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REPRESENTATIONS OF HOMOLOGY 3-SPHERES

HugH M. HIiLDEN

Every homology 3-sphere can be represented as a framed
link, in the sense of Kirby, of the following special type.
There are & disjoint embeddings in S°® of a genus one
surface with two boundary components. The link is the
2k boundary components. If ¢ is the linking number of
the ith pair, then one of the components has framing ¢+1,
the other ¢—1.

1. Introduction. A very useful and fairly recent method for
studying 3-manifolds, in particular for the study of examples, is
R. Kirby’s “Calculus of framed links” (see [8], [7]). Another, older,
method is through the mapping class group of a surface via
Heegaard splittings (see [1], [4]). Through the work of Birman
[2], Powell [9], and Johnson [6], a geometrically appealing (but
infinite) set of generators has been found for group of homeomor-
phisms of an orientable surface, up to isotopy, that induce the
identity on homology. It is the purpose of this paper to use this
set of generators to obtain a representation theorem for all homology
3-spheres as special framed links. It turns out that the formula
for the pg-invariant of homology 3-spheres represented this way is
particularly simple.

2. Notation and conventions. Throughout the paper X, will
be a 3-dimensional genus ¢ handlebody, T, its boundary, X, another
such handlebody, and 4 a PL homeomorphism from 7T, to 90X, so
that X, U X, defines a Heegaard splitting of S® Also, A will be
an “annulus with a handle”; that is an oriented genus one surface
with two boundary components. The boundary components derive
orientations from the orientation of A and will be denoted a and b.
We assume the reader is familiar with such concepts as “character-
istic surface”, “intersection matrix”, “index”, and “g-invariant” as
they apply to three and four manifolds. These terms are defined
in [8].

3. Several propositions. In this section we state several
results needed for the proof of the main theorem.

PROPOSITION 1. Let H?® be a genus g homology 3-sphere. There
is a homeomorphism ¢ of T, such that ¢ induces the identity on
the homology of T, and H* = X, U X,.
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Proof. This is proven by Joan Birman in [3].

Let f:A— T, be an embedding. If we do Dehn twists in
opposite directions about the boundary curves of f(4), it is not
difficult to see that this homeomorphism induces the identity on the
homology of T,. We shall call such a homeomorphism “special” for
awhile.

PROPOSITION 2. Let ¢ be a homeomorphism of T, that induces
the identity on homology. Then ¢ is isotopic to a finite product of
“special”’ homeomorphisms.

Proof. This follows directly from results of Dennis Johnson
([6]), Jerome Powell ([9]), and Joan Birman ([2]).

PROPOSITION 3. Let M’ = X,U,,.....; X; Wwhere a; is a homeo-
morphism of T,, 1 = j=mn. Then also

M=X,UT, < [0, 11U T, x[1,2]U - UTx[n,n+ 11U X,
¢ &1 &\2 ‘Qn ¢
where &.7'(%! .7) = (aj(x); .7)'

Proof. We can present M* as

M3=X9L;Tgx[0,l]LdJTgx[l,2] U ---L;Tgx[n,n—i—l] U X;

Cpeeretyt
and then explicitly define a homeomorphism as below.

X, UT, < [0, 11UT, x [0, 21U - UTy X [n,n + 11U X/
i & & &, :

L'd Iid ]alxid Tazalxid- .. Ian- ey Xid '['id

XU, x[0,UU T, x[0,21U - UT,x[nn+1 U X

el
4, Statement and proof of the main theorem.

MAIN THEOREM. Let f;,, 1 <1 =< n be a set of smooth embeddings
of A in S*® with pairwise disjoint images. Let q, be the linking
number of fia) and f;(b). Frame the link {fi(a), fi(d); fi(a), fo(b),--,
L)} with framing numbers {—q,+1, —q¢,—1; —¢. + 1, --+, —q,—1}
respectively and let M® be the 3-mamnifold constructed from this
framed link using the Kirby calculus ([8]).

Then M°® is a homology 3-sphere and every homology 3-sphere
can be constructed this way. The pg-invariant of M?® (as an integer
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mod 2) is the mod 2 sum of the Arf invariants of the surfaces f,(4)
that have ¢, even.

Proof. We begin by showing that an arbitrary homology
3-sphere H® has this type of representation. It follows directly
from Propositions 1, 2 and 3 that

H=XUT, x[0,JUT, x[1,21U---UT, X[nn+1]U X,
¢ a "A‘z 3

3
En

where SSZXy Uid TgX[O, 1] Uid TgX[l, Z]U o 'Uid Ty>< ['n; 7’&+1] U‘L Xg,
and a@;: T, x {j} — T, x {5} is “special”’. Thus there are embeddings
A>T, x{j}, 1=j=n and @; consists of simultaneous Dehn
twists in opposite directions about the bounding curves of f;(4) in
the surface T, X {j}. Denote f;(a) and f;(b) by k, and k, respec-
tively.

For ¢ =1,2 let U, be a tubular neighborhood of %, let m, be
a meridian, let I, be a longitude, and let s, = f;(4A) NoU,. Assume
m,;, l;, and s, lie in dU;. Orient s, and [, parallel to %, and orient
m, using k; and the “right hand rule”. To do a Dehn twist in the
surface T, x {j} along the curve k, we split S® along T, x {5}, do a
full twist in one of the two annuli bounded by the copies of F,
and s, and sew S® back together along 7', X {j}.

This is equivalent to removing U, and sewing it back in so
that a meridian is sewn to m, + s, where the sign is determined by
the direction of the twist. To see this, before removing U, just
push it down a little into the surface T, x [j — 1, j], so that the
annulus bounded by k%, and s; lies in the boundary of U,.

If the meridian of U, is sewn to m, + s,, then the meridian of
U, is sewn to m, F s, since the twists are in opposite directions.
We assume (by renumbering if necessary) that the meridian of U,
is sewn to m, + s,.

In the homology of the complement of %k, we have s,=I, + e¢m,
for some integer ¢ then L(s, k) = L(l,, k) + c¢L(m,, k,) where L( , )
stands for linking number. Thus ¢=L(s,, k)=L(—s,, k)= L(—k,, k)=
— L(ky, k). Similarly s, = I, — L(k,, k,)m,.

If we do framed surgery, say on k,, with framing ¢, then the
meridian is sewn to [, + tm, = s, + L(k,, k)m, + tm,. If we choose
t = —L(k,, k) + 1, then the Dehn surgery and the framed surgery
have the same effect. By an analogous argument, the Dehn surgery
at &k, has the same effect as framed surgery at k, with framing
—L(k,, ;) — 1. Thus we have shown that every homology 3-sphere
has the asserted representation.

Now consider the manifold M® defined by any framed link
satisfying the hypothesis of the theorem. Following Kirby [8], we
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construct a simply connected 4-manifold W* that M® bounds. The
intersection matrix of W*, with respect to the basis {fi(a), £i(b), - -,
(0}, as in the hypothesis of the theorem, is a 2n x 2n matrix
with framing numbers on the diagonal and linking numbers off the
diagonal. We can think of this matrix as an » X n matrix with

2 X 2 matrix entries. Off diagonal entries have the form [_gﬁ "—ﬂ
and diagonal entries have the form [—q;— 1 _ q_ 1]. Using sym-
metric row and column operations, we see that this matrix is equi-

valent to a matrix with off diagonal entries 88 and diagonal

entries [(1) (1)] or B (1)] (Add the first column to the second column

and then the first row to the second row to get first column off
diagonal entries like [g 8], first row off diagonal entries like l:g -—Ox]

and ]_ql_}_ 1 (ﬂ on the diagonal, ete.) Thus the index of this matrix

and the index of W* is zero. Since the matrix is unimodular, M?
is a homology sphere (see [8]).

There is the following method for computing the p-invariant of
a homology 3-sphere (see [5]). Let W* be any simply connected
4-manifold that M?*® bounds and let F? be a characteristic surface.
Then @(M?), as an integer mod 2=1/8 (index W*—F-F+8 (Kervaire
invariant of F')). In our case index W* =0, and a characteristic
element in H,(W*) corresponds to the sum of the basis elements
with odd framing numbers (so that g¢; is even). This can be verified
by direct computation. Thus a characteristic surface F can be
taken as a disjoint union of tori, each torus consisting of the union
of an f;(A) and two dises in the attached 2-handles. If F; is a
torus component of F' corresponding to f;(A), then F;-F; = (fi(a) +
Fi®) - (fi@) + f{(0) = fi(a) - fi{a) + 2f(a)-f;(b) + f3b) - fi(b) = —q; +
1+29; —q; —1=0. Thus F-F = 0. The Kervaire invariant of a
component F'; is just the Arf invariant of f;(4) as it is embedded
in S*® (see [5] for a definition of Kervaire invariant). Thus two of
the three terms in the formula for #(M?®) vanish and we are done.
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