorean field. If K™
18 o strong fan, then K is Hereditarily n-Pythagorean.

Proof. Let O & K be the valuation ring given by Theorem 2,
and let K be its residue field. We have that K/ K has at most
four elements, and according to Theorems 17 and 18 of [1], Chapter
3, we see that L'/L'* has at most four elements for any real alge-
braic extension L of K. It is now clear that in any such L, L™ is
a strong fan.

Now let L = K[V a] be a real extension where p is a prime, and
let 0’ € L extend the valuation ring O € K. We show that Hensel’s
Lemma holds for equations of the form X?¢ — b in this valuation of
L, whenever ¢ is a prime dividing 2n. Note that as M = L[VD ] is
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a radical extension of K, we have that M = K[¥ a, ¥¢ Jor M=K[*¥ ¢ ]
for ¢e K. By the Henselian property of O, we see that in any
extension of O to 0” < K[¥ ¢ ], that either the value group or the
residue field must extend by a power of ¢. In particular, as the
same now must be true in the extension O’ of O to M, we see that
Hensel’s Lemma must hold for X — b over L.

We now see that Hensel’s Lemma holds for equations of the form
X®*™ — b in this valuation of L. Together with the fact that L™ is
a strong fan of L, this shows that L** is strong fan of L. As every
real algebraic extension of K is obtained by successive extensions as
the above, it is now clear that K is Hereditarily n-Pythagorean. []
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