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In this paper we consider the initial boundary value prob-
lem for the Navier-Stokes equations in several types of un-
bounded three-dimensional domains 2. We prove uniqueness
within a class of solutions, which we call “weak class H, solu-
tions”, whose members satisfy the integrability conditions I,
dues L0, T; L,(2)). Moreover, the solutions are shown to de-
pend continuously on their initial values. The results are
based, primarily on establishing a simple characterization of a
certain space H,(2) of solenoidal functions.

For exterior domains, we have already given such a characteri-
zation of the space H,(2) in Ma [14]. However, the proof given
here is simpler and more direct and yields the result for “aperture
domains” as well (i.e., for domains considered by Heywood [8] in
studying flow through a hole in a wall).

Our uniqueness theorem should be compared with one given
recently by Heywood. In [9], Heywood used our original characteri-
zation of the space H, to prove uniqueness in exterior domains for
solutions satisfying the integrability conditions Fu, 4u € L0, T; L*(2))
and Fu, € L, T; L*(Q)), for all positive ¢ < T. Here, we are able
to drop the integrability condition for Fu, by using a technique
introduced in the context of “finite energy” solutions by Prodi [15];
see also Serrin [17]. The main advantage in giving the uniqueness
theorem as we do here, without Heywood’s integrability condition
for Fu,, is that one can then consider a larger class of forces. If
one considers arbitrary forces, with Vfe L¥0, T; L¥Q)), the integra-
bility condition for Fu, is not known, and quite possibly does not
hold; see [10]. However, for such forces, generalized solutions
satisfying the conditions of our uniqueness theorem do exist. This
is proved in the concluding section of the present paper.

Our results should also be compared with a remarkable new
uniqueness theorem of Fabrizio [3], which appeared as we were
finishing this work. This theorem (Theorem 1 in [3]) requires even
less than ours in the way of integrability conditions; it is merely
required that the difference of two solutions should belong to
L (2 x (0, T)), for some s > 1. On the other hand, it is apparently
given only for an exterior domain (though this is not really made
clear) and does not provide the continuous dependence of solutions on
their initial values. Further, Fabrizio’s theorem is based on several
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unproven preliminary results, Observation 1 and Lemma 1. In
particular, Lemma 1 is the extension of L* estimates for the non-
stationary Stokes equations given by Solonnikov [18] in bounded
domains, to the case of unbounded domains and nonconstant coefficients.
Our preliminary results for the space H, are much simpler and given
in detail.

The reader may also wish to consult the references [5, 16]
where other uniqueness theorems are given.

2. The function space Hy(2). Let 2 be an open set of
R"(n = 2). Let Jy(2) denote the completion of D(Q) = {¢: ¢ € C(2)
and / -¢ = 0} in the norm associated with the inner product

g, Vo) = S Pg: Vopda

where ¢ and + are R"-valued functions, and F¢: gy = D7, 06./0%;
ovrJox;. Let Ky Q) be the set of all u e J,(2) such that Sg P Vods =
—SQ f-¢dz for some feD(2) and all peJy(@). Here f:¢ = St f
We define a map 4: K,(2) — J(2) by setting Ju = f, where J(Q) is
the completion of D(2) in the norm associated with the inner product
(8, o) = SQ ¢+ 4dx. Clearly, Jis well defined and closable. The space
Hy(2) is defined as the completion of Ky (2) iNn Ehe norm |||z,
associated with the inner product (g, V) + (d¢, 4). Note that

H,(2) may be regarded as a subset of J,(2). The extension of 4
to H,(Q) is again denoted by 4. It can be shown that

(1) P, Pp) = —(dg, )

holds if ¢ € H(2) and + € Ji(2) N L*(2). We refer the reader to [6]
for details.

For several types of unbounded domains £2, we shall show the
space H,(2) contains the set H¥(2) = {u:ueJy(2) and 4due L*(Q)}.
Our proof is based on the following proposition.

PROPOSITION 1. Let 2 be an open set of R"(m =2). Then a
condition sufficient to ensure Hy(2) C H(RQ), is that the only element
w in J(2) satisfying

(2) S Vw:7¢dx=—s w-¢dx=§ f-odx,
2 2 2
for some fe L¥(2) and all ¢ € D(R2), 1s w = 0.

Proof. Let we H¥(2). Define a linear functional F' on H,(R)
by setting F(¢) = (Fu, V¢) + (Pdu, 4¢) for ¢ € H(R2), where P is the
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projection of L*Q) onto J(2). Clearly, F is bounded on H,(2). Thus,
the Riesz representation theorem gives a unique element v of H(2)
such that

(3) (v, 79) + (dv, dp) = F(g)

for all g Hy(2). Since (Fr, V'g) = — (v, 4¢) holds for all e J(Q)
and all ¢ € K(2), (3) implies

gg [(w — u) — (Jv — Paw)] - gdz = 0

for all ~ngeD(.Q); remember here than D(2) is the image of K, (2)
under 4. Let w = v — u. Then, for all ¢ € D(2),

(4) Sgw-gédw:Sa(Jv—PAu)-qidx: ——SQVw:ngdx.

The second identity in (4) holds because (1) implies (v, ¢) = — (v, V'),
and because, through an integration by parts, (Pdu, ¢) = —(Fu, V).
Thus, by assumption, w = 0 and so u = v € Hy(2).

Before proceeding further, we recall the various Sobolev spaces
to be used throughout the paper. The space Wr(2) is the set of all
Rr-valued functions which belong to L?(2) and possess generalized
derivatives up to order m in L*(£2). Its norm is

1/p
(5) lully = ( 3 | 1Dupds)”,
lajzm JQ

where a = (a, @, -+, @,), |a|=a, +a, + --+ + a,, and |D*ul|® =
> oty /ox - - - 0x%»|P.  The space W;"(.Q) is the completion
of Cy(2) in the norm (5). Finally, we let J,(2) denote the comple-
tion of D(Q) in the norm ||-|ly;, and let J3(Q) = {g: g€ Wi®) and
V-¢=0} Also, J}(2) = {p:6€ Wy2) and I -4 = 0}, where W,(R2) is
the completion of C(2) in the norm [|Fg|| = (F, F$)”*. We proved
the following lemma in [14], by considering an expansion in spherical
harmonics.

LEMMA 1. Let 2 be an exterior domain in R* (n > 2) for which
JHR) = J(2). If q is a function in L. (2) such that Vq = u + v,
where u € J¥(2) and veJ(2), then weJ(2) and, further, Vg =0 in
Q.

The next lemma, due to Heywood [10], is based on a regularity
theorem of Catabriga [2], or of Solonnikov and Scadilov [19] in the

case of C® boundaries. We set ||[Fw]|, = (Zm,zl Sa |D“w["dm>1/p and
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1/
Hvwl|, = (Zmr:z SQ ]D“wl”dw) ,,’ and suppress the subscripts when
p = 2.

LEMMA 2. Let 2 be an open set of R: with boundary 02
uniformly of class C®:. Suppose w e JF(2) satisfies Sng:Vngx =
Sg [ odx for some fe LX(2) and all 6 € D(2). Then w possesses second
order derivatives D*w € L*(2) and the following inequalities hold:

(6) [|D*w]| = C(| Pf]l + |IFwl]) ,
(7) Pwlls = C(| P Pwl[? + [[Fwl]) ,
(8) ggylw(x)]§0a(lle|| + [[Fwll]) ,

where constants C, depend only on the C:-regularity of 02 (but nmot
on the ‘size’ of 02 or Q).

PROPOSITION 2. Let 2 C R® be an open set with a uniformly C*
boundary. Then the condition in Proposition 1 is necessary as well
as sufficient for HF(R2) C Hy\(2).

Proof. Let weJy(2) satisfy (2). Lemma 2 implies D*w € L*(2).
Integrating by parts in the first integral of (2), and remembering
that A(K,(R)) = D(R), one obtains

S PAw-zTgsdx:S w - dgdx = —S Fw:Vede ,
2 2 2

for all g € Ki(2). Since w € H(2) C Hy(2) and Ky(2) is dense in Hy(£2),
it follows that PAw = 4w and [[Fw]|]® + ||dw]|]*= 0. Thus w =0 in
2.

REMARK 1. It follows immediately from Lemma 2 that the
inverse ineclusion H,(2)C HF(2) holds if 2 c R® and 02 is uniformly
C: In this case, du = PAu if uc H,(Q).

REMARK 2. If 2 is a domain in which Poincare’s inequality
holds, i.e., ||¢]] < C,||Fs]|| for some constant C, and all ¢e Cy (),
the condition in Proposition 1 is automatically satisfied; hence Hy(Q) <
Hy(2).

REMARK 3. The inclusion HF(2) C H(2) fails to hold if 2 is a
two-dimensional exterior domain with a smooth boundary. Indeed,
let b be an infinitely differentiable solenoidal (¥ -b = 0) vector field
in 2 such that b =0 near 02 and b = (1, 0) in a neighborhood of
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infinity. Then be J,(2) (see Heywood [7]). Now consider the fune-
tion f=0b —Fq — 4b where ¢ = z,. Since fe L*(2), there is a unique
element b€ J,(2) such that

(9) 8975:V¢dx+S95-¢dx=89f-¢dx,

for all 4 € D(2). Using regularity results of Heywood [8, p. 82] a_nd
Friedmann [4, p. 66] (see also Amick [1, p. 704]), we can show 4be
LXQ). Thus b — be H¥(2), and an integration by parts in (9) gives

Sg(b — b)) gda = Sg Ab — B - pdu ,

for all g€ D(2). Now if H¥(2)c H(2), we can argue as in Proposi-
tion 2 to show b = b, which is impossible.
If w is an element of J3(2) satisfying (2), then we C=(2) and

10) dw —w =Vp

holds for some harmonic function p; see for example Heywood [8].
Thus, in view of Propositions 1 and 2, the question of whether
Hy(2) < H(2) for a given unbounded domain 2 can be reduced to
that of whether there exist nontrivial solutions w of (10) satisfying:

(11) V-w=20 in 2,
(12) w=0 on 042,
13) w(x) — 0 as |x|—— o .

We call an element w of J¥(£2), which satisfies (2) for some fe L¥Q)
and all ¢ D(R2), a weak solution of the problem (10)-(13). Note
that, if 2 c B"(n > 2), elements of J¥(2) satisfy (13) in the generalized
sense S lw() [P/l z|*de < oo.

Theg next theorem, concerning the uniqueness of problem (10)-(13)
in an exterior domain £, is proved under the assumption that
J¥(2) = J(2). This relation, and also the relation JF(2) = J(2),
were established by Heywood [8] for several types of domains,
including exterior domains with Lipschitz boundaries. Ladyzhenskaya
and Solonnikov [13] have extended these results by weakening the
assumptions on the boundary regularity.

THEOREM 1. Let 2 be an exterior domain in R"(n > 2) for which
JE(Q) = J(2). Then the only weak solution of problem (10)-(13) is
w = 0; hence HY(2)C Hy(2) by Proposition 1.

Proof. Let w be a weak solution of (10)-(13). Since SQ w - gda =
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——S f-¢dx holds for some fe L*2) and all ¢ € D(R2), there exists a
2
scalar function ¢, with g, ¢,, € L},.(2), such that

w+ Pf="Vq;
see Ladyzhenskaya [12], and also Heywood [6]. Thus, it follows
from Lemma 1 that w belongs to J,(2). Because D(2) is dense in
J(R2), the first identity of (2) implies S Fw: Fw + w - w)dx = 0; thus
2

w = 0.

In the case of a half space, we prove uniqueness for problem
(10)-(13) using Fourier transforms. The method is a modification of
one used in [8].

THEOREM 2. Let 2 ={xecR"x, >0} (n=2). Then the only
weak solution of problem (10)-(13) is w = 0; hence Hy(2) < Hy(2) by
Proposition 1.

Proof. A weak solution w of (10)-(18) satisfies SQ Pw:Véde =
-—ng-qidx for some fe L*(2) and all ¢ € D(2). Thus, letting 2.={x € 2:
x, > ¢}, Lemma 9 of [8] implies D*we L¥R,), for every & >0.
Further, since Sg VD*w:Vpdx = —Sg D*w - ¢dx for all ¢eD(2), an

induction argument gives D*w € LX2,), for all « with |a| = 1. Also,
since w e J¥(2), we have

S widr < a’ S |Pwldx ,
0<z1<a 0<z1<e

for every a > 0.
Now equation (2) implies there exists a harmonic function p
such that 4w —w=Fp in 2. Clearly, S FpYde << if 0<e<a.

£<z <a
Hence one can take Fourier transforms with respect to & = (2., - - -, 2,)

of equation 4(ép/ox,) = 0, obtaining
(o0 _1en(92Y g
390%(390) €] <396¢> )

Here b = h(w,, &) = (27r)“"‘”/2§ h(z,, F)e~*4d, where & = (&, -, &),
gr—1
and {¢P=& + --- + £. The general solution of this equation is

<_<?£_> = a,(&)e”11" + (&)t .
ox;

Since o*p/ox,0x;, = —ow,/ox;, + d/ox;d4w, and D*we L¥R2,), we have
o*p/ox.0x, € L*(R2,) for every ¢ > 0. Thus, in virtue of Parserval’s
identity
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) Vs (G237 | o=,

we see that 8,(8) (4 =1, ---, n) vanishes almost everywhere.
For every 1 =1, 2, - .-, n, taking Fourier transforms of the equa-
tion 4w, — w;, = dp/ox;, one obtains
0*

(14) oy~ (£ + D, = e

o*p
07,0,

The general solution of (14) can be found, by the method of varia-
tion of parameters, to be

(15) = @@ T + b(@en T 4 a(@)v(@e
where
-1 7 1 1
(&) = . .
TV P | £ o gy 1/l$|2+1—|5|]

Again, using Parserval’s identity

b aw

So Sm 1 axl déd S 5901 dw <

we find b,(&) = 0.
Finally, the Fourier transform of /-w = 0 is

o,

+@E2wz+ +/L§nwn:0!
1
and so the boundary conditions 0;0,£) =0 (=2, ---,n) imply
oW, [0x,(0, £~ = 0. It follows that a,(&) = a,(8) = 0. Consequently
(0p/ox,)” =0 and so op/ox,= 0. Now the function p, being harmonic
in the variables % e R** with S 1|I711;|20l§c‘ < oo, is a constant. Hence
R

(&) = 0, which in turn implies a,(&) = 0. This completes the proof.
Finally we consider aperture domains.

THEOREM 3. Let 2 ={xeR"2,+0 or (v, ---,x,) €S}, where
n =2 or 3 and S is a bounded open set in A = {xc R*: ¢, = 0}. Then
the only weak solution w of problem (10)-(13), with w € J,(2), is
w = 0; hence HF(Q)C Hy(R) by Proposition 1.

Proof. Consider first the case n = 3. Suppose weJ(2) is a
weak solution of (10)-(13). Let By be a ball of radius R centered
at the origin (assumed to lie in S) such that Sc BN A. Since

w € J,(2), one can show S w-nds = 0, where % is the unit normal
S
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to the surface S; see [8, p. 93]. By Corollary 2.3 of [13], there
exists a solenoidal vector v’ in W}(B:), where B} = {x € Bz: x, > 0},
such that v = w on S and v = 0 on dB/\S. Likewise, there exists
a solenoidal extension v € Wi(By) of w on S, where By = {x e Bj:
2, < 0}. Let v be a vector defined in B, N 2, with v = w on Bz N 4,
such that v =9’ in B; and v =9" in By. Then v belongs to
J¥(Br N ) and thus to J,(Bz N 2); see [13], and also [8].

We extend v to £, where 2 = {xe€2: 2, > 0}, by setting it
equal to zero outside of B;. For every ¢eJ(2), let F(g) =

—Sm W -¢ + Vv':Vg)de. Then F defines a bounded linear functional

on :L(.Q’) and so the Riesz representation theorem gives a unique
vector ' in J,(2') such that

SQ, W ¢ + Vs Pg)de = F(g)

forall ¢ J,(2). Let w = w — (u' + v'), where w’ is the restriction
of w to 2. We can easily show we W,(2), V-w =0 and

SQ’ Vw: Vedr = —Sg’ D - gd = SQ, (f +u + v) - gda

for all ¢ € D(2'). Thus Theorem 2 implies @ = 0 in £’, and so w’' =
w + 2 in £'. Similarly, if w” is the restriction of w to 2", where
Q" = {xe:x <0}, then w”’ =" + v"” for some u” € J,(2"). Hence
w=w +w' =u +u’ + v belongs to J,(2), because J, (2, J(27)
and J,(BxN2) are all subspaces of J,(2). By letting ¢ tend to w in
(2), we obtain SQ (w-w + VFw: Vw)dx = 0, which implies w = 0.

For » = 2, let B’ be a bounded open subset of the right half
space Q' such that 0B'N A = S and 6B’ is smooth. Using a method
given in [12, p. 27], one can construct a solenoidal vector v' € Wi(B)
which equals w on S and zero on 4B’\S. Similarly, construct B”

and ¢"" in the left half space 2. Proceeding now as in the three-
dimensional case, we can show w = 0.

3. Uniqueness and continuous dependence. Let 2 be a
domain in R*(n = 2). The initial boundary value problem for the
Navier-Stokes equations in the space-time cylinder 2 X (0, T') is to
find a pair of functions w, p which satisfies

(16a) Uy + UV = —Vp + vdu + f in 2x(0,7T),
(16b) V-w=20 in 2x(,717),
(16¢) u(x, 0) = a(x) for ze @,
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(16d) u(zx, t) = b*(x, t) for (x,t)eoR x (0, T),
(16e) if 2 is bounded, wu(x, t) — b%(t) as |x| — « for te(0, T),
(16f) if Q is a domain for which J¥(Q) # J,(R), auxiliary conditions

in the sense given in [8] are imposed to determine, for every
t, a specific coset of J¥(2)/J,(2).

Here, u represents the velocity vector, p the pressure, f the external
force, and v the constant kinematic viscosity. We assume the
boundary values b* can be extended continuously into £ X (0, T') as
a solenoidal function beC*®2 X [0, T]) which satisfies (16d), (16e),
(16f) and the following conditions:

(73)  sup [IPB®)] < <, S:HDﬁb(r)HZdr<oo for te(, T),

b,(x, t) — b&,(t) as |x|— o,

(17b) St [[Fb,(2)|[*dz < = for te(0,T),
(17¢) S:sgp 1b(0)|tde < o for te(0, T),
(17d) a —b(-, 0)eJy(2),

(17e) the forcing term g = f — b, + v4b — b-Fb admits the decom-
position g = fi+ f,+Vq, where f, e L¥0, t; J,(2)) and f, e L*0, t;
L*Q)) for all te(0, T), and where gq, q,, € L{..(2 X (0, T)).

Any such extension b of the boundary values is said to be admissible.
We note, if 02 is of class C?, that condition (17a) implies

(17f) S:||Vb(z')]|§dz'<oo for te(0, T).

This is proved by substituting /d for ¢ in the Sobolev inequality

liglls = CallI7g 1119117 + llg1D)

which is valid for all ¢ € Wi(2) with a constant C, dependent only
on the C*regularity of 02; see Friedman [4, p. 27]. If, further-
more, 2 is an exterior domain in R® with a class C? boundary, then

(i) (17a) implies (17c) provided ST[bii(t)lzdt < oo, and

(ii) every vector field g(x), with SQ (Fg)dx < oo, can be express-
ed as a sum described in (17e) above;
see [9] and [10].

The solution of problem (16) is sought in the form w = v + b,
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where b is an admissible extension and v satisfies
(18a) ve L¥0, T; H(9)) ,

(18b) sup [[Fo]l < e,
te(0,7)

ST v, Pe)dt — v ST(Zv, J)dt + ST W-Pv + bV + v-7b, Ip)dt
(18¢) 0 0 To
= — (@ —b), 750) + | (0, Fp)at

for all ¢€S;, where S; = {4: ¢, ¢, € L*0, T; K\(2)), #(-, 0)e K,(2) and
¢(-, T) = 0}

We call such a function u a weak class H, solution of problem
(16).

Equation (18¢) is obtained formally by multiplying (16a) by 4g,
integrating over 2 x (0, T) and performing several integration by
parts. All integrals in (18¢) make sense because ZT¢ has compact
support in 2. Conversely, (18¢) implies (16a) holds with some scalar
function p such that p, p,, € Li..(2% (0, T)), provided v satisfies the
conditions (18) and also v, € L¥¢, T; Ji(2)) for all positive ¢ < T.

In what follows, we only consider domains 2 c R® for which
H¥(2)c H(2) and for which 92 is regular enough (say, uniformly
C?% so that the estimates in Lemma 2 hold.

PROPOSITION 3. Suppose u = v + b is a weak class H, solution
of problem (16), where b is an admissible extension and v satisfies
(18). Then v, after redefinition on a set of t-measure zero, satisfies
the identity

St 7o, Pg)dr — v St (Gv, J)dr + St @V +b-Vv +v-7b, dg)dz
(19) 0 0 0 t
= (7o), 79®) — P(a — ), 760) + | (9, Tz ,

Jor all $€8; and all te(0, T).

Proof. Let ¢€S;. For any fixed t,€(0, T) and every de
O, T —t,), let

&(t) for 0t 54,
$s(t) = {07t + 0 — t)g(t,) for t,=t=t +0
0 for t,+0=5t<T.

Then ¢; € Sy and can be substituted for ¢ in (18¢). Note that
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. S: 70, P)dt = S:O(V'v, Pe)dt — 8- S:“ Tod), Po(t)dt
) - S:O(Vv, Pe)dt — (5—1 S:"“ Pot)ds, V¢(to)) .

0

The last term in (20) converges to (Fv(t,), Fé(t,)) as 6 — 0 if £, belongs
to the Lebesque set M of v, i.e., M = {r:lim,, 6 va(t)dt = »(7)
strongly in Jy(2)}. The set M has the property that mes o, ) —
M) = 0; see for example [11, p. 88]. Next, it is easy to see, as
0 — 0, that

|, @, Zppat— " (@, dpyat ,
|| G, dp)at— {"Gw), Zpit,

|, @ dooat— "0, Zpyat,

where we have denoted the term v-Fv +b-Fv + v-Fb by G®).
Thus, if t,€ M, (19) holds for all ¢ S;.

Now let ¢, be an arbitrary instant of time in [0, T) and let
{t;} © M converge to ¢, Then there exists a subsequence {¢;} and a
function V(z, t,) € Ji(2) such that v(t;)— V({,) weakly in Jy(2) as
k— co. Letting t =t¢;, and £k — o in (19), we obtain

{100, 760 = (o, Zs) + ), dp) - (9, I)at
= TVt P5(t) — (7(a — b)), 74(0) ,

for all g€ S;. Clearly, if t,e M, (Fv(t,), V¢(t,)) = 7 V(t,), Vé(t,)) holds
for all $€S;, and in particular, for all ¢ D(2 x [0, T')). It follows
that V(z, t,) = v(x, t,) for x€ 2. Note also V(x, 0) = a(x) — b(x, 0).
Thus, if we redefine v(x, t) by setting o(x, t) = V(x, t) for t¢ M,
then (19) holds for all te (0, T).

REMARK. The redefined function v(z, t) is weakly continuous in
J(2) as a function of ¢. Indeed, it suffices to observe that (19)
implies (Fv(t), Vg) — Fv(ty), V'¢) as t — &, for all ¢ € D(Q).

LeMMA 3. Suppose w is a weak class H, solution of problem
(16), say w = v + b, where b is an admissible extension of the
boundary values and together v and b satisfy (18) with initial value
a. Let b be any other admissible extension and set ¥ = u — b. Then
together v and b satisfy (18) with initial value a.

Proof. Clearly v = v + b — b. Hence if b — b satisfies (18a) and



398 CHUN-MING MA

(18b), so does #. The assumptions on b and b imply & — b e C¥(2 X
[0, TD, 7-(® —b)=01in 2 x (0, T), suP,ewo,ns [[F (b — 0)D)|| < 0, b —
b=0 on 02 x (0, T) and (b — b)(x, t) — 0 continuously as |z]|— o
for t€(0, T). Thus (b — b)(-, t) e J¥(R) for te (0, T) by Lemma 4 of
[8]. Since b and b both satisfy the auxiliary condition (16f), it
follows that (b —b)(-,t)eJ(2) for every ¢e(0,T). Also

ST 1|4 — b)) |[Pdt < oo; s0 b — b e L0, T; H¥(2)) < L0, T; H(Q)).
0 —

Arguing as above,_we show (b — b),(+, ) < J(R) for every t (0, T).
It follows that (7(b — b), V'¢) = —((b — b),, 4¢) for all ¢ € K,(2). Thus,
integrating by parts with respect to £, we obtain

[, 75, 7ooat = | o, Pooat + | (@ —B), It — 7 (6(0) — 50, F3(0)

for all ¢ S,;. Also, a simple calculation gives
V5 +b Vo +T-Fb=v-FPv+b-Fv+v-Fb+ (b-Fb—b-rb).

It follows easily now that ¥ and b satisfy a similar identity to (18c)
with § = f — b, +v4b — b -Vb.

We now proceed to prove the continuous dependence and uni-
queness of solutions of problem (16). Suppose u and @ are two weak
class H, solutions of (16), having the same boundary values but
possibly different initial values a with @ respectively. Let a —a €
Jo(2) and let b be an admissible extension of the boundary values,
with @ —b(-, 0 eJy(2). Then @ —b(-,0)=a& —a + a — b(-, 0) also
belongs to J(2). By Lemma 3, v = w — b and 7 = @ — b both satisfy
conditions (18) with the same extension b, and with initial values a
and @ respectively. Our first objective is to show that the difference
w = u — % satisfies the identity

t ~
Lirwr +» | 1 7w@td = Lire - o)
@1) + St W Vv — 775, Jw)de
0
+ St(b.m + w-Pb, Jw)dz
for every te(0, T).
Since veL¥0, T; H(2)), there exists a sequence {#*} in
L0, T; K,(2)) such that
T ~ ~
So (175" — P3P + || 35* — Fo|)dt — 0

as k— . For fixed t€(0, T) and every k, let
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TE(x, 7) = S: w,(z — )T, 7)d7 ,

where @, € C7(R) is a kernel with support contained in {z: 7| < p <
min (¢, |7 — t|)} such that w,(7) = w,(—7) and S w,(t)dr = 1. Clearly
every 7% belongs to S;, and can therefore be substituted for ¢ in

(19). Since w,(z) = —w,(—7), an application of Fubini’s theorem
yields
(22 [, 7o), rotends = = | Cvn@), Prreae,

0 0

where v,(x, 7) = St w,(t — N)v(x, 7)dy. The right side of (22) converges
t 0
S T,y VO)dT = S v, Vo,,)dr, as k— o. Using conditions (17)

and (18a), we can show wv-Fwv, b-Vv, v-Vbe L¥0, T; L}(2)). For
instance, applying Holder’s inequality, Lemma 2, and the well-known
Sobolev inequality

(23) lvlls < ClIFvll,
valid for v e Cy(R®), we have

lv-Poll = l[vllll7Fvlls = CHV?JH(IIVvafHANU[I‘“ + 17l
= Croll* + (140l

Here, the term ||/v||*?|| dv||""* was estimated using Young’s inequality:
ab < a?/p + bYq withp =4/3andq=4. NowG@w)=v-Fv +b-Fv +
v-7be LX0, T; L*2)) and it follows that

|| @), Fotyar — | Gw), Fode

0 0 B

as k — oco. Thus the following identity is obtained by letting ¢ = o%
and &k — o in (19):

SO v, P3,0dz — v S: (dv, J5,)dr + S: Gw), 5,)dr
= (Fo(t), Fo,(t)) — (F(a — b(0)), Fv,(0))
+ | =5, 7o) + (£, Tz

If we add this identity to a similar one with the roles of v and ¥
interchanged, and note that

t
S v, 75,)dc = —St 5, Pv,)de
0 0

the result is



400 CHUN-MING MA

~ ~ ~ ~ t ~ ~
—y S: {(dv, F5,) + (I, dv,))dr + So (GWw), I5,) + G@), dv,)}de
(24) = o), Fo,(t) + o), Fv.(8)) — F(a — b(0)), Fv,(0))
13 ~ ~
— 7 (@—b(0)), Fv,(0))+ So {— Sy Vo, +V8,)+ (S, dv,+40,)}dT .
We study the behavior of each of the integrals in (24) as p—0.
t
Using the fact that 1im,,q,,§ 15z + 0) — 5(2) |l de = 0 (.. [11, D.
0 i
86]), one can show lim,,\ ||, — |/}, dz =0. This implies
I ~ | ~ 0
S (4w, A'E,,)dz'—»S (dv, 47)dr as p— 0, and also the convergence of
0 0

all other integrals with respect to ¢ in (24). Next, to show
(25) Fo(t), Po,(6) — =Fo(e), F3) as p—0,

we recall that 7 is weakly continuous in J,(2) as a function of &.
Thus,

ott), 7.8 = | @, (o), 7o) + emldy ,

where ¢®) — 0 as 7— 0. This implies (25), since SP w,(M)dn = 1/2.
0

The convergence of the remaining terms in (24), as p — 0, is handled

similarly. Now, letting o — 0 in (24), we obtain

—2v S (dv, do)dr + S (G@), T5) + G), Iv))de
(26) = (Fu(?), Vo)) — Fla — b(0)), V(@ — b(0)))
+ | =05, 70+ 2) + (7, B + DMz

t
0
Replacing 7 and @ in (26) by v and a, respectively, and vice versa,
we find
¢t ~ t ~
_uS | do(@) |2 de +S (G(v), Fv)dz
0 0

= ZHIPo@IF — 117 @ — o)

+ (= h 7o) + (f, Fodr

and a similar identity for #. Adding these identities for » and 7,
and subtracting (26), gives the identity (21).

Sincev-Fv —7-Fo =w-Fw + w-Vv + v -Vw, (21) can be rewrit-
ten as
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SIrw@ > | 1 Fw@rds = Liire—a)+{ @-rw, dwdc
@7) 2 0 2 0
+ [ @+ 07w+ w-r@ +b), Fuyc .

The second term on the right side of (27) can be estimated using
Holder’s ineguality, (7), (28) and Young’s inequality:

|(w - 7w, dw)| < ||wlol| 7wl || Jw]|
= Gllrwl[([Fw|*|[ dw|["* + |[Fw]]) || dwl|
< alldw|l® + Co IPwl + CollFw|*
= al|dw|l® + G lIFwl + Coll7wll* .
Here, C,, denotes a constant dependent only on « >0 and the
regularity of 02. The last term on the right side of (27) can also
be estimated using Holder’s inequality, (7), (8), (23) and Young’s
inequality:
(v +b) - Pw, dw) < sup v+ b| [Pw]] || dwl]
(29) < || dw|l*+ Co, (1101} + (1701 + sup ) 7w,
(w -7 (v +b), Jw) < ||lwllo(|72lls + 17b]]s) | Fo]|

30 - ~
(80) < at||dw|[* + C (1 B0l + |70l + [ 7B a0l -

Setting a = v/3, we combine these estimates for terms on the right
side of (27) obtaining

@Y IPw®IF S IP@ — @I + | G IPw@IF + ol 7w )i ,

where h(z) = o(|| dv|[* + ([Fv]|[* + supg [b]* + ||FB][2), and ¢ is a constant
dependent only on v and the regularity of 4.0.

The function B(®) = [|P(@ — @) + | (@) [I70@)I + o[l Fw@lI)dz
0
is continuous on [0, 7] and absolutely continuous on (0, T'), as a
funetion of ¢. Using (31), we obtain

%R(t) = K@) |Pw®) | + ol|Fwt)|®

= (W(t) + al||Fw(®) [[DR(2) .
It follows that

@  RO=(r@-alresn | k@ +ollru@vdc

for all £€[0, T]. Now, suppose R(0) = ||[F(a — @)|* < A for a given
positive number A, and let [0, T,] be the largest subinterval of
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[0, T] on which R(t) < A. Then, for all te(0, T.,), we have
Wrw®)|? < R(t) < A and, by (32),

R@) = |[[F(a — @)|*exp (A% + H(t)),

where H(t) = Sth(z')dz'. Choose A = T-** and suppose [|F(a — a&)||* <
0
Ae~ %D Then R(T) £ A, which implies T, = T. We have proved

THEOREM 4. Let 2CR® be a domain with a wuniformly C*
boundary, for which Hiy(2)C H(R). Let u and @ be two weak class
H, solutions of problem (16) with the same prescribed boundary
values and forces b*, b%, f, but with possibly different initial values
a and @ respectively. Let b be any adwmissible extension of the
boundary values, with a — b(0) € Jy(2). Suppose a — acJ(2) and

(e —@)||* = T~ exp (—0 — H(T)),

where o 18 a constant dependent only on v and 02, and
. ‘
Ht) = o | (10w — 0)IP + 17w = b)IFF + sup|b]* + [I7b]de
Then, for all t€[0, T),

I7u(t) — Pa@)| < IFa — Fa|* exp (91% + H®) .

In particular, u = @ 1f a = @.

4, Existence. In this section, we prove a local  existence
theorem for weak class H, solutions of the nonstationary problem
(16), if the prescribed data satisfy conditions (17). Since weak class
H, solutions need not possess a time derivative, we will not need
the rather unnatural assumption that the force f, in (17e) vanishes
for some initial time interval (0, ¢). This assumption was required
in a related existence theorem of Heywood [9].

We seek solutions of problem (16) in the form w = v + b, where
b is an admissible extension and v satisfies (18). We use Galerkin’s
method, taking as basis functions, a sequence {a*} in K,(2), which
is complete in H,(L2) and orthonormal in J,(2). Let

(@, 8) = 3 Ca()ak(@)

be the solution of the initial value problem for the system
(or, Vab) + v(dv", dat) — (v*-Fo" + b -Fo" + v"- b, da’)

33 -
33) — Wf, Va) — (f, dab)
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for t=0 and [=1,2 ---,n, with initial conditions C,,(0) =
V(@ — b(0), Fa*), k=1,2, ---, n.
Multiplying (83) through by C.,.(t) and summing >,,, we obtain

1d

(34) —2—%[[17'0"‘]!2 + || dvt||t = (- Fo* + b-Fo* + v*- Vb, do™)

+ Ffy Po™) — (fop d0™) .

For simplicity, we shall suppress the superseript n. The first term
on the right side of (84) can be estimated similarly to (28)-(30).
Thus, for any a > 0,

(- P, 20)| < a|| Dol + ClI7o[l* + ColllFvll,
|- 7v, dv)| < || Do + Ca,a8Up [DI*[[F0[f",

|(v-7b, dv)| < a||dv|* + Co, IPDIE o] .

The last two terms of (34) can be estimated using Holder’s inequality:

(F, 7o) = S IPAIE+ 7o,

((fy B0)| = @l Boll" + =LA

Combining these estimates for terms on the right side of (34) and
setting a = /8, we obtain

%IIWHZ + ([ 4] £ Copu 7] + oI 721

+ Co llPo]l* + VAL + 4[5

This differential inequality can be integrated to give
@) Pl Fe) and | |5@lde < Fey,  telo, 1%,

where F(t) and Fi(t) are continuous functions in [0, T*) with F(0) =
(e — b(0))]|?>, and T* depends on ||F(a — b(0))||, v, 02, f. and f;; see
for example [10, Lemmas 3 and 4]. Thus one can choose a sub-
sequence of {v"}, again denoted by {v"}, which converges weakly in
LX0, T*; Hy(2)) to a function v. The limit v can be taken to satisfy
the estimates in (35).

Let ¢™(x, t) = D, Ci(t)al(x), where the coefficients C;(f)’s are
continuously differentiable in [0, T™*) with C,(T*) =0,1=1,2, ---, m.
Multiplying (33) through by C(f), summing >, and integrating
over (0, T*), we obtain
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| @0, 76m) + (@0, ) — (0" 7o* + b-For + o7, Tgmdt
CONNR i
= (@£, 7om) ~ (£, Byt .

In the first integral of (36), one can integrate by parts with respect
to ¢t to get

6n | o remat = = v, rnat — 7o), 7o)

If nw=m, then (Fv™(0),FV¢™0)) = F(a — b(0)), F4™(0)) because
Fv™0), Fa') = (F(a — b(0)), Fa*) for all » = 1. Thus, letting n—
in (36) yields

ST*(V v,V ef)dt — v ST*(Zv,ATqS"‘)dt + ST*(v-Vv +b-Vv+v-Vb, dg™)dt
38 ’ !
= — (7@ = bO), 7" O) + || (—0£, 76™ + (£, Fgmat .

It can be shown that every ¢ in S;. can be approximated by funec-
tions of the form 4™ in such a way that

6™ — 6(B) ||, + 1| $7(E) — (&) |z, — O,

uniformly in t€[0, T*] as m — . It follows that (38) holds for all
6 €8y This establishes the existence of a local solution of problem
(16).

It is not difficult to show the solution u = » + b just constructed
satisfies the initial condition in the sense that lim,_ .+ ||[Fu(t) — Fa| = 0.
Since v satisfies the first estimate in (35), we have lim sup,_.+ ||F2(t) || =
[7(@ — b(0))|l. Therefore, since »(t) —»a — b(0) weakly in Jy(2) as
t — 0%, it follows that v(f) — a — b(0) strongly in J(2) as ¢t— 0.
Our assertion follows because

(@) + b)) — Pall < [[Fo(t) — F(a — b0)] + [[Fb(E) — 7b(0)]|
t 1/2
< 7o) — 7@ — bl + (| I7bio) rdz)
Finally, we note the function v possesses second order derivatives
with respect to z in L*0, T%; L*(2)).

THEOREM 5. Let QCR® be a domain with a wuniformly C*
boundary. Suppose, for the initial boundary wvalue problem (16),
that the prescribed data permit the boundary wvalues to be extended
into 2x[0, T] as a solenoidal function b satisfying conditions (17).
Then there exists a weak class H, solution u = v + b on some interval
0, T*), with 0 < T* < T, such that V-u = 0 and Vu, D*uc L*0, T%,
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L¥2)). The time interval (0, T*) depends only on ||[V(a — b(O))l[, v,
the Cregularity of 02, and the functions S 71 )dc and S | f2|]%dz.

0
Further, lim,_ .+ [|Fu(t) — Va]| = 0.
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