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We denote by H(R) the linear space of harmonic func-
tions on an open Riemann surface R with the topology of
uniform convergence on every compact subset. A continu-
ous linear functional on H(R) is referred to as a harmonic
Sfunctional on R; the totality of such functionals is the
dual space H(R)* of the locally convex space H(R). A point
evaluation u—u(z), with 2z a fixed point of E; and a period

u —| *du, with 7 a fixed cycle on R, are the most common

examrples of harmonic functionals frequently occurring in
the theory of functions. We denote by <u, 2*> the value
of a harmonic functional 2* on R at % in H(R). The main
purpose of the present study is to establish the following
representation of harmonic functionals:

REPRESENTATION THEOREM. Every harmonic functional
h* on an open Riemann surface R can be represented by
means of a function » harmonic at the point at infinity
of R as

(1) u, h*>=§ wsdh—hxdu

ow

for every u in H(R), where W is any relatively compact
subregion of R such that the relative boundary 6W is smooth
and % is harmonic on R—W. If h, and h., are functions
representing A* in the above sense, then 7,—#%, can be con-
tinued harmonically to all of R.

Denote by H(e) the linear space of germs of functions
harmonic at o, the point at infinity of R (i.e., the Alexandroff
ideal boundary point of R). The above theorem can be rephrased
as the harmonic duality theorem:

(2) H(R)* = H(eoz)/H(E) ,

a harmonic version of an algebraic part of the theorem of Kothe
[4] and Tillmann [12] (see also Gauthier-Rubel [1]). A closely
related treatment of H(R)* when R is a subregion of the Euclidean
space R™ of dimension m = 8 is found in Tillmann [11]; this corres-
ponds to our case of a hyperbolic Riemann surpace R. For complete
bibliographical information, including a general result of Grothen-
dieck [2], on the Kothe-Tillmann duality, we refer the reader to
the monograph of Kothe [5; p. 378].
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If we denote by H(cop; 0) the linear space of germs of funections
harmonic at «, and “vanishing” at o, and by ¢ an Evans-Selberg-
Kuramochi potential, which may be viewed as a function harmoniec
at oo, with ideal boundary values e(co,) = + oo, then (2) is made
precise by the following isomorphisms:

H(R)* = H(oog; 0) (R hyperbolice) ,

(3) H(R)* = H(cog; 0)/R = R[e] (R parabolic) .

Here R is the field of real numbers and [¢] is the germ at oo
which contains e. A typical example of a hyperbolic surface is the
unit disk R:|z| < 1; in this case H(cop; 0) is nothing but the space
of harmonic functions on (the neighborhood of) the unit circle |z|=
1 which vanish on |z] =1. A point evaluation w— u(2) is repre-
sented, in this case, by the normalized Green function

o) = ilog;—ﬂ) € H(oop; 0) .
27 — 2

A typical example of a parabolic surface is the finite complex plane
R:|z| < 4+ oo; here H(cogz 0)/R is the space of harmonic functions
at o, = « with values zero at «, and we can take for e({) the
function log |{]|. A point evaluation u— u(2) is represented, in this
case, by the normalized Evans funection

1 1 2 1

MO = 5o log 2o = —5-log |1 — 5| — - log (¢,
where the first summand on the right belongs to H(cog; 0)/R, and
the second to R[e]. Thus (3) may be interpreted as a generaliza-
tion of the integral representation of harmonic functions (Poisson’s
formula).

For the sake of simplicity we restrict our attention to Riemann
surfaces, but the entire discussion in the present study applies
verbatim also to Riemannian manifolds of any dimension =2. The
essence of the proof of the representation theorem lies in the
harmonie approximation theorem of Pfluger [7]. We will also give
to the Pfluger theorem a proof which is valid not only for Riemann
surfaces but also for Riemannian manifolds.

1. Harmonic approximation.

1.1. A subregion 2 of an open Riemann surface R is referred
to as a regular subregion if 2 is relatively compact and the relative
boundary o2 consists of a finite number of disjoint simple analytic
closed curves. A nmormal subregion 2 of R is a regular subregion
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2 of R such that B — 2 has no compact component. We shall make
use of the following “Approximationssatz H” of Pfluger [7, pp.
192-195]:

HARMONIC APPROXIMATION THEOREM. Let R be an arbitrary
open Riemann surface, 2 a normal subregion of R, and F a com-
pact subset of 2. For any harmonic function w on £ and any
positive number €, there exists a harmonic function w, on R such
that |uw — u.| < e on F.

The purpose of the present section is to give a seemingly
simpler and shorter proof of this theorem, although it may be less
elementary in the sense that we make use of some results outside
of function theory proper. Nevertheless, our proof has the merit
of wider applicability: we can replace R by any m-dimensional
(m = 2) noncompact separable connected C= manifold, and the
harmonicity by the corresponding property defined by any second
order linear elliptic partial differential operator invariantly defined
on R such that the Dirichlet problem is solvable for every relatively
compact subregions of R with a smooth boundary. The proof in
this general case is identical with that in the case stated in the
above theorem; it will be given in 1.2-1.5.

1.2. We denote by H(D) the linear space of harmonic functions
on an open subset D of R. For a closed subset K of R, we
designate by H(K) the linear space of harmonic functions on K, i.e.,
on neighborhoods of K. For a regular subregion 2 of R let Hf be
the harmonic function on 2 with continuous boundary values f on
0. If D is the union of a finite number of disjoint closed regular
subregions and f is a continuous function on 0D, we define HY in
the natural fashion.

To prove the harmonic approximation theorem, we may assume,
by enlarging F' if necessary, that F' is the closure of a normal
subregion of R. We denote by C(F') the Banach space of continu-
ous functions on F with the supremum norm.

First we prove the theorem for a normal subregion R of a
larger open Riemann surface. We set X = H(R)|F = {h|F; h € H(R)}
and Y = {HF; feCOR)}|F = {HF|F; f e COR)}. Since

YcXcCF),

it suffices to prove that w|F belongs to Y, the closure of Y in
C(F'). Suppose the contrary. Then, by the Hahn-Banach theorem,
there exists a pe C(F)*, the dual space of the Banach space C(F),
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such that {y, ) =0 for every yeY and {u|F, > =1. By the
Riesz representation theorem, ¢ can be viewed as a signed regular
Borel meagure on F, and the above conditions take the form

(4) SFHf(z)d#(z) ~0
for every f in C(0R) and

(5) SFu(z)dp(z) —1.

1.83. Take the Green function g(z, {) on R normalized to have
the flux 1 across dR and consider the Green potential v(2) = g.(2)

defined by
0(@) = | 90z, OdpQ) .

On each side take the normal derivative d/dn on oR toward the
interior of R, multiply by an arbitrary f(z) continuous on oR, and
integrate along 0R with respect to the line element ds on 0R. The
Fubini theorem and the Poisson type formula yield

|, /@ Zoeds = | HA@dpG) .
R n F

As a consequence of (4) we have
S f@ iv(z)ols =0
IR on

for every f in C(GR), and a fortiori ov/on = 0 on oR. Clearly the
Green potential » has boundary values zero on dR. Therefore » is
the function in H(R — F') with the boundary data

on

on 0R. By the uniqueness of the solution of the Cauchy problem,
y=0o0n R — F, ie.,

(6) |9, Qe = 0
for every z in R — F.

1.4. Let W D F be a normal subregion of the region £ of the
theorem, and denote by # the harmonic function on R — W with
boundary values zero on oR and # on 0W. Consider a signed
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measure

dv(z) = -a%(u(z) — #(2))ds

on oW, with 9/0n the inner normal derivative on oW with respect
to the open set R — W. A simple application of the Green formula
gives

(1) w@ = |, 0@ D@

on W. Since 0W is contained in R — F, we may integrate each
side of (6) along W with respect to dv. By the Fubini theorem
and (7),

|, wGdn© =0,

in violation of (5). In view of 1.2 we conclude that w|F e H(R)|F
considered in C(F'). This completes the proof in the case of a normal
subregion B of a larger open Riemann surface.

1.5. The general case can be deduced from the above special
one by a standard approximation method. For the sake of comple-
teness we ecarry it out. Take a normal exhaustion (R,)_ <<+~ of R,
i.e., the R, are normal subregionsof B, B, ,Cc R, (n=0,1, --.), and
R = U_izn<ctw R,, such that B_,=F and R, = 2. Set u,=u. If
U,_, in H(R,_,) (n = 1) has been chosen, we select u, in H(R,) such
that

maxz, [,y — U, | < &/2";

this is possible in view of the above special case. The sequence
(Up)ozns+w 18 uniformly convergent on every compact subset of R to
a U, say, in H(R). From

n
[t = | = 35ty — ] <
2

on F, we draw the desired conclusion on letting n — + oo,
The proof of the harmonic approximation theorem is herewith

complete.

1.6. Let R be a noncompact Riemannian manifold, 4 the
Laplace-Beltrami operator on R, /' the gradient operator on R, b a
C' vector field on R, and ¢ a locally Holder continuous nonpositive
function on R. The operator
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Lu = du + b-Vu + cu

is invariantly defined on R. Viewing H(D) = {uc C¥D); Lu = 0 on
D} as the linear space of “harmonic” functions on an open set D
of R, the entire discussion in 1.1-1.5 remains valid in the present
setting. Since the existence of sufficiently many harmonic functions
is assured locally, the “harmonic” approximation theorem gives:

BEHNKE-STEIN TYPE THEOREM. There exist sufficiently many
solutions of the elliptic equation Lu =0 on R.

2. Spaces of germs.

2.1. We denote by oc=co, the point at infinity (i.e., the
Alexandroff ideal boundary point) of an open Riemann surface R.
The class N of normal subregions 2 of R forms a directed set by
inclusion, exhausting R, i.e., B = Uoex®2. We call a subset U of R
containing some R — 2(2 ¢ N) a meighborhood (actually a punctured
neighborhood) of «. Let U be an open neighborhood of <o, and
he HU). We call h, or more precisely (k, U), a harmonic function
at <. Let U; j=1,2, be open neighborhoods of <, and h; =
(h;, U;) harmonic at . We say that &, and h, are equivalent if
h, = h, on an open neighborhood of <o contained in U, N U, An
equivalence class [h] of harmonic functions A at o is ecalled a germ
of harmonic functions at «. We denote by H(co ) the set of germs
of harmonic functions at «. By defining addition by [h.] + [kh.] =
[h, + h,] and scalar multiplication by A[z] = [MR], with A a real
constant, we endow H(cop) with the structure of a linear space
over the field R of real numbers.

Consider a mapping A+ [h] of H(R) to H(ecp). We maintain
that it is injective. In fact, if [h] = [hy] for h;e HR) (j =1, 2),
then h, — h,e H(R) vanishes on a neighborhood U of < and there-
fore on R. Thus we may identify the germ [Ah] containing an he
H(R) with . In this sense we can view H(R) as a linear subspace
of H(coy). We wish to determine the quotient space H(oop)/H(R).

2.2. For WeN, we denote by N, the class of regions 2¢ N
which contain W. For a function e COW) and a region 2¢ N,
we denote by +, the function in C(3(2 — W)) with |6 W = « and
P02 = 0. It is easy to see that the limit

Ly = Lyp = lim HV

QeNy,2—-R

exists on B — W and the convergence is uniform on each compact
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subset of B — W. The mapping ++ L+ defines a linear operator
from C(6W) into H(R — W) N C(R — W) such that L. =+ on oW
and

min (mingqr, 0) = Ly < max (max;yr, 0)

on B — W. Intuitively speaking, L+ is the harmonic function on
R — W with boundary values + on 6 W and “ideal boundary values
zero” at . We say that a harmonic function h = (h, U) at o
vanishes at oo, h(ew) =0, if L, 7h=h on R — W for one and
hence for every We N with WO R — U. If [h] contains an h with
h(eo) = 0, then every we[h] satisfies (o) = 0. Such an [h] may
be said to vanish at oo, [h](<) = 0. The class H(co,; 0) of germs
[h] with [R](ee) = 0 is a linear subspace of H(co ).

2.3. Observe that 0 < L, 71 <1 on R — W and either L, ;1=
lor Lp3l<lonR—W. If L 31<1 on R—W for some WeN,
then the same is true for every We N. In this case R is said to
be hyperbolic, otherwise parabolic. The parabolicity of R is char-
acterized by the existence of a harmonic function e(z, {) for any
e R, called an Ewvans-Selberg-Kuramochi potential, on B — {{} such
that e(z,{) — + o« as z— o, and ez, {) — (1/2x)log |z — | — 0 as
2z — { for a local parameter z at { (cf. e.g., Sario-Noshiro [10; p. 98],
Sario Nakai [9; p. 351]). We shall establish the following decom-
positions:

H(cop) = H(oop; 0) + H(R) (R hyperbolic) ,

(8) H(cop) = H(oog; 0) + H(R) + Rle] (R parabolic) ,

with e an Evans-Selberg-Kuramochi potential. Here

H(eo 3 0) N H(R) = {0} (R hyperbolic) ,
(8) {H(eop 0)N H(R) = R, H(R)N Rle]=H(ez; 0) N Rle] = {0}
(R parabolic) .

To prove these relations, take an arbitrary & = (h, U)<c[h] in
H(eop). Suppose first that R is hyperbolic. Consider the equation

Lip—h)=p—h,

where L = L, 7 for a WeN with WO R — U. It has a unique
solution p e H(R) (cf. Nakai [6]), and = — p = g€ [q] € H(oog; 0). This
gives the first decomposition n =¢q + » in (8). If ue H(oog 0)N
H(R), then Lu = u<c H(R), and the maximum principle implies that
u = ¢, a constant, on R; since L1 < 1, L¢ = ¢ gives ¢ = 0.

Next suppose R is parabolic. Choose a We N with WoOR — U
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and {e W. Since S xde(-, {) = 1, we can choose a » € R with
oW

(9) Ly*ds=0 (s =h — (-, 0)).
¥
The parabolicity of R entails
Sam *Lp oy =0

for any Q€ Ny, and 4, C@W). In fact, by the Green formula, we
have

|,, Lo-aD*dLa 5 — (s 59)*dLa gl = 0,

and L; 31 =1 gives the above assertion. Therefore L = L, ; is
a normal operator in the terminology of Rodin-Sario [8], and (9) is
a necessary and sufficient condition for the equation

Lip—s)=p—s

to have a solution p € H(R) (cf. e.g., Rodin-Sario [8; p. 42]). Thus
s — p =gqe[qle H(coz;0) and we obtain the second decomposition
h=q+h+ne in (8). Clearly H(ooz; 0) N Rle] = H(R) N Rle] = {0}.
Let uwe H(oog; 0) N H(R). By the maximum principle, Lu = u € H(R)
implies that v € R. This completes the proof of (8) and (8)'.

The decomposition (8) serves to determine the quotient space
H(coz)/H(R), which is the main topic of the present section. We
repeat here (8) with a view of (2):

10 H(cop)/H(R) = H(0; 0) (R hyperbolic) ,
(10) H(cop)|H(R) = H(oog; 0)/R = Rle] (R parabolic) .

3. Harmonic duality.

3.1. Let C(R) be the locally convex space of continuous (not
necessarily bounded) functions on R with the topology of uniform
convergence on every compact subset of R. We shall make use of
the following well-known property of C(R):

The dual space C(R)* of C(R) is the set of signed regular Borel
measures tt on R with compact supports S, in R.

For the sake of completeness we include a proof. Let Cy(R) be
the normed space of functions 4 in C(R) with compact supports Sy
in R and with the supremum norm on R. The dual space Cy(R)* of
Cy(R) is the set of signed regular Borel measures ¢ on R (cf. e.g.,
Halmos [3; pp. 243-249]). Take an arbitrary [ e C(R)*. Its restric-
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tion to C,(R) is continuous with respect to the supremum norm.
Thus we can view [ as an element of C,(R)*, so that

O = {yan

for every +eCy(R). Let (2,)7,CN be such that 2,c@,,, and
R=Uz. 2, If |¢tl(R—2,) >0 for all n, where || is the total
variation of f, then there exists a 4, € C,(R) with support in R—2,
such that

[tz 1

for each n. Since (4,);., converges to zero uniformly on each
compact subset of R, the continuity of ! on C(R) implies that
{pny I — <0, 1) =0 as n — + co. This is, however, impossible since

G D = |l z 1.

A fortiori, S, is compact. For any + in C(R) we can find a
sequence (¥,)r-; C C(R) converging to 4 uniformly on each compact
subset of R and in particular on S,. Therefore

oy Iy = Tim (o, 1y = lim SS adpt = SW“
n—00 oo u
for every + in C(R), and the assertion on C(R)* follows.

3.2. Since H(R) is a subspace of the locally convex space C(R),
any continuous linear functional on H(R) (i.e., l€ H(R)*) can be
extended to one on C(R) (cf. e.g., Yosida [14; p. 108]). Therefore,
le H(R)* can be expressed as a signed regular Borel measure ¢ on
R with compact support S, by

(11) i) = | udp

for every w in H(R). If H(R)* is the family of measures ¢ in
C(R)* such that Sud# = 0 for every uc H(R), we have

(12) H(R)* = C(R)*/H(R)" .

For each e C(R)* the set S,=[Ngex,0-s, is compact and 5,08,
Let e HR)* and WeN with W>o Sf. For any we H(W) the
harmonic approximation theorem guarantees the existence of a
sequence (h,)*., C H(R) such that h, — u uniformly on S, as n—oo,
Hence
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S udpt = lim Shnd;z =0,
S# Nn—r00

i.e., e H(W)*. Let gu(z, ) be the Green function on W and (e
W — S,. There exists an Qe N with 28, and {¢ 2. Since ¢
H(Q)* and ¢,(-, {) e H(Q), we have SS 0w(2, Odp(z)=0, i.e., the Green
potential g

@w)e = {ouC-, Oap©)

vanishes indentically on W — S..

Conversely, let pe H(R)* and We N with S, W and suppose
@) =0 on W—S,. Let 2eN with S,c2c2c W. For any
he H(R) we can find, as in 1.4, a measure v with S, © 92 such that

W) = | gule, Dav©

on 2. On integrating both sides over S, with respect to dg(z) and
on using the Fubini theorem we obtain

| nde = ([ oute, 0d0@) ) v = | @nu@iv© =0,
Sy S, \Js, 8,
i.e., e HR)*. Thus we have the following characterization of
H(R)*:

H(R)* = {teCR)*; (gw)s =0 on W — S,

13
(13) for any We N with WO S,}.

We give here an example of a ¢ in H(R)* which is not zero.
Let £ be a fixed point in R and We N with {e W. Denote by 4,
the Dirac measure at { and set

dp(z) = dd(e) + - *dgu(z, O) ,
27

where the second term on the right is viewed as a measure on o W.
Then e C(R)* with S, = {{} UoW and, for every feC(R),

| sap = sdoc+ L\ ferdene 0 = £0 - BFO),

Sy 14} 2w Jow
which is zero for f € H(R), i.e., pt€ H(R)*. As this example suggests,
the structure of H(R)* is quite complicated and therefore the
representation (12) does not supply much information on H(R)*. To
gain more clarity we will try to “sweep” the measure g to the
ideal boundary of R. This is the basic idea we are going to follow
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in the sequel.

3.3. Let u and # be harmonic at «, and W;e N such that
and h are defined on R— W, (j=1,2). Take a WeN with
W, UW,C W and set &« = uxdh — hxdu. The Green formula gives

S a—g a:S  (udsdh — hdxdw) =0 (i=1,2).
oW W g

W=Ww;

This means that & « is independent of the choice of We N such

that v and & are }igrmonic on R — W. Therefore we can define

S wsdh — hedu = lim S wsdh — hedu
R )i

WeN,W—R
which can be regarded as a “line integral along the ideal boundary
of R".

Take an arbitrary [k]€ H(ooz) and an he[h]. The linear func-
tional

u S
a

uxdh — hxdu
R

on H(R) is clearly independent of the choice of & ¢ [k] (cf. 3.6 below),
which we denote by t[A]:

(14) u, 7[h]) = Sm wsdh — hedu (we H(R)) .

The relation [k]+ z[h] defines a mapping 7: H(coz) — H(R)*, which
is clearly linear.

3.4. We maintain that 7: H(coz) — H(R)* is surjective. To see
this let I be an arbitrary element in H(R)*. We wish to find an
[h] € H(eoz) with z[h] =1. By (11) there exists a signed regular
Borel measure ¢ on R with compact support S, such that

b= wQdp© weH®).

Let W be an arbitrary element of N with W > S, and denote by
9w(z, {) the Green function on W with flux 1. The Green potential

(15) (@) = — | guta, O30

is harmonic on W — §,, and vanishes on oW. Fix an arbitrary 2¢ N
with S,c2c2c W. The Green formula and the Fubini theorem
yield
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S u*dk]V - hu/*du = S u*th - hw*du
R a2

= Saw wrdhy, = —S _u@)xd, LF gw(z, O)ap()

oV

=1, (=1, w@rdone, 0 Jaue) = | wdn= v

for every ue H(R). We have obtained

(16) (u, 1y = g Jwidhy, — hyrdu (we HR) .

Q

If R is hyperbolic, then on letting W — R in (15) we see that
hy converges to

we) = | g, 0du©

uniformly on each compact subset of R, where g(z, {) is the Green
function on R with flux 1. From (16) we obtain on letting W — R
and then 2 > R,

u, 1y = Sa wrdh — hrdu .
R

Here h is harmonic at <, and the equivalence class [h]e H(cop)
containing h gives the representative z[h] which, by (14), is identical
with .

If R is parabolic, then there exists a divergent directéd net
(ew)wex of real numbers such that (¢9,(z, {) — ¢y)w.y forms a normal
family on R X R less its diagonal set (cf. Tsuji [13; pp. 449-456]).
Thus we can choose a sequence (W,)s-, C N which forms an exhaus-
tion of R such that (gu, (2, () — ¢y, )i: converges to a §(z, §)
uniformly on each compact subset of B X R less its diagonal set.
Using the constants &, = ¢, 2(S,) we set

an (@) = hy, (@) — ko = = a0z, DO,
where g,(z, £) = gy (2, £) — ¢y,. Since gw +du = 0, (16) implies
(18) (u, Iy = gw wrdh, — hyxdu (ue H(R)) .

On letting » — + o in (17) we see that h, converges to

we) = —| 96, 0du©
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uniformly on each compact subset of R. From (18) we obtain on
letting # — + o and then @ — R

(u, Iy = S wedh — hrdu (we H(R)) .
R
As in the hyperbolic case, we also conclude that z[h] = [.

3.5. We append one more proof of the existence of an [h]e
H(coy) with z[h] =1 for a given e H(R)*, valid simultaneously for
a hyperbolic and parabolic R. We fix a normal exhaustion (W,);.,
of R and set v, = hy,,. We start from (16):

u, Iy = g«@ wrdv, — vordu  (ue H(R)),
where 2 is any element of N with S,.cQc2c W,. Let w, =
Vmiyoy — Ums, for v =12 -... Clearly w,eH(W,;,). By the
harmonic approximation theorem, there exists an s, H(R) such
that |w, —s,| <2 for vy =1,2, ---. The functions

b= Dy + > (w, — 5,)
v=1
converge uniformly on each compact subset of R. Observe that
h‘:/vm‘h)_ (31+ tet +8u-l)+;(wk—sk)

on W,., — W, for each v =1,2, ..., All three terms on the right
are harmonic on W,,, — W,, and the same is true of h. Since v
is arbitrary, we conclude that 2 ec H(R — W,). In particular, if we
set b = v,y + p, then p = 3=, (w, — k,) is harmonic on W,., and

S , uxdh — h*du = S Uk AUy — Vppry * AU + S usdp — pxdu
X 02 on

ko)

for every we H(R). The first term on the right is {u, ) and, in
view of u, p e H(Q2), the second term is zero. Thus

u, 1y = S Cwrdh — hedu (uwe H(R))

X

and on letting 2 — R we infer that [ = z[A].

3.6. We denote by Ker 7 the kernel ¢7*(0) of the linear surjec-
tive mapping 7: H(wo ) — H(R)*. We claim that

(19) Kert = H(R) .

If this has been shown, then H(R)* = H(eo,)/H(R), and the repre-
sentation theorem ensues.
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To prove (19), take an arbitrary he H(R). Then
u, [h]) = S wrdh — hrdu = S (udwdh — hdsdu) = 0
R R

for every we H(R), i.e., t[h] = 0. This means that Ker D H(R).
Conversely, let h = (h, U)e[k]leKerz, We N with R — Wc U, and
hy = HY. Then from

S wxdh — hxdu = S uxdh — hxdu = {u, t[h]) = 0,
oW R
[, iy — o+ du = S (uddhy — hydrdu) = 0
oW w
for every ue H(R) it follows on setting v = h — h, that
(20) Sa wrdv = 0 (ue H(R)) .
w

Observe that v vanishes on oW, is harmonic on W near oW, and
therefore can be extended to a neighborhood V of oW, ie., ve
H(V). Since each component of 0W is conformally a unit circle,
H@OW) is dense in COW) on oW with respect to the supremum
norm. From @ — HY =0 on oW for any o HOW) we see that
HY e HW) for any @ ¢ HOW), and H(W) is dense in CGW) on 0 W
with respect to the supremum norm. The harmonic approximation
theorem assures that H(R) is dense in H(W) on W with respect to
the supremum norm. Therefore H(R) is dense in CO@W) on oW
with respect to the supremum norm and (20) is valid not only for
w e H(R) but also for ue C(@W). This implies that *dv = 0 on oW.
In view of oW C V, ve H(V), and

v=xdv =20

on dW, we conclude that v =0 on V. Therefore the function p
on R defined by

_ [hz) (zeR — Wy,
 bw(®) (ze W)
is harmonic on R, and [k] = [p] € H(R), i.e., Ker C H(R). We have

established (19), and the proof of the representation theorem stated
in the introduction is complete.

2(2)
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