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Let K be either the field of complex numbers C or the
field of real numbers K. Let n be a fixed integer >2, and
¢ denote the number exp 2ri/n). Let f,fi:C—> K for j=
0, --+,n. Define 4, and 2, by

Ao, ) = 08 f + o) | — @),
2w, 9) =0 D Filw + o) | - i),

for all z,y€C. Our main result is the following. If
(n +1) unknown functions f;:C—>K for 5=01,---,n
satisfy the quasi mean value property Q,.(z,y) =0 for all
z,y€C, then (n --1) unknown funections f; satisfy the
difference functional equation 4. f,(x) = 0 for all 4,z C and
for each 7=20,1, --+,n, where the usual difference operator
4, is defined by 4, f(x) = f(x + u) — f(x). By using this result
we prove somewhat stronger results than the theorem of
S. Kakutani-M. Nagumo (Zenkoku, Sigaku Danwakai, 66
(1935), 10-12) and J. L. Walsh (Bull. Amer. Math. Soc., 42
(1936), 923-930) for the mean value property A,(z,y) =0 of
harmonic and complex polynomials.

1. Introduction. Throughout this note K denotes either the
field of complex numbers C or the field of real numbers R. Let n
be a fixed integer >2, and ¢ denote the number exp (2xi/n). Let
f,f:C—K for vy=20,1, ---,n. Define 4,(x, y) and 2,(x, v) by

4w, 9) = w7 St + o) | - f@),

2o, v = 1 S i+ o) | - 1@

forall z, y€ C. A function f: C — K is said to have the mean value
property for polynomials if f satisfies the equation
A, (2, ) =0 for all =z yeC,

while, as a generalization of the mean value property, » + 1 func-
tions f,: C — K are said to have the quasi mean value property for
polynomials if f, satisfy the equation

2, y) =0 for all z,yeC.
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In 1935 S. Kakutani and M. Nagumo [19], and independently,
in 1936 J. L. Walsh [29] proved the following theorems concerning
the mean value property of harmonic and complex polynomials.

THEOREM A. (Kakutani-Nagumo-Walsh.) If fiC— R is con-
tinuous, the mean value property A, (x,y) = 0 holds for all z,ycC
if, and only if, f(x) is a harmonic polynomial of degree at most
n — 1.

THEOREM B. An entire function f satisfies the mean value
property A x,y) =0 for all x, ycC if and only if f is given by a
complex polynomial of degree at most n — 1.

The above Theorem A and Theorem B are direct or indirect
motivations for the generalizations and applications of J. Aczél, H.
Haruki, M. A. McKiernan and G. N. Sakovi¢ [2], E. F. Beckenbach
and M. Reade [3], [4], A. K. Bose [5], L. Flatto [7], [8], [9], A.
Friedman and W. Littman [10], A. Garsia [11], H. Haruki [13], [14],
S. Haruki [15], [16], [17], J. H. B. Kemperman and D. Girod [21],
M. A. McKiernan [25], M. O. Reade [27]. For more details of
functional equations of type 4,(x, ¥) = 0, see M. A. McKiernan [26],
and for the relation to Gauss’ mean value theorem, harmonic functions
and differential equations, see L. Zaleman [30].

The main purpose of this note is to study some more generaliza-
tions of Theorem A and Theorem B from the standpoint of the
theory of finite difference funectional equations.

2. P.additive symmetrical mappings, generalized polynomials
and 4f(x) = 0, In this section we present some notation, defini-
tions for p-additive symmetrical mappings, generalized polynomials
and resvlts of S. Mazur and W. Orlicz [23] for the finite difference
funetional equation 47f(x) = 0.

DEFINITION. A mapping @*: C — K is called a homogeneous poly-
nomial of degree p if and only if there exists a p-additive symmetri-
cal mapping Q,: C* — K; that is, Q,(x, ---, x,) = @@y, -, @) for
all (x,, ---, z,)€C and for all permutations (,, - -, 4,) of the sequence
@, ---, p) and Q, is an additive function in each 2, 1 = ¢ =< p, such
that Q*(x) = Q,(=, ---, z) for all xeC. We say that @, is associated
with @® or that @, generates @Q”.

We agree that for »p = 0 a homogeneous polynomial of degree
zero is a constant. If p is a fixed positive integer, then z,: C— C?
will denote the diagonal mapping ‘given by z,(x) = (x, ---, ). It is
clear from the relation Q°(x) = Q,(x, ---, x) that Q*: C— K is the
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composition of two mappings

C0r 2K and @ =@Q,ex, .

If @*: C— K is a homogeneous polynomial of degree p, one obtains
Q") = AQ(x) for any rational number A. Indeed, the relation
Q = Q, yields @) = Q,(\w, -+, M) = MQ,(w, - -, ¥) = VQ"(x) for
all xeC and for any rational number .

DEFINITION. Let 8 be any nonnegative integer. If f:C — K is
a finite sum f=@Q' + @ + --- + Q° of homogeneous polynomials,
then f is called a generalized polynomial of degree at most g.

For f:C— K and for yeC we define the usual difference
operator 4, by 4,f(x) = f@ + y) — fl@). For y,eC, 1=1,2, ---, u,
we inductively define the nth order difference operator 4;,..., by

Ay S@) = (37t N, f(x) .

Notice that the ring of operators generated by this family of
operators is commutative and distributive.

The following general theorem of S. Mazur and W. Orlicz [23]
in the theory of finite difference functional equations plays a funda-
mental role in our study.

Fundamental theorem. Let M, N be fixed integers = 0. Let
X be an Abelian additive semigroup with unit element 0 and Iz =
2+ 2+ --- +x for integer I > 0, xe X, and let F be an Abelian
group and ly=y+y+ --- +y for integer 1 >0, yeF. Let
fi: X— F. The following three statements are equivalent if MY = 0
in F:

(a) 45 f(x) = 0 for all ¢, ye X,

(b) 477, . f(@) =0 for all «, 4, ---, Yy, € X,

() f is a generalized polynomial of degree at most N, that is,
f)y =@ + Q'x) + --- + Q"(x) for all xe X, where @»: X— F for
p=20,1, ---, N are homogeneous polynomials.

Note that the above Fundamental theorem clearly holds for the
case X =C and F = K.

Notation. We denote QI(x) = @, ,(x, ---, ) for v =0,1, ---, n,
where @?: C — K are homogeneous polynomials of degree p for v =
0,1,-.--,n

Notation. Let Q_,,.(x; y) denote the value of Q,(x, ---, z,) for
z, =2 1=1---,m—7r and 2, =y, i=n—7r+1 ---,n. In par-
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ticular Q.. (¥; ) = Qu.o(@; ¥) = @"().

3. The quasi mean value property £,(x, y) = 0. Our first
result is the following:

THEOREM 3.1. If n + 1 unknown functions f,:C—K for v =
0,1, ---, n satisfy the quasi mean wvalue property L.(x,y) =0 for
all z,yeC, then there exist gemeralized polynomials of degree at
most w — 1 such that

F@) = Q + Q@) + - + Q%)

Jor all xeC and for each v =0,1, ---, n.

The proof of Theorem 3.1 is based on the Lemma 3.1 below.
Let G and H be additive Abelian groups. Let S be any field and
G, H be a unital S-modules. Let f: G — H satisfy the equation

Z%m/lf(erozfy):O for all z,yeG,
=0

where n > 2 is a given integer, v, # 0, a, = 0(=a,) for i = 0,1, ---,
are fixed elements in S and «; # «a, for j k. The above equation
is a generalization of the difference functional equation (ef. J. Aczél
[1], D. 7. Djokovié [6], D. Girod and J. H. B. Kemperman [12],
M. H. Ingraham [18], J. H. B. Kemperman [20], [22], G. van der
Lijn [28], S. Mazur and W. Orlicz [23], M. A. McKiernan [24], [26])

A f@) = 0, iﬂ,é@ﬂwwpm+M:0

.

for all z, y€G. More generally we have

LEmMMA 3.1. Let f:G— H for 1 =0,1, ---, n satisfy the equa-
tion
(3.1) SA+ay) =0 fordl xycG,
where a; = 0 for 1 = 0,1, -+, n are fived elements in S and a; + «a,

for 7% k. Then equation (3.1) implies

(3.2) Aifi(x) =0  for each ©=0,1,---, n and for all x, ueG .
Proof of Lemma 3.1. In view of equation (3.1) one can observe

the following property.

To eliminate the kth term f,, 0 <k = n, we

(3.3) replace © by * — a2, and ¥ by ¥ + 2, in (3.1).



THE THEOREM OF S. KAKUTANI-M. NAGUMO AND J. L. WALSH 117

Indeed, for & = 7 we have
folw — az; + ay + a;) + -+ + fi(w + a;y)
+ e+ e —ag; Fay +ag) =0
for all #, y, 2;€ G. Take the difference between (3.1) and the above
equation to obtain

(34) —/I(aofmj)zj'f.o<x -+ aoy) + o+ 0 4o+ d(rxnch)z]‘f.'/Kx + any) =0

for all #, ¥y, 2, € G, since f;(x + a;y) is unchanged. Thus f; is elimi-
nated. If the same argument (3.3) is repeated (» — 1) times, then
(3.4) yields

(35) d(ag-nJ)Zjdﬁlzl Tt Aﬁ’nzn‘fo(w + aoy) =0

for all z,v,2, ---,2,€G, where 8, =a, —a, for { = 1,2, ---, % and
L+ j. In (8.5), replace = + a,y by =z and set u = (o, — a;,)z;, =
Bi% = -+ = 3,2,. Then (3.5) becomes

drfy(x) =0 for all x, ueG.

It is clear that an obvious modification can be applied for the terms
fule + ay) for k=1,2, ---, n to obtain

difilx)y =0 for each k£ =1,2, ---,n and for all 2, ueG.

Thus (3.1) implies (3.2). The Lemma 3.1 is proved.

Proof of Theorem 3.1. Observe that without loss of generality
we may assume one of a; =0, ie.,, ;= 0=0,, 1=0,1, ---,n — 1,
in Lemma 3.1 in order to obtain the same conclusion. The proof
now immediately follows from Lemma 8.1 and the Fundamental
theorem with G = X =C and F=S = H = K.

4. The mean valued property 4,(x, y) = 0. We first determine
the general solution of the mean value property under no regularity
assumptions. Then we prove somewhat stronger results than that
of Theorem A and Theorem B, when some weak regularity assump-
tions are imposed on f.

THEOREM 4.1. A function f:C— K satisfies the mean wvalue
property A, (x, y) =0 for all x, ycC if and only if there exists a
generalized polynomial of degree at most n — 1 such that

(4.1) f@2)=Q + Q@) + --- + Q') forall xzecC,

where the homogeneous polynomials Q*:C—K for p=1,---,n —1
must satisfy the equation
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n—1 n— 3

(4.2) Z(j )Q(s~u,q)(x; 0y) =0  for all w,yeC.

v=0 4§ o=1

-

|
-

Proof of Theorem 4.1. If f: C— K satisfies 4,(z, y) =0 for all
2, y € C, then (4.1) immediately follows from Theorem 38.1. To show
the converse, substitute (4.1) into 4,(x, y) = 0 to obtain

g(@" + Qx4+ 0y) + - + Q@ (x + 6°y))
=n(@ + Q) + --- + @ '(2)),

which implies, since Q" '(x + 0*y) = >,7=; (" ; 1 )Q(n—1—~a,a)(x; 6*y),
7n—1 9 2
§) <Q° + Q'(x) + - + Q" (w) + Q@y) + ; (G )Q(z_o,,,(x; 6*y)

4.3) + e F i‘i ( " G)Qm_l_,,,,,)(x; ﬁ”y))

o=1 g

=@ + Q@) + -+ + @ (x) .

But in order for (4.1) to be the general solution of 4,(z, ) = 0, the
homogeneous polynomials @’ 6 =1, 2, ---, » — 1, must satisfy equa-
tion (4.3). This case occurs only if

n—1 2 2 1 _ 1
,,Z=(', {Ql(ﬁ”'y) -+ ‘;::1 (0 )Q(2_0,0>(w; 0”y) I ag} (n )Q(n_l——a,a)<m; 0vy)}

g
=0,

which yields (4.2). This proves the Theorem 4.1.

THEOREM 4.2. If a function f:C— R satisfies A,(x,y) =0 for
all z,yeC, then (4.1) holds for all x€C, where Q*: C— R for p =
0,1, ---,n — 1. Moreover, f is bounded on a set of positive Lebesgue
measure if and only if f is givem by a harmonic polynomial of
degree at most n — 1.

LEMMA 4.1. Let f: C— K be a generalized polynomial of degree
at most n — 1 such that

(4.1) o) =Q + Q@ + --- + Q" '(»)

Jor all x€C, where @*:C— K, p=0,1, -+, n — 1, are homogeneous
polynomials. If f is bounded on a set of positive Lebesgue measure,
then Q° for » = 0,1, ---, n — 1 are continuous everywhere and hence
so is f.
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Proof of Lemma 4.1. Replace x by Mx foreach M =1,2, ---, n.

Then

f(x) 111..-1 Q°

f(2a) 1 2 2.2 || QYa)

flnx) 1 n »n---n" ] Q2
We briefly write this as |F'| = |V]||Q|. Observe that |V| is the van
der Monde determinant and is not zero. Therefore Q*, » =0,1, ---,
n — 1, can be determined uniquely in terms of f(Mzx) for M=
1,2 ---,n. Since fis bounded on a set of positive Lebesque measure,
the Q°(x) for p=0,1, ---, » — 1 are bounded on a set of positive
Lebesgue measure for all x. On the other hand we have the basic
identity

Qn—1(951, crey, Lpoy) = (1/(% — ]_)!)Ax1 e Axn,lQn—l(m)

for all =, x,, -+, 2,_;. The right side is the sum of 2"~ terms of
the form

(=)= ((n — HNQ* &y, + -+ + @)

with z = 0. But we have just proved that Q?(x) is bounded on a
set of positive Lebesgue measure for p = 0,1, ---, » — 1 and for all =.
Hence @, for p =0, 1,---, » — 1 are also bounded on a set of positive
Lebesgue measure for all z,, -+, 2,,. It is well-known (e.g., [20])
that an additive funection f: C— K which is bounded on a set of
positive measure is continuous everywhere. It follows from this
theorem that a p-additive mapping which is bounded on a set of
positive Lebesgue measure is continuous everywhere. Hence, Q7
for each p=0,1, ---, % — 1 is continuous everywhere. Equation
(4.1) now shows that f is continuous everywhere. This proves the
Lemma 4.1.

Proof of Theorem 4.2. This is a consequence of Lemma 4.1 and
Theorem A of Kakutani-Nagumo-Walsh.

For the case K = C we have the following:

THEOREM 4.3. If a function f:C— C satisfies A,(x,y) =0 for
all x, yeC, then (4.1) holds for all x€C. Further, f is bounded on
a set of positive Lebesgue measure if and only if f is a complex
polynomial of the form

n—1 n—1
(44) f(x) = 3g(l)afo,sxs + éarﬂ_ﬁr ?
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where T denotes the conjugate of x.

LEMMA 4.2. Let n be a given integer =1, and let @,: C*— C be
an n-additive symmetrical mapping and continuous everywhere.
Then there exist complex constants a, &, ---, &, such that for all
%y -0, 2, €C,

n

(4.5) Q@ -+, @) =2, (ar DLy X Tn @) .
)

r=0

Proof of Lemma 4.2. For n = 1 we have
Qi + x,) = Qi) + Qi(,) for all =, x.€C,

whose continuous solutions are well-known (e.g., see J. Azcél [1, p.
217]) to be of the form

Q,(x) = Az + BZ&

where A and B are complex constants. We now assume that (4.5)
is true for » = m = 1. For » = m + 1 the continuous solution of
the equation

(4'6) Qm+1(x1, ct Ly Y + Z) — Qm+1(x1y Y Ly y) + Qm+1<x1, tt Lomy z)

for all «,, ---, #,, ¥, z€C is given by

(47) Qm-l—l(xl; 0ty Loy wm+1> = Z (Ar<xm+1)(2|> L2y = = xr:i¢+19_0.r+2 t :zm> .

=0

Substitute (4.7) into (4.6) to obtain

i <Ar(y + z) Z x1x2 .. xrif‘l’l%r»}»g PP Em)
@)
= zﬁ%(A,(y)(%x]xz NPV %) )

+ i (Ar(z)(% Blly » v+ Ly g = ° 9?,,,) .

=0

By the unigueness theorem of polynomial coefficients we have
Ay +2) =A(y) + A.(2) foreach »r=0,1,-.--,n

and A4,(x) = a,xz + 8,% for each », where «, and 3, are complex con-
stants. This solution in (4.7) implies

m

Qm+1 = Z ((arxmﬂ + Bro_cmﬂ) (Zi Lily * ** xra;_r'i'lﬁ'r‘iﬂ et xm)
m
r

=0
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which shows that there exist complex constants a,, a,, - -+, @, Such
that

nt1
Qi = 2, (a/r (Z 7R P R Y P §m+1> ’

r=0 m;}—l)

yielding the Lemma 4.2.

Note that in particular for the case 2, =2, = -+ =2, =%,., =
Bpio = -+ = X, (4.5) becomes
(4.8) Q@) = 3 a,z"F" .
r=0

Proof of Theorem 4.3. By applying Lemma 4.1 with K = C we
obtain that Q? is continuous for each p =0,1, ---,» — 1. Hence,
Lemma 4.2 with (4.8) yields

QR (x) = i a,x""E" for each p=0,1,---,n—1.
=0
Hence, by (4.1), we have
(4.9) ﬂ@:%;wyﬂh

Conversely, if (4.9) is substituted in the mean value property
A,(x, y) = 0, then we obtain

S llaoo] + [a0s@ + 0°%) + 0,3 + FD)]

+ [ao,z(x + Gy)? + a’l,?(x + y) (T + 03?7) + @, (T + 0—,7‘7)2]
(4.10) 4 oo (@@ + YT+ @@ + YT 4 0F)
+ .-+ a/n—l,n—l(ﬁ + 0_‘/?7)”“1]}

s

n—1
=n 2> 0,27 .
§=0

r=0

By expanding both sides of (4.10) and comparing coefficients a,,, one
observes that (4.9) satisfies the mean value property 4,(z, y) = 0 if
a,,=0for r+#s, r,s=1,---,n — 1, since the right side of (4.10)
is independent of ¥ and ¥, and

S‘:(ﬂ“ﬂ'”)":fn for p=0,1,---,2n -1,
y=0
3" =0 for p=1,---,n—1,

@ =0 for p=1,---,n—1,

and
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n—1 _
> (696 =0 for 7#1,45,1=1,---,n—1.
=0

Therefore, we obtain
n—1 n—1
(4'4) f(x) = ;}CLO’SWS + Z{ar,rfr .

This proves the Theorem 4.3.
The author wishes to thank very much Professor J. Aczél for
his advice and encouragement.
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