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In the present paper the solvability of boundary value
problems for the Stokes and Navier-Stokes equations is
proved for noncompact domains with several ‘‘exits’ to
infinity. In these problems the velocity satisfies usual
boundary conditions and has a bounded Dirichlet integral
and the pressure has prescribed limiting values at infinity
in some ‘‘exits’’.

1. Preface. It was shown by J. Heywood [1] that solutions of
the Navier-Stokes system (even linearized) are not uniquely deter-
mined by the usual boundary and initial conditions in some domains
with noncompact boundaries. It is connected with the possible non-
coincidence of some spaces of divergence free vector fields defined
in these domains. These spaces and linear sets of vector fields
generating them are introduced as follows.

Let 2 be a domain in R, n = 2, 3, &5°(2) — the set of all infinitely
differentiable functions with compact supports contained in 2,_#=(2)—
the set of all divergence-free vector fields % e &°(2) (i.e., vector
fields satisfying the equation V-4 = 3, (du,/ox;) = 0), and ﬁ/';(.Q) and
T (£2) — the completions of Z7%°(2) in the norms ||%|lyie = V' (4, %)
and [|%]|. ) = VT4, u] respectively, where (i, 3)° = g(ﬁ-?} + %, - ,) d,
[a, 9] = S Uy VA0, eV = D7y Wy Uy Dy = D7 iy (0U,)02,)(00,/0%;). Let
j (2) and H(2) be completions of #>(2) in these norms and / (),
H(Q)—the subspaces of all divegence-free vector fields in W;(Q) and
e (2). Clearly, j @)D _#(2) and H(.Q):)H(.Q) In [1] it is shown
there are domains for which the quotient spaces / @D/ _7 @),
H(Q)/H(Q) are finite-dimensional, i.e., nontrivial (for instance, the
domain 2°=R*S, S={x ¢ R®*: ,=0, 2} +x;=1} possesses this property).
A large class of such domains is found by O. Ladyzhenskaya, K.
Piletskas and the author in [2, 3]. To describe the domains 2 con-
sidered in this paper, we define a standard domain G — R* given by
the inequality

(1) 12| < g(z,), 2,=0,

where |2'| = |z,| for n = 2, |2'| = V'2} T 22 for n = 3 and the function
g(t) satisfies the conditions
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(2) g@)=g,>0, [g(t) —g(t)| = Mt —1t], V,t,>0.

We impose the following requirements on £2:

(1) Qisan open connected set; 2 = 2,U (U™, w,), 2, is a bounded
domain, the @, are unbounded and w, N w; = @ for 7 +# j.

(2) G,cw,cG: where G, and G¢ are domains defined by
inequalities of the form (I) in a certain cartesian coordinate system
{z}, more precisely, by inequalities

(3) |29 < g,(2), |29 < agi(=d),

with @ > 1, and functions g, satisfying (2) and
Swgi_n—l(t)dt<oo for q;_—_-l’...’;r’ 1<r<m,
[}
Cormtat = = for i=r 41, m.
0

To formulate further restrictions we introduce the following
notations: ®;(¢t) is the subdomain of @, where 0 < z& < ¢, wi(t) =
®,\w,(t), 3(t) is the intersection of @, with the plane (the straight line
for n = 2) 2 =t; and 2, = Q\U™, 0i(t). We assume:

(3) HE,) = H(®, for all t = 0.

(4) Every function g¢(x)e L,(B;(t)) satisfying in the domain
B,(t) = w;(t + ¢,(t))\®;(t) the condition N qdx = 0 can be represented
in the form ¢ = V-%i(x) where % ¢ < (B,(f) (see [2], Lemma 2.5) and
1% ]|2@,0n = €ll@]lz,m,00, the constant ¢ being independent of g, 4, ¢.

(5) The domain 2, with some fixed £, > 0 possesses the same
property.

Sometimes we shall replace (2) by

(2) G,cw,c G where G, G¢ are domains defined by (3) and

Soogi_n_uz“(t)dt = oo , i=1 ., r;
0
S:g;n—wza(t)dt < oo, i=r+1,---,m; acl0,1].

The conditions (1)-(5) determine a somewhat more general class
of domains than considered in [3]. On the other hand, the condition
w,C G¢ is not satisfied for the domain £2° mentioned above. This
condition is also not satisfied for domains considered in [2], for which
®, may contain unbounded cones (i.e., for which m = = and g¢,(t) =
N(E + b,), Ny, b; > 0). For such domains the conditions (2) should be
replaced by the restrictions formulated in §4 of the paper [2].

THEOREM 1. If (1)-(5) hold, then dim H(Q)/H(Q) = r —1; if the
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conditions (1), (3)-(5) and (2') with a =1 are fulfilled, then
dim j(!))//(.@) =r—1. In HQ)/H®R) and in j(!))//(.@) there
exist v — 1 linearly independent vector fields d,(x) which are infinitely
differentiable in each ®;, which vanish in a meighborhood of 02N
ow;, for each w;, and for |x| > 1, zew;, j=r+1, -+, m, and which
satisfy the inequalities

C,
gi@)

This theorem can be proved in the same way as Theorem 4.2 [2] or
Theorem 4 [3].

If H(Q) = H(R), the boundary value problem for stationary
Navier-Stokes system must contain, beyond the usual boundary con-
ditions at 92 and at infinity, some additional conditions. One can
prescribe the flows of the velocity vector across sections of some ;.
Boundary value problems of this type are studied in the papers[1, 3, 4].
On the other hand, in [1] another form of additional condition is
found. It is shown that the assignment of the difference of limiting
values of the pressure for |x|— «,xc®, 7 =1, 2 also determines
uniquely the solution of the boundary value problem for the Stokes
system in the domain 2°.

_ G, oa,(x)
N

TEW;, j=1 .-, 7

2. Preliminaries. We begin with the construction of an auxiliary
divergence-free vector field in the domain (1) which is necessary for
subsequent considerations and which can be used also for the con-

struction of a basis in H(Q)/H(Q) and / Q) _Z(2). At first let
n = 8 and define the vector

(5) Q(2) =7 X {(@b(z') = Fi(z) x bz,

where b = (21)(—2,|2'|", 2,|2'|% 0), 2’ = (2, 2,), and ((z) e Z=(G) is
a function which equals one in a neighbourhood of the surface
I':|2'| = g(z,) and vanishes for small |2’|. Consequently, dc &=(G),
d = 0 near I" and for small |2'|,/-& = 0 and

S a3dz’:§ cB-cﬁ:_l—S ( gy 4 dzz)—l
) da(t) 2 Jeotty |22 |2’ |?

(o(t) is the intersection of G with the plane 2z, = £). In the case n =
2 the vector

(6) a(2) = %<_ () BC(z)) ,

0z, 0%,

where e Z=(G), L =0 for small |z, = 41 near I'*:z, = +g¢(z,),
possesses all these properties.
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It is convenient to choose the function { in a special way. For

n = 3 take
7 — e U7

(7) £@) = (e 5 )
where o, € Z=(R"), ¥(t) =0 for t <0, 4 () =1 for t>1, p(t) =t
for t >d >0, pt) = p, > 0 for t < (d/2), p(t) = ¢, p'(t) = 0, p,, d, € are
positive constants, and 4(z) is a regularized distance from z to I”
(see [5], Ch. VI). In the case n = 2, take { = for 2z, > 0, and { =
—{ for 2, < 0. It is easy to see that {(z) =0 for [2'| =< p, 0. >0,
provided p, is sufficiently small.

LEMMA 1. For the vector a defined by (5) or (6) the inequalities

Co 6(_1:(2) C1
9" Xz,)" | 0z, g"(2,)

v

(8) ld(z)| =

hold.

Proof. To be definite consider the three-dimensional case. The
support of @ is contained in the domain 4(z) < p(|7']) < €°4(z). As
the function ¢ satisfies the Lipshitz condition (2), the regularized
distance 4 is a quantity of the same order as the distance from z to
00(z,), i.e., C,4(z) = g(z,) — |7'| = Cyd(»), C,, C; > 0. Thus for z€suppa
we have e/°4(z) = p(|2'[) = (Co4(2) + [/ )(C; + 1) = (C, + 1)7'g(z;). In
particular, [2'| = p(|2']) = (C, + 1)7'g(z;) for [2'|=d. For 2’| =d,
zcsuppa the inequalities ¢(z) < (g(z;) — |7|) + |2 < Cd(z) +
d < Cp(#']) + d = Cpo(d) +d hold and consequently [2'|=p, =
0.9 (Z:)(Cio(d) +d)™'. So for all zesuppd we have e"4(z) =
p(|2']) = (Cs + 1)7'g (2,), |2'| = Cig(z,). Differentiating { and taking
into account the fact that | =2*4(z)| =< C 47'*'*(z), see [5], we obtain
| Z(z)] < Clg~'*/(z;). The same inequality holds for the function g
in the case » = 2. The estimates (8) follow from these inequalities.
The lemma is proved.

Let 2 satisfy the conditions (I)-(5). Consider the operator which
assigns the funection ¢ = -4 to every vector %4 e = (2). Denote by
A (2) the range of this operator and define in _#Z(2) the norm

lallew :_jl}f ollzwo = | Pléllsw ;

we%(!?)
v.v=q

here P is a projection on the space F (Q)O H(®). Clearly, #(2)C
L (2). Let _Z*(2) be the dual space to .Z(2) with respect to the

bilinear form (p, q) = S pgdx, so that
Q2
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1] = R

9e.7(Q) || q H,,mm

We investigate below the behavior of p(x)e #Z*(Q) for |x]| — <
and show that in some sense p(x) —0 when [2]— o, z€e®, ¢ =
1, .-,

Let @ be one of the w, i=1, -+, m, v =0w\J(0) (v is the
“lateral surface” of w), and &,°(Q2)—the set of all infinitely differen-

tiable functions vanishing near v and for [z = 0. Define _@or(a)) as
the closure of &°°(2) in the norm <(w) and .# (@) as the closure of
&;°(2) in the norm ||| f]||, corresponding to the scalar product

(9) Sy = | r@n@dz + PO HO @t

where F(t) = gwm f(z)dz provided S:g‘”‘l(t)dt < o and F(t) =
T f(@)dz inNthe opposite case. The formula (9) has a sense
for all f, he # (w), F(t) being the primitive function for Sm) faz
vanishing at infinity (or, more exactly, having the finite integral
S?F?(t)g—%—l(t)dt) in the case S:g"”—l(t)dt = co.

THEOREM 2. If % e F(w), then f =V -l Z(0) and

(10) Mo = Cill%]lzw -

For any function f e _# (@) there exists a vector i e a@or(a)) such that
=V and

(11) N8low = Glll flllo -
The constants C, and C, do not depend on % and f.
Proof. Let ue&(w), f =V-u. Clearly,

(12) 1f g = Calli|l o0 -

It follows from the relations

—S - f@Rdz = S u,dz’
w’(t) 3(t)

u,dz’ ,
A

Swmf(z)dz - Sm)u"dz' B S

that
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S:g“”“ O F()dt < 2 S:og‘”“(t)dtl Lm w2 ( :

2
), we7| = il ,

which with (12) proves the estimate (10).

To prove the second part of the theorem, take an arbitrary
function f € &°°(w) and define the vector %W (2) = F(z,)d(z), where d(z)
is given by (5) or (6) for ze€ G, d = 0 for ze w\G and F is the same
as in (9). In virtue of (8)

Sf(zﬂ)fdz I) ’

'n) lg—ﬂ(zfn) + 6Img_”+1<z'n)

so that

191 = O] oGP Eds + | — %

L ADELCAFS

Now consider the function h = f —V-% = f — a,(?) . fdz'. It is
(zq)
easy to see that S hdz' = 0 and hence S hdz = 0 for all t >0

(we recall that B(f) iz”c)o(t + g@)\w(t)). Splii(ﬂa) into layers B; by
planes (straight lines) z, = t; where t; =1¢;_; + ¢(t;_.), t, = 0. In virtue
of the property 4) of .Q in every B; one can represent k in the form
h = V-3 where v‘” € Q(B,) and |99, =Cy || R l1ym;. Consequently

the vector ¥ € & (w) which equals 9'(z) for z € B; satisfies the equation
V-%=h and

195w = 2 ”7)”)”2(8) =G Z [ R]]% LyBy) = C?Il]hl|2Lz(w) = ClOIIf]ILg(w) .

Clearly, the vector % + % = % is that which is sought. The theorem
is proved.

REMARK 1. For ¢(t) = At + b), b > 0, we have

\

so that . Z(®) = Lyo).

| 7dz| = Clif e,
w(t)

REMARK 2. If S“’g—"-l(t)dt < oo, then @ e S (w) and hence 7ie
3 0
(w).
Now define the space 4 (2) as the completion of &75°(2) in the
norm ||| f||le which corresponds to the scalar product

(19) S = rde + 3 oo r@EMa,
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where F,(t) = ) fdx for i =1, -+, r, and F, is a primitive function
w;lt
for SZ faz vanishing at infinity if © = r + 1, -, m.
(1)

THEOREM 8. If he F(Q), then f =V-ie #(Q) and
(14) W Allle < Cllidl|w@ -

For every function f e A (2) one can find a vector ie (2) such
that f =V-4 and

(15) l#llew@ = Cilll fllle -

Proof. The first statement is a consequence of the corresponding
statement of Theorem 2. We now prove the second part of the

theorem. If f e #(2), then Sl € #(®w,) and by Theorem 2 there
exist vectors #® e 2;(®,) in domains ®,, ¢ = r + 1, -+, m, such that
S=V-4? and [|4? ||z = Cll| flllo,. Let peCY2) be a function which
is equal to 1 in 2, and to zero in 2\2, (2, is just the same as in
condiotion (5), §I) and 0 < £ < 1. The vectors ¥ = % (1 — ) belong
to Z(w,), satisfy the equation V-3¢ = f(1 — p) — 4?-Fp¢ and the
inequality [|99||swy = Gl|%¥ [|owy = CGll| fllo,, Further, let ke
L,(2,) be a function which is equal to zero in 2, to w”-F¢ in w,,
t=r+1,---,m and to A1l — ) in w,, 7 =1, ..., r, the constant
h, being chosen in such a way thatS h(x)dx = —S furdx (since >
1, h, is determined uniquelly). " o
It is clear that

1ty S CI1 iy + 35 18w ) < Celll £ -

By the condition (5) §1, there exists a vector cT (2;,) such that
P =fr+h and [[@llsw,y = Cllfllnwey + 1Bl = Clll fllo-
Setting @ = 0 in 2\2,,, we obtain an element of g (Q)

Finally we find in w,, 2 =1, ---, 7, vectors %9 ¢ i (w,) such that
forzew, V99 = f(1 — p) — hand ”6“)“9((»1;) SGlIfA— ) — Rl =
G|l f1lle- Their existence is a consequence of Theorem 2 and Remark
2. The vector 4w =% + v € .@D(.Q), where ¥ = 3 forxew,and ¥ = 0
for z € Q,, satisfies the equation /-% = f and the inequality (15). The
theorem is proved.

COROLLARY. .#Z(2) = _#(2) and the norms || fll.ra and ||| flle
are equivalent.

THEOREM 4. Any function p(x) e #*(2) can be represented in
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the form

(z)

16) p) = (x)+EX<x>§ o FO-L i+ S 1@ Rt

“(t)
where fe #(2) = A (2) and X, is the characteristic function of ®,.
The inequality c.|ll fllle = |2l vy = Gl fllle holds with constants

C,, C, independent on p.

=0

Proof. By the Riesz theorem, any linear functional of h e _#(2)
can be represented in the form (13) with fe #Z(2). If he&(Q),
then, changing the orders of integration in the right-hand side of

(13), we obtain the formula {f, h), = Sgphdx where p is the function
(16). Hence follows the statement of the theorem.

COROLLARY. Any function p(x)e . #*(2) tends to zero as |x|—
o, XEW;, 1t =1, «--, 7.
Indeed, for zcw,, 1 < 7,

®) dt

p@) = 1@ + |, Pt

where f(x) € Lyw,) and

o 2 3 oo
o2 [ =" e " 2 0.

n+1 n+1 D) ynt+1 (2)
97(@) g: “n i 2, — 00

THEOREM 5. Any linear functional UP) of @ej (2) vanishing
for e H(Q) can be represented in a unique way in the form

@) = SQpV-abdx ,

where p e _#*(2), and the norm of the functional is equivalent to
1 2]|_reor-

Proof. By the Riesz theorem, there exists a vector @ e.@o 2)e
H(Q) such that (@) = [#, ] =[@, P?]. The right-hand side is a linear
bounded functional of h =V - ¢ #Z(2) and from this fact follows
the statement of theorem.

An analoguous theory can be developed for weighted spaces.
We formulate here the corresponding definitions and results.

Let .9:,(!2) and H,(2) be completions of the sets of vectors C°(2)
and _Z~(2) in the norm ||%||s o which is generated by the scalar
product
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[, 9], = g i, v,dx + z S B + g3 (@)]ede

)

H () is the subspace of divergence-free vectors from c@Z(Q), A(2)
is the set of functions ¢ =V-%, % e =@1(!2) with the norm ||q||.. ) =
inf, 7, ||V loae, #ZF(2) is the space dual to _~,(2) with respect to
the bilinear form S pgdx. The following propositions are valid.

(a) If the domain 2 satisfies(1), (2’), (8)-(5), then dim H(2)/H(R) =
r —1 and there exists a basis {@, (z), - -, @,_,(x)} in H,/H,, the vectors
d, being linearly independent and satisfying the inequalities (4) for
lz] > 1.

(b) The space _Z,(2) consists of functions which can be approx-
imated by functions from Z%°(2) in the norm ||| fl|la,e:

7o = §, 170w + 35|10 + g @))da
Sm_,,(t)fdw‘z
+ 3 Sog‘”‘““’“(t)dt Sw . fdx' ,

j=r+1

+ 3| gpar
&

and this norm is equivalent to the norm || f|| ;-
(¢) Any function from _#,*(2) can be represented in the form

m z;zj)(x)
Fi—ts + 3T o

18) p@=5@+ 21|, P L

where f and F; are functions with finite norms

(1,17 rae + ZS I ‘2[1+g,0<ljﬂ<x>)]a>m’ (I ﬁgdt)“

(d) Any linear functional of & e;@i,(g) vanishing for &e H (Q)
can be represented in a unique way in the form (17) with
peE .///,,,*(.Q)

All these propositions can be proved in the same way as were
Theorems 1-5.

Let n» = 3 and let 2 satisfy the conditions (1), (2"), (3)-(5) with
@ = 1. Define the space N(2) as the range of the operator V-u, % ¢
Wi(2), and set [|q|lyo = inf,.5-, [|9]lwia-

Denote by N*(Q2) its dual space with the norm

|2 ]lysar = 1nf S pqdwl

v gy
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THEOREM 6. Z(2) C Wi(Q), N(2) D (D), and N*(Q) C_#*(%).

Proof. Let ﬁe,@i(g). Since G,Cw,;CG}, we have |[%|[L,i;0n =
g3t |0l Bisjuny 1Wallipwy = Ci\ 4,42 (x))de and consequently

18 Bior < Coll ]y, i€, DU CWHR). Thus, #(@Q)C N@) and
AH(2) D N*(Q).

3. Stationary problems. Consider in a domain £ satisfying
conditions (1)-(5) the boundary value problem

(19) ~VH+Ip=F, V5=0, Bli=0, Blhe=0
with additional conditions

(20) P — D, = Bss i=1:"',7"—1’

where p; = lim,_. p(x). The constant p, can be considered as an
arbitrary constant in the definition of the function ().

Now we give a generalized formulation of the problem (19), (20).
If ¥, » is its classical solution, then for any @ ¢ H(2) we have

@) | Fpta=| 5240+ 3(], pp-aas - 2%.34s),

24 2, i=i\Jzjw ;) O
where % is the unit normal vector to Y,(t), directed exterior to £,.
Suppose that for zew,;, || > 1, we have p(x) = ¢(x) + p; where g¢
A *(2). Then passing to the limit in (21) as ¢t — « (at least along
a certain sequence), we obtain

[ 5.900 + S0, | poas = | Fopda.
2 i=1 =5 2

Since 3., S @-1%dS = 0 (it follows from Theorem 3 of [3] that
s A~
S _@-ﬁdS =0 for j=r+1, .-, m ®e H(2), the relation

2j

39, 77dS = 5 (0, — p) | 7-7idS
=1 i =1 55
holds. These arguments give us the motivation for the following
definition. R

A weak solution of the problem (19), (20) is a vector ¥e H(R)
which satisfies for all $ ¢ H(Q) the integral identity

(22) [5-000 + S| poisas — | 7pdo=0.
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THEOREM 7. Let L F-3.dz be a linear functional of e D (Q),

ie., for all Pe W), ]ng-gsdx‘ < C,{|®llow. Then the problem
19), (20) has a wunique weak solution. Moreover, there evists a
unique, modulo a constant summand, function ()€ L, 1..(2) satis-
fying for all 97569@0 (2" L, 2 compact) the relation

(23) | 390 =\ Fpde+| orpdo.

Proof. The first statement follows from the Riesz theorem on
the general form of a funectional in a Hilbert space (see [6], Ch. I,
§1). To prove the second statement note that for any < H(Q,) =
H(2)) (2, is a bounded subdomain of 2 with a Lipshitzean boundary)
the identity (22) takes the forms P, Pdx = ga f -Pdx. As is shown

o 2
in [2], for @ € &(L2,), we then have

g T, P dx — g f -Pdr = S oV -Pdx , for some p, e L,(2),
2; 2 2,

and the functions p, and p, corresponding to two intersecting domains
2, and @, differ from each other by a constant. Therefore it is
possible to define in £ a function p € L, .. (2) satisfying (23). ]

Now let us show that as |x| — =, x€®,, © < r, the function p(x)

tends to a constant and that (20) is satisfied. The expression
1@ = | 3.-5.00 + S 6.\, 5745 - | F-pdo
is a linear functional of P ¢ i (2) vanishing for 3 e H(Q), so by virtue
of Theorem 6
r—1 —
@ (55404 6l 0045 - Frode = [ a7-sa,
2 i=1 x5 2 2

where qe #Z*(2) and $ is an arbitrary element of K (2). The
sections J; of ®; in (22) may be chosen arbitrarily but in (24) they
should be fixed; the function ¢ depends on X;. Let 3; = ¥,(0) and

take in (24) Pe 2?(!2’) where Q' Ccw;, j<r,2N32;=@. Then in
virtue of (23) we have

(25) [, @8 = Fop)is = | w77 = | or-pas

and consequently in w;, p = q + p;, p; = const. Analogous arguments
show that in 2, U ®,, » = q + D,.
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Now let 2'c 2 be a bounded domain which is divided by the
surface Y; into two subdomains, 2, and 2,Cw;. In this case we
have, instead of (25),

S pV-ﬁdw4—BfS ¢-ﬁdS==S qV~¢dx==S (p — p )V -Pda
27 Zj Q! N
+-S 09—-pﬁV-¢dx=:S pV-@dx-+(pj——zn)S @-ids .
2 2 z;

Consequently, B, = »; — », and we have justified the above definition
of weak solution of the problem (19), (20).
Consider now the nonlinear problem

—PF+ @+ Pp=f, V-5=0,

(26) . N .
”]a.o:O,’th]:oo:O, ;i — D = Bj, .7:1;""7'__17

in a domain 2 C R® satisfying the conditions (1)-(5). Let S£(2) be
the linear set of vector fields § = >;21 A;@; + 7j(x) where \;€R', 7)€
4"(2) and the d,(x) are vectors forming a basis in H(Q)/H(RQ) and
satisfying (4). This set is dense in H(Q).

Denote by &5(2p) the set of infinitely differentiable vectors
defined in the domain £, and vanishing near the surface S; =
02:\Ui- 3 (R), by é’R(QR) the completion of &5 (2;) in the norm of
K (“QOR)’ and by H'(Q;) the set of all divergence-free vectors belonging
to 2:(02).

Define a weak solution of (26) to be a vector v e H(Q) satisfying
for all € 57°(Q2) the integral identity

@7 Sg?fx-g’ixdx _ SQTJ-(T;-V)??dx - SQ F-pde — g 8, L 3-7dS

i

(the convergence of the integral Sg??-(f?i-V)é)’dx with 17eﬁ(!2),q‘5e
SF (2) follows from the estimates (4)).

THEOREM 8. Suppose that the domain 2 C R® satisfies the con-
ditions (1)-(5), g;(t)ime—> 0 for ¢ =1, -+, 7, f satisfies the conditions
of Theorem T, and that for all e H'(23),

|, 7-#dz| < CHIB 12 0
R

(C% does mot depend on R or P). Then problem (26) has at least one
weak solution.

Proof. Consider in 2, an auxiliary problem of finding a vector
v® e H'(2;) which satisfies the integral identity
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S P de — S 3°. (50 P)Pde + L zg (5" 7)(3*- 3)dS
2p 2p 2 =

(28) - r—t
- SQRf-gb’dx -5 5 Ssqu-ﬁds

for all @ € H'(2;) (we suppose that ¥;cC 2,).
Taking @ = ¥® in (28) it is easy to show that for any solution
of this problem the estimate

(29) 15 lawp < C; + C S 1651

holds. Therefore the existence of a solution may be derived from
the Leray-Schauder theorem in the same way as in [6], Ch. V, §1.
Moreover, it follows from (29) that there exists a sequence
R, — oo such that: (1) the sequence I7§k = 0v™/ox, for x € Qzr ka =0
for € 2\2,, converges weakly in L2, to dv/ox, Ee,@o(!)), 2) the
sequence % converges in L, (2) to ¥ for any fixed M. Now let
R, — o and pass to the limit in (28). Clearly, for ¢ _#£=(2), this
passage leads us to (27). The same is true for @ = d;, since

[, @=iE=d)ds | < Cortr) | [pds
T (Rp) 5 (R)

< Cll 5|2 0, 97 (RL) — 0
and, for B, > M,

’S B (55 P d e — S a-@-majdx‘
.QRk 2
(30) < HQ [B% - (BBk-F7) —6-(17-V>]6’,~-dx’
“M
+Cs(i S |97 *g7%(27 ())dar + f‘.g 1% g5 s(zéf’dw> .
=1 Joj(rp\e ) =1l Joi\eii)

The second term in the right-hand side does not exceed
C(3 50D 6715 eany + 0515 o)
J=1t>M
consequently, it can be made less than any fixed ¢ > 0 by an appro-

priate choice of the number M > 1. After that we can make the
first term less than ¢ by taking R, large enough. This shows that

S BREL (5% ) 8, -——-»S B-(3-7)ido .
'QRIc Rk — CO 2

Hence, ¥(x) satisfies (27) for any @ = 7 + >; \;8; e 7 (Q).

The justification of the above definition of a weak solution can
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not be carried out in the same way as for the linear problem, since
the functional

@) @) = Sgax@;dx + 58 L@-ﬁds - Sgﬁ-("o’-V)g‘bdx . Sg Fopda

with 7 A(2), may not be defined for all $e (2) (clearly, it is
continuous if e H(Q) N L,(2)). We carry out the justification with
some additional restrictions on 2.

THEOREM 9. Let Swgi‘s(t)dt < oo for t=1,---, 7. Then there
0
exists a unique function qc _#5(2) such that U(P) = quV -@dx  for
all e Z,,(2).

Proof. As 57(9) is dense in H,,(2) under the conditions of the
theorem, it suffices to prove that I(@) is a continuous functional in

;ém(g). This fact is evident for all terms on the right-hand side
of (31) except perhaps the integral

] = Sga-(a-mcﬁdx —S 3-(5-P\@da + zg G-N@dz .

We have

|, 3@ Ppda| < CillB sy 131 oy
0

b-@-npdz| < o) 15.00,60 @)ia))

where

Ci(®) = S H"J|IL4(2 N (t)

< Cosup 113l | 13112,007 )t
= Gl p | 1Bl syt = CullBllsy

Consequently, |.77[8]]| = Gll?][%w | Plloy, and [UP)| = Col| Pl
O

It follows from this theorem that the pressure p(x) corresponding
to the weak solution %(x) of (26) differs from ¢(x) in every “exit” @
by a constant p; and p; — », = B;. It is seen from (18) that any
function g e #Zi(2) in a certain sense tends to zero when |x| — oo,
so that p; = lim,_. p(x).

a:ewj
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4, Non-stationary problems. If the domain 2 satisfies the
conditions (1), (2, (8)-(5) with a =1, it is possible to prove the
solvability of initial-boundary value problems for the non-stationary
Navier-Stokes system with additional conditions of the form (20). We
restrict overselves to consideration of the linear problem

B, — VB +Vp=fx,t), Vo=0 e te(0 T)),
(32) 6|t=0 = 6o(x) ’ ’l_j|a.o =0 ’ ij[lac[—»m =0 ’
pt) —o(8) =B, (), ¢=1,---,r—1

where p,(t) = lim ,.x,4c0, P, t). Denote by _Z'(Qr), @r = 2x(0, T),
the space of divergence-free vectors with a finite norm

T o 1/2
U S @ + % + vi)dmdt:l
0Je
belonging to j () for almost all t€(0, T). Define a weak solution
of (32) as a vector ¢ _Z'(Q,) satisfying the initial condition 9|,., =
P,(x) and the integral identity
T - r—1 (T

(33) ﬁg@,-ry + 3, D)dedt = S g,, Frdedt — S S 8,(t)dt L 7-#dS

0 0 4]

j=1 i

for all 7 e L,(0, T; H)).

THEOREM 10. Let the domain 2 C R® satisfy (1), (2, (3)-(5) with
a =1. Then for any f € Ly Qy), B;(t) € W0, T), ¥,€ H(R) the problem
(82) has a unique weak solution.

This theorem may be proved by Galerkin’s method (see [6], Ch.
VI, §6). The proof is based on two estimates for Galerkin approxima-
tions. The first estimate is the energy inequality

sup Sglii(x, 7) [Pdx + S:SQI@ [*dxdt

ze (0,T)
T - r—1 T
= 6 |5@rde + [ | 17 @ t)rdeds + 5. 18102)
2 0JQ J=1Jo
which can be easily obtained from (33) after the substitution 7(x, t) =
¥(x,t) for 0=<¢t=<7,7=0 for t<t<7T. Taking in (83) 7 =%,
and making the transformation

|t poas = — [ Suar o-sas

+ 6 | 300, 170 — p,0) | 5,7ds,

we obtain an estimate for STS vidxdt in terms of the data. As the

0JR
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Galerkin approximations satisfy an equality of the form (33), both
estimates are valid for them. The proof of the existence of a weak
solution is quite standard and may be omitted. Now, taking in (83)
7z, t) = E)P(x), P € H(Q), we see that for almost all te (0, T),

Up) = SQ@}-@ + 0,3, — P + S 6,0 L P-ndS =0,
g=1 3§

hence, for Pe VOVQ(.Q), UP) = qu(x, tyW-pde and qe€ N*(Q)c M*(2).
From the estimate

lalta = C(1Bdllo + 152 a + 1l + 3 1850F)

we deduce that q(x, t) € L,(0, T; N*(Q)) < L,(0, T; M;(2)) and therefore
in a certain sense ¢ — 0, as |x| — . Repeating the arguments of
§3, it is easy to prove that in w;,, =1, ---,» — 1,

o=, 1) = q(x, 1) + p;(t), 2 — p,(t) = Bi(t) .

Thus, we see that the presence in the integral identity (83) of
T
an additional term 337} S 6j(t)dts; 7-7ndS does not lead to any essential
0 )

change in the well-known proof of the solvability of the linear non-
stationary problem. The same is true for the non-linear problem
with additional conditions of the type (20). As in [6], it is possible
to prove that the non-linear problem with these additional conditions
is solvable locally with respect to ¢.
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