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By C™[0, 1] (henceforth denoted by C”) we denote the
Banach algebra of complex valued # times continuously differ-
entiable functions on [0, 1] with norm given by

.fll = sup (i <M) for feC™,

we 0,11\ =) 7!

By an isometry of C™ we mean a norm-preserving linear
map of C™ onto itself.

The purpose of this article is to describe the isometries
of C™ for any positive integer #. More precisely, we show
that any isometry of C™ is induced by a point map of the
interval [0, 1] onto itself.

The isometries of C* (with the same norm as above) are deter-
mined by M. Cambern [1]. N. V. Rao and A. K. Roy [2] have also
determined the isometries of C® with norm of feCY given by
HAN =l flle +11fll. and even for more general norms.

In the proof we shall follow the techniques of [1].

1. Let W denote the compact space [0, 1] X [—x, 7]*. We prove
the following propositions.

ProrosiTION 1.1. Given (x, 0, ---, 0,) € W, then there exists h €
C™ such that

ilh‘:‘(yx)l > s 7))

r=0 r=0 r !

for yel0, 1], v = x, with |h(x)| = h(x) > 0, |k ()] = &"h'(x) > 0,
IR ()] = e%2h""(x) > 0, - -, |h™(x)] = e“h™(x) > 0.

Proof. Let f, be the real valued, nonnegative continuous function
on [0, 1] defined as follows

e — __1
0 (y —2) = S0 T)
1+2m)y — ) ——2 < (y— )< 0
2(n!
fo(y):“ 1
1-2n)y—o)---0<(y —2) = )
0 S <(y— 2.

2(n!)
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For 1 < » <n define f.(y) as f.(y) = Syfy_l(t)dt. It can be easily
verified that for 1 < » < =, f,(y) is as follows:

Ty 11<2<n:>>f (@éf—xa)';j o= 2@10
b T e
T T )
%3 +(1->11<>;E;u>>f (Zﬁi”%, 2<}u> W=
Now let
g(y) = @h—}_—lﬁ[ZeWﬁ@] + eI (y) .

Clearly, for 1 <» <=, f\” = f,_,. Therefore geC™ and

n—1) _ - -
970 = sy S I g ) for LS r St
n — 1) i=r ji— !
Thus
g(x) = O; g<r)(x) = (—z_qui—l—)—i_e“&l_ﬂr) for 1 <rs=mn-— 1 .

and g™ (x) = ¢~ Therefore

n lg(r)(x)l _ 1 (n~1)i i
= 7! 2n — 1 =1 7} - n!

Now consider >\, (g () |/»!) for ye[0, 1] and y + «.

Case 1. Let (y — x) < (—1/2(n!)).

Slgt@)l o1 My —ef 1 %l

(1) ™= 7! = 2n — 1)1 =1 7! @2n — 1! = )
(n—1) !y — x‘a’q L I Ay t?/ — g ltn—r=i)
X ezl - ; )
{Z (G — ! }+§;,m ‘{g (7 + DI EmNY(n — 1 — j)l}

For n =1, 2, it can be easily verified that right hand side of (1) is
less than 37, (Jg”(x)|/r!). When % =3, denoting (n!/(n — 7)!7!) by
Cr, (1) gives
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n !g(:)(y)[ < 1 (n—1) 1 1 (n—1) (n — 1)
< — +
Bor @ DIA @D A
1 ('n.Al)—_l—(n~'r){ 1 C@wr_l 1 }
2ml) = et A GG+ D —r— D1 (@mD)y
Now
1 (n»l)(n — 1) < (n . 1) (E) 1 < 2(% — 1) ]_
Cn—DI= 1 T 2u-—D!IS 27 T @r— 1D 4]

for all n>=3.

Thus we have

1 (- 1) 1
(2) or n= @n — 1)1 ;::; 7! < 4(n!)
Also
1 (m=1) 1 (n=m) 1 - 1
1 Cr—r—1 .
SoD 20T 2 GG T nr ETR
1 (n—1) 1 1 = - 1
S 1 0@417'*17.
T 2nl) = vl 2zn — v — l)l{jzzl ’ (2(7@!))]_1}

— 1 . 1 S 1 (n—1-7)
-~ @m) 2n— D! = <1 - 2(n!)>

rgm) - (@) a4
= T 2@m)m — D1 =2@m))m—D! < 64 " 2m)

Thus
1 ('n——l)—l_(n-'r) { _ 1 . C;}:lr*l ) 1 . }
(3) 2(n!) = rl = G+ Din —r — 1! 2(n1))
3.1
4

By (2) and (3) it follows immediately that for all y€[0, 1] and v + =

Case 2. Let —(1/2(n!)) < (y — x) <0

n Ig(r)(y)f - 1 =D |y — x|j + 1 tn—l)—l— D]y — xli—r
;:30 T @2n—1D1= 7! @2n — 1)1 = 7] {j:r (7 — ! }
o 1 [y — @) 2nl)(y — #)""
—=- +
+r=0 rIl(n— ! (n— 7 + 1)!
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(2n1— 1)! (;ii) = (gyv =+ (2n — 1)1 717

BT e e T

D T TR (e T
=@ 2t 20 m

CLr D g (1)

sl(n — s)! s!(n~s+1)l =1 slr!

ORIV CHIC S P CS IR

n) (n + 1)!
_ v 97@] | Sy — 2y 1
Z‘O 7! * 32:1 s! {(2'}@ — 1)
(%—s)__l;— _ 2(,”/!)
r2=1 7] (n— s+ 1)1}
(=D"y — @) (=D"(y — )"
+ oy {1 —2(n!)} + n + )]
< 3 lg7@)
=0 7!

since all the other terms are negative. Verification in cases when
0<(y—2a)<(/2(n!)) and (1/2(n!)) < (y — x) is similar. From this
it follows that the function k€ C™ defined by h(y) = 1 + e *1g(y) has
the desired properties.

ProposiTION 1.2. For any feC™

if 1=2k<n
n!(f'@)" if k=mn
where (f* )% (x) means the kth derivative of f" i+ at zx.

3 (=D @) F @) =

Proof. We prove this proposition by inductionon n. Form =1
it is obvious. Let it be true for » = ». Then we have

S (- IO @Y =0, for 1Sk <7,
and
521 (— 1) Cr_y(Fr= ) (@) (f (@)~ = »1(f' ()" .

Now let n =7+ 1and &k =» + 1.
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Since (f"#Y(@) = (r — § + 2) (f*5)@)f"(@)
B DT @ @)
= S (CDGHF@) T — i+ 2) 3 G @) @)
= 5 (=17 + DOL @) )7 @) (@)
+ 3 (=1 + DO @S G @) @)
= (r + D{S (- CL U @) @) @)
T+ D 3 (@) O e @) @)
= (0 + DIF@Y ™ + (r + D G (@)
XS (~ DRI @ F @)
+ (r+ D3 (- DCLF @) (@)
— DI

Now let n =2 +1 and £ < (r + 1). Then

S~ @ @)

k—1

= S (1G5 — i+ 20 @Y HE O @) () (@)

=+ DE O @ S (DO Y @)
(D 5 (DTG @) @)
=0.

Henece the proposition follows by mathematical induction.

2. If X is any compact Hausdorff space, we will denote by
C(X) the Banach algebra of continuous complex functions defined on
X with norm || ||, determined by ||g]l.. = sup,.x |9(x)| for g € C(X).

Given feC™, we define feC(W) by

F@, 6, -+, 0,) = f@) + o f'(x) + —%,—f @) + -+ %f‘”)(x) ,
(x; 01: MRS} 0n)eW-

The following lemma is then obvious.
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LEMMA 2.1. The mapping f — f establishes a linear and norm-
preserving cgwespondence between C™ and the closed subspace S of
C(W), S={f: feC™}.

Next given (z, 6, ---, 6,)€ W, we define a continuous linear
functional L(x, 6, ---,6,) on C™ by

L(x,ol,...,on>(f) = f(x, 0y ---,0,), feC™.
In view of Proposition 1.1 the proof of the following lemma is

analogous to the proof of Lemma 1.2 in [1].

LEMMA 2.2. An element of C™" is an extreme point of the unit
ball U™ of C™" if and only if f* is of the form e"Li,,,... s, for some
776[—71', 72:]’ (ﬂ'/', 01’ Ty 075) ew.

We now suppose that 7T is an isometry of C™. The adjoint T
is then an isometry of C™*, and thus carries extreme points of U*
onto itself.

LEMMA 2.8. The image by T of the constant function 1 of C™
1s & comstant function ¢, ne|—w, ).

Proof. For each extreme point e’L,,,,....s,) of U*,
’(e”L(x’ol,...,”%))(l)l =1.

Thus for each extreme point [T (¢’L,s,....0,,)(1)| = 1. Therefore,
| Lis0,,0,(T(L))| = 1. Thus for a fixed z, [(T(1)(x) + ¢”(T(1))'(x) +
coe (@0 I)(TA) ™ (x)| = 1 for all 4, ---, 0, e[—=x, x]*. Choosing
6, 0, ---,0,, so that

arg(T()@) = arg(e(TW)@) = -+ = arg(S(T(W) " @)
we get

(TA)@)] + [(TQ)Y@)] + -+ + _____1<T<133"”’ @] _q

Again by choosing 6, ---, 6,, so that
arg(T())(®)) = 7 + arg(e’(TQ)) (x)) = - -+ = n + arg(e’~(T(1))"™(x))

we get

(@)@~ JTOy@)] + -+ D@y

n!

Thus either
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lra@) =1 and [(TQY@)] + .. + (TDZDL o}

or
(4) {i(T(l))(x)i =0 and [(TQ)) @)+ -+ HT(D)‘}’”(%)I _ 1} .
n!

Therefore, for any xz¢€[0, 1], |(T(W))x)] =1 or (T(L))x)] = 0. But
since |T(1)] is a continuous funection on [0, 1] we have

[(TAN@)| =0 or [(TW)(x)] =1.

Now [(T(1))(x)| = 0 implies that (T'(1))(z) = (T(1))'(2) = (T(1))"(x) =
.- = (TA)™(x) = 0 which contradicts (4).

Hence [(T())zx)| =1 from which it follows that (T@))(x) =0
and hence

T(1) = ¢* for some fixed 1el[—=, 7].

We denote T*(L,0,,....0,)) bY

14(2,01,°-+,0p) ,
€ L(y(x 0y oo 0,05W1@ 0y cor 00V aiw 0y - 0,))

The above Lemma 2.3, shows that \(z,4,, ---,8,) =\ forall(@, ---,8,) €
[—=, 7]. For

(T*(Lu,ol,-u,oﬂ)))(l) = e“m,el’”')on)L(y(x,ﬂl,-.-,ﬂn)"9/"1(1,01,.‘.,/}n)"'"r/’n(x,01 ,,,,, 0n>>(1) ’
so that Lo, ....0n(TQ) =€ and thus Li,e,,... s, (") = €= 0,
Hence \(z, 0, ---, 0,) = \.

LEmMMA 2.4. If 2€]0, 1], then for all (8, ---,0,) c][—nx, 7",
Yiz,00,-.00 = Y00 »
Proof. For fixed z €[0, 1], we consider the map p: [—=, x]* —[0, 1]
given by ’
10(01; 02, Sty 0%) = y(z,el,---,on) .

It is easy to verify that this mapping is continuous. Hence the
image of [—m, #]* in [0, 1] is a connected subset of [0, 1]. It is, in
fact, a singleton. For otherwise we could find ¢g in C* such that
g=g¢g = ... =g"™ =0 on an open subinterval Ic p([—=, z]") while
for some ¥Y,0,..0,) € L,

g(y(x,sol,m,s»n)) + e 9’1""’9”n>g'(y(x,¢l,_,.’¢%))
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i! 1 7
+ €V20 0p0niey - 2' 9" (Y, prremromy) Tt
+ eiw(”_lﬂz'cl'“"?n) . _____1____g(nfl)<y )
(7’1/ _ 1)’ (2,01,0++,0p)
< |———g<” (Yiaop,- W)’ .
For instance, one may take
o) = {0 Y=
¥y —y)"" y >y

where y, is least upper bound of I and y..,,,...., sufficiently near

to y,. Thus for an infinite number of 4, 6,, ---, 0,) e[—=x, x]* with
Y(z,0y,-,0,) € 1,

L(z,ol,.-.,an)(T(g)) = T*Ly, O1sees00 )(g)

. i
=e L(y(rc,/ll,u 0.3 ’Vl(w 015 )’ Vﬂ(z O15000,0 71))(9)

while

Lo (T(9))

— il
=€ L(y(m,g“1,~~ ,"',’V’”(a;,pl_‘.‘,pn))(g) # O .

Since p is continuous, o*(I) is open in [—=, 7]* and therefore for
each 1 =1, 2, ..., n there exist an infinite number of 6,’s such that

(5) Loy, (T(9)) =0 while Lg....0(T(9)) # 0.

Therefore (T(g))(x) + e”(T(g9))'(x) + --- + (’*/n!)(T(g))" (x) = 0.

For any j with 1 < 5 < n, by keeping 6, constant for ¢ = j and
varying 6; we can see that (T(¢))”(x) = 0. Thus L,,,...,.,(T(9)) =0
which contradicts (5).

Hence ¥w,0,,0 = Yiao,-.o for all (@,, ---, 0,) e[—m=, x]".

’
0 Vi@, 01,000,900

Finally, we define a point map ¢ of [0, 1] to [0, 1] by
(X)) = Yo,

Consideration of (7-')* shows that z is onto, and, applying
Lemma 2.4, one-one.

THEOREM 2.5. Let T be an isometry of C™. Then, for feC™,
(T(f))(z) = e f(z(e))

with ¢ = T(). Moreover, T is one of the two functions F,1 — F
where F 1is the identity mapping of {0, 1] onto itself.
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Proof. Given x€[0,1] and 6 e[—m=, 7], consider the function ¢
of the Proposition 1.1 constructed for (x, 6, - .-, 8). Clearly, g does
not depend on 6; g(x) = 0; ¢'(x), ¢”"(x), ---, g (x) are positive reals
and 37, (97 (@)/r!) > 37 (19 (w) |/r!) for all y [0, 1], y + . There-
fore,

Hgll = g'(®) + —1—g"(x) + ... +ig(’”(x)
21 n)
= ¢ ""Lip,...0(9)

= e " T*L0,..0(T79))

= em‘&)L(r(mn/mx 0,000V (2,0,0 -+, 0))(T‘1(g)) .

Thus we have for all de[—m, 7]

llgll = [T (@) (@) + eV on(T(g)) ((x))

(6) N
+oee Ve o n(T7H) ™ (z(2))] .
n!
Since
gl =Tl
— Sup 3" (T W)
ye[0,1]17=0 ’l’!

by (6) we have
gl = (T (gN@)| + [(T7(g))(@)] + --- +~1;L'—I(T"l(g))‘”’(f(x))| .

Again since ¢ is independent of 4,

(T~ )z @), (T7(9)) (z(®)), - -, (T(g)™ (z(x))

are independent of ¢ but
A(0) = {eie (T (@) + -+ + —e¥arn(T (@)™ (@)}

depends on 6 for otherwise (6) cannot be true. In other words, A(6)
is not constant. Now by (6) A(f) must be on a circle with center
as {—(T%(g))(z(x))} and radius equal to ||g]|.

On the other hand A(f) must be on or within the circle with
center as origin and radius equal to o=, (((T(g))"(x)|/r!)=||g||—
[(T-Y¢))(z(x))|. This implies that (T'(g))(z(x)) =0 for otherwise
A(f) has to be a constant (see Figure 2.1) which is false.
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S

(T (@)(x)
] >
p/j
A(9)<
Ficure 2.1.
Therefore, we have
arg e”iw,,.0(T-4g)) (z(x)) = arg - Elremm’” """ T (g))'(z(®)) = - --
1

= arg '_,ew”‘”"”""”’(T‘l(g))‘”’(f(x)) .
n)

Thus for all fe[—m, 7], 1=k=n,1Zj<n

Fhtatrenst) = Titodronst) = Whtarorees) = Vitarorerr) »
Also by (6)
gl = 0] 5 Lgvernaen(T-(g)(e(a)
= git—0ty; (x,o,---,w[kﬁzl _I;!_ewkm,a ,,,,, D=V 5(s,0, 0)’(T—1(g))"°’(r(x))]
— ei(1—0+w(x,9,...,o)>|:kzn“=l %_ei(’;/fk(x,o ..... 0=V (0,010 n 0>’(T"‘(g))""(r(x))] .

Since the left hand side is independent of #, we have
A= 0 F P, = N A Wio0en0) -
Hence for all dc[—7n,x],1 7= n
Wit 0,0e0) = Vitmoernsy + O
Now let f be any element of C™ such that f(x) =0 then for all

fel—m, x]

@)+ @) + -+ )
21 n!
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= e “Lg,...0(f)
= e “T*Li,...0(T7'(f))

= '~ mL(r(x) V1 (e,0,- V2,0, /)))(T_](f))
— em—ml:(T—l(f)) (T(x)) + ,Z‘l %—'—ew’k(“’("""”’(T"l(f))“‘)(f(x))]

- e“["""”( T=(f)(z(@) + Z 7376"’""(“”’"»”(T-I(f))“”(r(w))}

so that (T-'(f))(z(x)) = 0. For an arbitrary feC"™, define g(y) =
Ff) — f(®), y€[0, 1] then g(x) = 0 and so

0 = (T""(g)(z(@) = (T (N(z@)) — f@)T~(D)(z(x))
= (T (N(@) — e “f(x) .

Thus, replacing f by 7T(f), it follows that for all z¢[0,1] and
f < C(%),

(T(fN(w) = e f(z(x)) .

Now if, for 0 < =<n — 1, F, is the mapping of [0, 1] onto itself
given by F.(x) = 2" (where F, is the identity map F'), we have

(T(F))(@) = e*(z(@))™ = () @), 0=r=mn—1.
Therefore (T'(F,)(x) = (T(F,_))(x)-z(x). Now

3, TEN @) = Lo TE)

= T*Ly,0,....0(F)
— i
- ev. L(r(x),’/’l(x,o,...,o),---.%n(z,o,...,o))(Fr)

= ¢ Fe@) + 5 oo Fo(e(a) |
= o (@)™ + 5 eicnnoCe@) =i |
Thus for 0 <r<n—1
(1) 3 (TFE) @) = & 5, evic oG ey
Taking » = 0 in (7), we get
3, TN (@) = e

Taking » = 1, we get
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3} 2o (T (a) = Cile@erssniennol 4 i riaancesy

Hence

ei(2+7/f2(x,o,---,o)>
= 3 L@E) @ - ) 3 - (1F) @)

Thus by successive iterations we get for 1 < r =< n

gl prime) = $1 LA (— 105 (T, )@ w(@) ]

k=1
— il € _l_w - J—1tr r—gi-=1\(k) - j—1
= ¢ 3 7 {3 (- DO P @)@
Therefore,
g (2,000 e50) —— = __1_ = R AV RS Vel ~n—F+1\{k) -~ j—1
et = 53 LS| (S IPC (@) @) (@)

Applying Proposition 1.2 to the function z which clearly belongs to
C™ we get

eiypmz,o,...,o) — {,Z.I(x)}n .

Thus z'(z) is an nth root of a complex number of absolute value one.
But since 7'(x) is real valued and continuous we have z'(z) =1
r 7'(x) = —1 and, therefore, z(x) = F or 1 — F.
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