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NOTES ON THE FEYNMAN INTEGRAL, I

G. W. JoHNSON AND D. L. SkouG

We extend somewhat and simplify substantially some of
the recent work of Cameron and Storvick involving the ana-
lytic Feynman integral of bcertain functions on Wiener space
of the form F(x)=exp{§ o, x(z‘))dt}; here ¢ is a complex-
valued function on (a, b];<R and x is an element of Wiener

space, that is, a continuous function on [a, 5] which vanishes
at a.

1. Introduction. In a recent paper [2], Cameron and Storvick
treat a Banach algebra S of functions on Wiener space which are
a kind of stochastic Fourier transform of Borel measures on Lja, b].
(Precise definitions will be given in the next section.) For such
funections they show that the analytic Feynman integral, defined by
analytic continuation of the Wiener integral, exists, and they give
a formula for this Feynman integral. The work in [2] is related
to Albeverio and Hoegh-Krohn’s beautiful theory [1] of infinite
dimensional oscillatory integrals (“Fresnel integrals”) as well as to
[5]. Cameron and Storvick’s work is highly promising and has some
appealing features. For example, as we will show in a later note,
the existence of the Feynman integral for certain qudratic potentials
can be established without having to construct special spaces, quad-
ratic forms, ete. to fit the particular problem of interest.

The main purpose of this note is to show that a cruecial part of
[2] can be substantially simplified. Let R, C denote the real and
complex numbers respectively. Let 6 map (a,b] X R to C. Let
Cla, b] denote Wiener space; that is, the space of R-valued continuous
funetions on [a, b] which vanish at «. Let m denote Wiener measure
on C[a, b]. Under certain hypotheses on ¢, Cameron and Storvick
show that the function

(1.1) F(z) = exp {Sia(t, #(@)dt }, o in Cla, b]

belongs to the Banach algebra S and hence possesses an analytic
Feynman integral. This result depends on some rather elaborate
machinery; for example, their spaces .#’, S', 2", S", .#, S/,
S., _#, are all part of this picture. We give a simpler proof of
this result avoiding the machinery. We also extend their result
somewhat, but it is the simplification that is the main point. It
should be mentioned that the results on .#’, S’, _#", ete. are
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314 G. W. JOHNSON AND D. L. SKOUG

interesting in their own right and may well prove useful in identi-
fying other functions in the space S and in other ways. However,
it is functionals of the form (1.1) that are of primary interest with
regard to the physical motivation in quantum mechanics.

[2] deals throughout with functions F on C*a, b]. We will
restrict attention to the case v =1 for notational simplicity, but
our arguments work just as well for general v.

2. Preliminaries; Some simple results and comments. A
subset A of Wiener space is said to be scale-invariant measurable
provided pA is Wiener measurable for every o > 0. A scale-invari-
ant measurable set N is said to be scale-invariant null provided
m(oN) = 0 for every o > 0. A property which holds except on a
scale-invariant null set is said to hold seale-invariant almost every-
where (s — a.e.). The class of scale-invariant measurable sets form
a g-algebra [4]. A function F' on Cfa, b] is said to be scale-invariant
measurable if it is measurable with respect to this c-algebra. We
begin with the definition of the analytic Feynman integral.

Let F be a function which is scale-invariant measurable and
s-a.e. defined and which is such that the Wiener integral

JO) = Scw FO0)dm(z)

exists for all A > 0. If there exists a function J*(\) analytic in
C* ={\ in C:Rex > 0} such that J*(\) = J(\) for all » > 0, then
J*(\) is defined to be the analytic Wiener integral of F over Cla,
b] with parameter A, and, for A in C+, we write

S‘”“” Fl@)dm(z) = J*(\) .
Cla,b]

Let ¢ be a real parameter (¢ = 0) and let F' be a function
whose analytic Wiener integral exists for » in C+. If the following
limit exists, we call it the analytic Feynman integral of F over
Cla, b] with parameter ¢ and we write

anfq . anw
S F@)dm(z) = lim S ! F(@)dm()
Cla b} 2—-—iq JC[a,b]

where )\ approaches —iq through C-+.

REMARK. Equality s-a.e. is an equivalence relation. It is the
appropriate equivalence relation for the analytic Feynman integral.
One can, for example, find functions F' and G on Cla, b] which are
Borel measurable and equal m-a.e. but such that the analytic
Feynman integral of F exists but the analytic Feynman integral of
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G does not exist. A detailed discussion of topics related to scale-
invariant measurability can be found in [4].

Let L, = Lja, b] denote as usual the space of Lebesgue measur-
able, R-valued, square-integrable funections on [a, d]. Throughout
[2], Cameron and Storvick work with the c-algebra .o~ of subsets

of L, generated by sets of the form {v in L, Sb'v(t)qi(t)dt < r} where

¢ is in L, and r is in R. Since L, is a separa:lble Banach space, .&7
is actually just the Borel class of L, that is, the o-algebra <% (L,)
generated by the norm-open subsets of L,. This fact seems to be
quite well known, and one finds it stated in a variety of places,
for example [6; p. 115]. The fact that & = <& (L,) allows one to
simplify some of the arguments in [2] and will be helpful to us in
this paper.

The definition of the Banach algebra S with which we will be
concerned throughout involves the Paley-Wiener-Zygmund (P. W. Z.)
integral [7], a type of stochastic integral which we now define.

Let {¢;} be a complete orthonormal set of R-valued functions of
bounded variation on [a, b]. For v in Lja, b], let

0.t) = 3 [ 0)s,ds Jp.(0)

j=1

The P. W. Z. integral is defined by
S"v(s)oix(s) = lim gbv,,(s)dx(s)

for all z in C[a, b] for which the limit exists. It can be shown [7]
that this integral exists for m-a.e. x and that it is essentially
independent of the choice of the sequence {g,}; further, if v is of
bounded variation, the P. yV Z. integral is m-a.e. equal to the
Riemann-Stieltjes integral g'v(s)dx(s).

Now let #Z = . #(L,) be the collection of C-valued countably
additive measures on <#(L,). .# is a Banach algebra under the
total variation norm where convolution is taken as the multiplication
in 7.

The Banach algebra S consists of functions F' expressible in the
form

@.1) Fla) = SL exp i S:v(t)oix(t) ldo(o)

for s-a.e. z in C[a, b] where ¢ is an element of _#. Cameron and
Storviek show that the correspondence o — F' is one-to-one [2;
Theorem 2.1] and carries convolution into pointwise multiplication.
Letting || F'|| = ||o|| we have that S is a Banach algebra of func-
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tions on Wiener space. Cameron and Storvick show that the analytic
Feynman integral exists for every F in S. Further they show that
if {F,} is a sequence of elements from S such that 3%, || F;|| < o,
then F'= 32, F; is in S and the analytic Feynman integral of F' is
the sum of the analytic Feynman integrals of the F';’s [2; Theorem
5.4]. Some further results about S are established in [2], but we
have summarized the main facts that we will need.

REMARK. The s-a.e. equivalence is needed in the definition of
S. For example, the theorem that every F in S has an analytic
Feynman integral would be false if one tried to use the usual m-
a.e. equivalence.

Cameron and Storvick introduce another Banach algebra S’ of
functions on CJa, b] and they show that S’cS [2; Theorem 3.0].
They ask whether S’ is a proper subset of S. We finish this section
by showing that it is.

Let BV = BV]a, b] be the space of R-valued, right continuous
functions of bounded variation on [a, b] that vanish at b. We con-
sider BV as a subset of L,. Hence the Borel class <#(BV) of BV
is just (L, N BV. Let .#' be the class of C-valued countably
additive measures on <#(BV) and regard .#" as equipped with the
total variation norm. S’ consists of functions F expressible in the
form

Fla) = SW exp {igzv(t)dxa) ldo')

for s-a.e. x where ¢’ is an element of _#Z’. Given ¢’ in _#", define
Io’ = o as follows: o(F) = ¢'(E N BV) where E is in <& (L,). It is
easy to check that I imbeds .#' in _# and that the question as
to whether S’ is a proper subset of S is equivalent to the question
as to whether I_#Z’ is a proper subset of _#. It is not hard to
show that it is; we include the rather simple proof of this result.

PROPOSITION 1. Let #Z={o in #:EKE F in <L, and EN
BV = F N BV implies 0(E) = o(F)}. Then I.7" = _#.

Proof. It is clear from the definition of I that I.#Z'cC_#.
Let 0 be in _#. Define ¢’ on Z(BV)=<Z(I,)NBV by ¢/ (ENBV)=
o(E). o' is well-defined by definition of _#. Now we show that
¢’ is countably additive. Suppose E,N BV, ---,E,NBV,--- is a
pairwise disjoint sequence from <Z(BV). Then

a’(- U @&.n BV)) = (( QJE) n BV> - 0< QIE’”>

=1
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=o(B, U (E\NE)U - - UENEU---UE,_ ) U--+)
= o(B,) + U(Ez\Ex) + e+ U(En\(E1 UeerUE,_)) + -
= 0'(E, N BV) + o'(E.\E)) N BY)

+ o+ O(BNEU--UB, )N BY) + -
=0'(B,NBV)+d(ENBV)+ -+ +0(E,NBV)+ ---

where the last equality holds since (E\(E,U---UE,_))NBV=E,N
BV. Thus ¢, defined as above, is in .#"’. Finally (Io')(E)=0'(EN
BV) =0(F) and so ¢ is in I_#" as desired.

ProPOSITION 2. I.Z'= _# % # and so S'& S.

Proof. Let ¢ be the unit mass concentrated at an element v,
of L\BV. ¢ is in _# clearly. To see that ¢ is not in _#, let »,
be another element of L,\BV. Then the singleton sets & = {v,} and
F = {v,} have the property that N BV = FN BV but o&)+o(F).

Is BV in <#(L,)? This question is open as far as we know.

The Banach algebra S’ will not concern us throughout the rest
of this paper.

b
3. Proof that exp{ S o(t, x(t))dt }is in S. We begin by consider-
ing the following map from (a, b] X R into Lja, b].

v,a=8<t
0,t<s=<bD.

@3.1) 0, v)(s) = {

@ is easily seen to be continuous and so is Borel measurable. We
begin with two easy measurability lemmas.

LEMMA 1. b@(t, v)(8)du(s) is a Broel measurable function of (t,
v, 2) on (a, bb] xR x Cla, b]. Further, for any Borel measure tt on
(a, b} X R, S a(t, v)(8)dx(s) is defined except om a ¢ X m-null Borel

set.
Proof. Let {¢,} be a complete orthnormal set of functions of

bounded variation on [a, b] in terms of which the P. W. Z. integral
is defined. Now

[[[2¢t, 9515051 ds || su(6)date
= [of s0s [ 5.0000) — s dpute) .

Thus the left hand side of (8.2) is a continuous and hence Borel

(3.2)
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measurable function of (¢, v, x). Since Sb¢(t, )(s)dz(s) is defined as

tim 5[ [0, (ew.@ds || 6,60
whenever this limit exists, we see that Sb(lﬁ(t, v)(s)dx(s) is a Borel
measurable function of (¢, v, x). ‘

As noted earlier, for every « in L,[a, b], Sb (s)dxz(s) exists for
m-a.e. . Hence for every (¢, v), S a(t, v)(s)da(s) exists for m-a.e. x.
Now let a Borel measure g on (a, b] X R be given. Then clearly

b@(t, v)(s)dx(s) is defined except on a g X m-null Borel set in (a, b]
R % Cla, b].

LEMMA 2. Let p¢ be any Borel measure on (a,b] X R. Then

the Riemann-Stieltjes integral S o, v)(s)dx(s) and the P. W. Z.
b ~

integral S O(t, v)(s)dx(s) are equal except on a pt X m-null Borel set

wn (a, b] % R X Cla, b]. Hence for m-a.e. x they are equal except on
a p-null Borel set in (a, b] X R.

. Proof. S:Q)(t, v)(s)dx(s) is Borel measurable by Lemma 1, and

O(t, v)(s)dx(s) = vx(t) is clearly Borel measurable, and so, the set
Where they are unequal is a Borel set. Now qujf(s)dx(s) Sin/r(s)gw(s)
for m-a.e. x for any function q/r of bounded variation. Hence for
every (i, v), S D(t, v)(s)dx(s) = S O(t, v)(s)du(s) for m-a.e. x. The result
follows.

The next lemma is a key step.

LeMMA 3. Let £ be a Borel measure on (a,b] X R. Define G
on Cla, b] by

3.3) Gla) = S exp {iva(t)du, v) .
(@, b]XR
Then G is in S.

Proof. We need a measure ¢ on <#(L,) such that for every
>0

G(ox) = SLz exp {'/, guu(s)(fpx(s)}do(u) for m-a.e. .
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We claim that the Borel measure o = pto®~' works. \

The proof of Lemma 2.1 of [2] shows that S w(s)dx(s) is a
B (L, x &#(Cla, b)) measurable function of (u, ) which is 6 X m-a.e.
defined. Using this fact, the trivial fact that constants involved in
the integrator can be taken outside of both the Riemann-Stieltjes
and P. W. Z. integrals, the change of variables theorem [3; p. 163]
and Lemma 2, we can write

SL; exp {fi S b u(s) dpx(s) }do' ()

)

exp {zps w(s)dx (s)}da(u)

Ly

|
S( exp{@pg O, v)(s)da(s) }d#(t v)
S

Il

Il

exp {@'pSa@(t, v)(s)dx(s)}dy(t, v)

(a,b]XR

= S . exp {tpvx(t)}dp(t, v) = G(ox) as desired.
{a,b]XR
Next we give the main result.

THEOREM 1. Let 6: (a, b] X R— C be a function which for each
t in (a, b] is the Fourier-Stieltjes transform of a C-valued countably
additive Borel measure o, on R; that is,

(8.4) o, u) = SReXp {tuv}do,(v) .

We assume that ||o,|| 1s dominated by a function h(t) in Lja, b] and
that, for each Borel set K in (a, b]X R, o,(E'") 28 a Borel measurable
Sunction of t. (Here E'" denotes the t-section of KE.) Under these
hypotheses, the function defined by (1.1) is in S.

REMARK. Cameron and Storvick make the stronger assumption
that ||o,|| is bounded as a function of ¢ rather than dominated by
an L.-function. Except for this, our assumptions on @ coincide with
theirs.

Proof. Since S is a Banach algebra, it suffices to show that
the function

(3.5) f@) = | o, w(enar

is in S. This will follow from Lemma 3 if we show that f can be
written in the form (3.3).
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For E in #((a,b] x R), let u(E) = Sbot(E“’)dt. We claim that
Y is a Borel measure on (a,d] X R with |[¢|| = ||k]|,. Let {&,} be
a disjoint sequence of Borel sets from (a, b] X R. For each integer
N, 35 le(E®)| < ||o,|| = h(t). Hence, by the Dominated Conver-
gence Theorem,

9

b

E, ) - S:at ( U B >dt - S S 0, (BE)dt

n=1 a n=1

o b oo
= 3| Bt = 3 uE,)
and so # is countably additive.

Next we show that ||#|]| < ||r|l,. Let E, ---, E, be any finite
sequence of disjoint Borel sets. It suffices to show that >}/, | (E))|<
A, Since 33i |0 (E")| < llo.]| = h(t), we can write

S 0B = 5 || ouBat| = 5[ owmoae
= S lo@)de < Inll,

To finish the proof, it suffices to show that
f@ =1 expliva®dpct, v).

In fact, we will show that for any bounded Borel measurable func-
tion ¢ on (a, b] X R, SR""“’ v)do,(v) is a measurable funection of ¢ and

b|
|10 douo) Jae = | ott, a0 .
[ R (a,bIXR
First let ¢(¢, v) = Xz(t, v) where E is in < ((a, b] X R). Then
[ 2:t, o) = | Lsw(0)do(w) = o(B)
which is measurable as a function of ¢ by assumption. Also
L zstt, oo Jat = oumerae =
a R a
= S ; RXE(t, v)dp(t, v) as desired.
(a,b]x
The result now follows easily for simple functions ¢ by linearity.
For ¢ a bounded measurable function, take a sequence {¢,} of simple

functions such that ||¢,|l~ = ||4||l- and ¢, converges to ¢ uniformly.
By the Dominated Convergence Theorem,
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| 5 0¥dow) = lim | 5.t, v)do) .

But | ¢,(t, v)do,(v) is a measurable function of ¢ for each n# and so
R
S é(t, v)do,(v) is a measurable function of ¢{. Next note that
R

| 2t 00| = | gl-dloni@) = gl lloull < l1g1l-nct)

for every m. This justifies the second of the three uses of the
Dominated Convergence Theorem in the following string of equalities.

S(a,b] ¢(t 'U)d#(t ")) - hmg ¢n(t9 v)d#(t, ’U)

(a,b]x

= lim S U 6. (t, v)dat('v) at

n—0

- S lim §R¢n(t, v)dat('v)_dt

al, m—oo

- 10, s st
= S:[SRqS(t, v)do,(v) :ldt as desired.

For each z, exp {ivx(;‘,)} is a bounded Borel measurable function
of (t, v). Hence f(x) = S UR exp {i'ux(t)}da,('v)]dt equals

§] exp {ivz (O)}dyu(t, v)

as desired. X

We now know that F(x) = exp {S a(t, x(t))dt} Z @A/n!) f*(x) is
in S where f is given by (8.5). Further we know from the proofs
of Theorem 1 and Lemma 3 that f is associated with the measure
0 = po®@' where g is the measure from the preceding theorem.
Because convolution is taken over into pointwise multiplication by
the map from _#Z(L,) onto S, the measure (1/n!) ox---x0 (n convolu-
tions) is associated with (1/n!)f*. Now [[(1/n!)ox---xa| = A/n])||a]|"
and so, of course, 32, (1/n!)||gx---*0|] < co. Under these conditions,
as noted earlier, the analytic Feynman integral of the sum is the
sum of the analytic Feynman integrals, and so we have

anf, [ anf,
| F@dm@ = 3 2™ r@dm) .
Cla,b] n=0 Q1 Jole,b]

Hence we will have a formula for " F(x)dm(x) as a series if we
obtain a formula for (1/n!) S f”(x)dm(w) We will obtain such a
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formula below, expressing (1/n!) S f”(x)dm(x) as an integral over

a finite-dimensional space.
For now, let » > 0. We wish to calculate

—1—S F*O)dm(x) .
n! Joia,b]

We know from the discussion of the preceding theorem that f(x) =
S . exp {ivx(t)}du(t, v) where p¢ is a C-valued Borel measure on
(a XR

(a,' b] x R and so, |f(x)| =||¢|| for all x. Certainly then the
Wiener integral above exists.
We will use the following notation:

An'—‘_{(tl, "',t'n) in [a,b]”:a=t0<tl< te <tn§b}

LEMMA 4. For A >0,

A UZS —X(ua""ui—l)z oL s du.
[zrca ,-1)] (P ot — ) ingo du,

. t; —t;_
= exp {mj_la) - -(—’—27\’—’—’—)—@2} .

The lemma follows from the change of variables

1/2
2= [————t_ }t- } (U; — wjy)

J j-1

and from the fact that exp {—2%2} is its own Fourier transform; i.e.,
(271')—”28 exp {—2%2 + 1zw}dz = exp (—®?¥2).
R

The lemma actually holds for A in C*, but we only need it
for x> 0. For » = —iq(q # 0), the right hand side above makes
sense, but the integral does not exist as a Lebesgue integral.

Now we can write

—1—8 L x)dm(x)
nl {a,b]

_ Lgm b][ i S" O(t;, N(t,)dt; ]dm(a;)

n!
(3.6)

H

S S [[1 o A(E) ]dtl---dt,,dm(x)
Cla,b] J[a,b]" =1

ll

! S ola,0] L,,,[ ,f;[la(ti’ AT (t ) :Idde(x)

- S Sc[a b1 ﬁ O(ts, M "a(t,) :ldm(w)dl?

i=1
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where the use of the Fubini Theorem is justified since

g cle, b]g ﬂ 65, N a(2,) | dEdm(x)

‘Ib
S Cla,b] Sdn =1

< SW]S th(t,.)d“tdm(w)

4, 5=

SR exp {ina(t ), doy(v;) dtdm(z)

n

=L§ | 11 h(t)didm() < = .
% Jola,b] Jia,b1n

By applying a basic Wiener integration formula and then making
a simple change of variables, we see that the last expression in
(3.6) equals

SA )"MZ[(ZTC)”(t1 - (L) v (tn - tn——l)]_l/z

Snn[ jilﬂ(tf, uj):l exp { 5 ;} %T.:i}dﬁdf

= [, et — o) — tol
S HS exp {iujvj}datj(vj)]exp{ Zﬂ———l)z—}dﬁdi' .

R j=1 2 =1 =t

One can easily justify integrating first with respect to the w;’s.
Doing this and applying Lemma 4 » times, we obtain

[, e [~ Ene-aivat—-al

3.7
X do,(v,)- - -do, (v)dE = g,(0) .

So for A > 0, (1/n!) g PO Am@) = 9,00
Note next that the 1ntegral giving g¢,(\) in (8.7) exists for
Ren = O(n # 0) since the integrand is bounded by 1 and

L h(t)- - -h(t,)dE < oo .

Because of this it is not difficult to argue in the usual way via
Morera’s Theorem, the Fubini Theorem and the Cauchy Integral
Theorem that g,(A) is analytic in C+. Also it is not hard to see
that g,(\) — g.(—1q) as N ——1iq through C*. Hence

| Lp@dm)

Cle,b] M)

exists and equals g,(—1q).
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We summarize in the following theorem.

THEOREM 2. Under the hypotheses of Theorem 1 we have the
Jormula

S“f" Flo)dm(z) = 1
Cla,b]

350, e g S S e - st~ a) ||

=1 j=1
X do,(v)- - -do, (v,)dt

where F is given by (1.1).
We end this pap?r by remarking that the work done above for

the exponential of S act, x(t))bdt can be carried out just as well for
other analytic functions of S o(t, x(t))dt.

Note added in proof. The conditions on ¢ in Theorem 1 can be
improved slightly to conditions which are equivalent but formally
weaker. This is discussed briefly in Corollary 4 of “Notes on the
Feynman integral I”, to appear in the J. of Functional Analysis.
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