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Let M be a simply-connected complete d-dimensional
Riemannian manifold of nonpesitive sectional curvature K.
If K<—k?<0, then the infimum of the L? spectrum of the
negative Laplacian is greater than or equal to (d—1)%k?/4
with equality in case K——k* sufficiently fast at infinity.
This general result is obtained by analyzing a system of
ordinary differential equations. If either d=2 or the mani-
fold possesses appropriate symmetry, the result is obtained
under weaker conditions by analyzing a Riccati equation.
Finally the case k=0 is treated separately.

1. Description of results, The infimum of the L’ spectrum
is defined by

|, 1asr

¢
M
when the infinum is taken over H;, the closure of C;°(M) in the

norm S (¢* + |dg¢|?). Let K,(P) be the sectional curvature of the

two-plage PCZ M, the tangent space at x. Let v(f) = v(¢; 0, &) be
the unit-speed geodesic emanating from 0e M and having initial
velocity £¢e M,. Let

1.0) A, = inf

P£0

e(t) = sup sup | Ky (P) + k|

1é1=1 PCM

where k is a positive constant. Our main result is the following
upper bound.

THEOREM. Suppose that
(L.1) Sf’e(t)dt < oo
Then
0< =@ —-1)0k/4.
This immediately implies

COROLLARY 1. Suppose that outside of some compact set M has
constant sectional curvature K = —k* < 0. Then 0<\=(d—1)%4*/4.
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Finally, we have the result stated in the first paragraph.

COROLLARY 2. Suppose that (1.1) holds and that K < —k*< 0
everywhere on M. Then N, = (d — 1)°k*/4.

2. Proofs. We will study Jacobi fields J(¢) along a geodesic
{v(t), t =0} where J(0) =0, J(t) =0, (J(), v") = 0. For this purpose,
let {E,(t), 2 < i < d} be a parallel field of orthonormal vectors along
v with (K, v') = 0. Write

(2.0) J) = SAOFD) -

From the Jacobi equation we have the following system of equations

(2]
@1) SO+ S RE, VY, BN =0 @Sisd).

By the representation of R in terms of sectional curvature, we
have

(R(E;, Y)Y, E;) = —k; + ¢&;;

where |¢;;| = (t).
We use the following result from ordinary differential equations.

PROPOSITION. Consider the system
d
(2.2) L) — Kf(t) = ,-z:‘f”(t)f () 2=1=d)

where Sw le(t)|dt < oo. Then (2.2) has solutions f, f* with

R T B (TS

fl(z) ~ e—lct, fi(z)’ ~ _ke—kt (t N oo) .

For the proof see Hartman [5, p. 381] for the case d = 2. To
apply this to (2.1) we recall that from the Rauch comparison theo-
rem [2] |J(t)| > when t —c. Now let

d
(2.3) Sfi(t) = ,Z=2 [e /@) + di f2@)] .
We claim that ¢,;; 0 for at least one value of (4, 5). Indeed,

if ¢;; = 0, then f(t) = &(e™*), t —co which implies that [J({)| — 0, a
contradiction. Now



ON THE SPECTRUM OF CARTAN-HADAMARD MANIFOLDS 225

(J (@), J(8) S ALY

(2.4) Z e OV
= W(l +0o(1)) (t——0)
= k(@1 + o(1)) (t ——0) .

Thus we have proved the following proposition.

LEMMA 1. Let J(t) be a Jacobi field along v with J(0) =0,
J@&), ¥) =0, J@it)=0. If (1.1) s satisfied, then

(2.5) M —k, {—— oo,
(J®, J@©)

LEMMA 2. Let » be the geodesic distamce from 0e M. Then
(1.1) implies that
(2.6) dr(y(@)) — (d — Dk (¢ —— <)

where the convergence is uniform over S

Proof. Let v(¢; 0, £) be the geodesic emanating from 0 € M with
initial velocity &. Let {J,(¢), 2 < i < d} be Jacobi fields along v with
J:(0) = 0, J/(0) = E, where (v'(0), E.,, ---, E;) is an orthonormal basis
of M,. Then from the second variation of arclength [1], we have

. _ o~ (), Ju()
2.7 4 t)) = AR\ TR\Y))
&0 ") = &0, Tu0)
Using Lemma 1 the result follows.

LEMMA 3. Let m = (d — Dk, 0 < By < R, < oo,

1 0
0 otherwise.

—mr/2 o3 (””—RO)R<.<R
2.8) ¢('r):{e S e g, =M

Then

(2.9) 4 + ’ ”f & sz | = r —mg) .

Proof. Calculus and the formula 4¢ = ¢” + (dr)¢’ [1, p. 134].
Now let B be the annular domain R, < 7 < R..
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LEMMA 4.

2

2100 — §B(¢')2+[ ’f SR

(R, — R(,)?J L ¢ = SB(AT — m)pg’ .

Proof. Multiply equation (2.9) by ¢, integrate by parts and
use the boundary condition ¢ = 0.

Proof of the theorem. Let X = ||¢' |32, I = |é|i2m, c=m*/4+
7*/(R, — R,)*. Applying Schwarz’s inequality we have

‘SB(A"' — m)gg’ | = &(R,) H¢||L2(B) ||¢'HL2<B)

where ¢,(R,) — 0 when R, — co.
Applying this to (2.10), we have

(2.11) | X — el < e(R)VIX .

But this implies that X is smaller than the largest root of the
corresponding equation, i.e.,

VI VTR oy BB

A glance at the definition (1.0) shows that A, < X/I. This holds
for all R, > R,; letting R, —c, we have

1/—7\:_<_ &.(Ry) : i Ry) .
- 2 +\/ 4 + 4

Finally letting R, — oo, we have the result )\, < m*/4.
To prove the lower bound, we first note that for some é

(2.12) Mr=6<0.

Indeed, outside of some sufficiently large compact set we can use
Lemma 2. On the other hand, the proof of the Rauch comparison
theorem implies that for any Jacobi field along v with J(0) = 0,
J(@), ") =0, J(t) #= 0, we have (J'(t), J(t))/(J(¢t), J(t)) = 1/r. Hence

d—1

dr — (d — Dk (r — ).

dr = >0 0 < r< )

Having proved (2.12), we can use the method of McKean. For this
purpose let G(¢t, &) = |J(E) A--- A Jy(t)]. From (2.12) we see that
G,/G = 06. Now M is the image of R? under exp, Integrals over
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M can be computed over R* according to the following:
For any ¢c H}, felL’

2.13) S[ f= Ssd_l dw Sw flexp, to)G(t, w)dt
(2.14) [ 1asr = | 1ds@ion)y .
But

76, ot = L[ s6.at

0
- —Er' Gdt
5 0¢'¢t

2([vou)” (wau)”

IA

Thus
o 32 oo
42 > 52
SO #Gt = 2 Sodet.

Integrating this inequality on S%* and referring to (2.13)-(2.14), it
is clear that we have proved

|Jasrzs| ¢ wemy.
Thus », = 6°/4 > 0, as required.

3. On condition (1.1). In certain cases one may relax the
technical condition (1.1). These are the following

3.1 d=2
(3.2) M is a model [4].

The latter means that for every orthogonal transformation ¢ in M,
there exists an isometry @: M — M such that @(0) = 0, @*(0) = ¢.

PROPOSITION. Suppose that the CH manifold M satisfies either
3.1) or (3.2) and in addition

(3.3) et)— 0 (t — o).
Then
0< = (d—10k4.
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Proof. Following the proof of the theorem, the result will
follow once we prove Lemma 1. In case (3.1), the Jacobi equation
is a single scalar equation

3.4) J") + K@t)J(t)y=0
where K(t) is the Gaussian curvature. Let h(¥) = J'(¢)/J(f). Then
(3.5) (@) + ht)y? = —K() .

Recall the following asymptotic result [7] concerning solutions of
(3.5).

(8.5a) lim inf V' —K(t)<lim inf h(¢)<lim sup A(t) < lim sup V' —K(¢) .
t—ro0 t—o0 o0 t—oo

Thus (3.3) implies that k() — &k, which proves Lemma 1 in this case.

To treat the case (3.2), we use the following result of Greene-
Wu [4, p. 25]: every proper Jacobi field J(¢f) along a geodesic v
which is orthogonal to v’ and vanishes at 0 has the form

J(@t) = f)EL)

when E(t) is a parallel vector field along v and f(¢) is a real-valued
function. The Jacobi equation then takes the form

(3.6) fr®) + K@) f@) =0

where K(t) is the sectional curvature of the 2-plane spanned by
(v'(t), E(t)). Observing that (3.6) is of the same form as (3.4), we
can copy the above proof for d = 2 to conclude Lemma 1 in this
case also, thus completing the proof of the proposition.

Finally, using the method of Gage [3], we can obtain results
using only Riceci curvature. Indeed, Gage has proved that

R, _ G 2
(3.7) Gt 276 = — g 2 — 1)
where G = |J,A---AJ V%D R, is the Ricei curvature in the
direction ~(t) and (g, ---, ¢;) are the eigenvalues of the second
fundamental form relative to the geodesic sphere. Ignoring the
right hand member of (38.7) gives an inequality. Letting h = G'/G,
we have the Riccati inequality

Rll
d—1"

Let h.,(¢) be the solution of the corresponding equation, with the
same initial behavior. Then standard comparison methods yield

h(t) = h,(0) .

R'(t) + h(t) = —
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But the asymptotic result (3.5a) now applies to the &,(t). Combining
all of the above, we have the following

PROPOSITION. Suppose that for the CH manifold M
then

d— 1%k

Ny 1

IA

4. Asymptotic flatness. The previous results are all formulated
under the hypothesis k& =+ 0, which we now remove.

DEFINITION. The CH manifold M is asymptotically flat if k=0
and either (1.1) holds or (3.3) holds with d = 2 or (3.3) holds where
M is a model.

ProposITION 4.1. Suppose that the CH manifold M is asympto-
tically flat. Then N, = 0.

Proof. In this case 4r» — 0 when » —co. Using the trial funec-
tion f=sinz(r — R,)/(R, — R,) in the definition of \,, the previous
proof remains unchanged, with the conclusion A, = 0.

Conversely, we have the following negative result.

PROPOSITION 4.2. There exists a CH manifold with N, = 0 and
curvature function K which satisfies liminf, _.. K < 0.

For the proof we will construct a 2-dimensional CH manifold M
with metric

ds* = dr* + G(r)do*

where G"” + KG =0, G(0) =0, G'(0) =1. The curvature function
K@) is

0 »¢(a, a, + &)

Kr) =
™ —1 re(a, ap + &)

where a,, ¢, are to be specified below.

Let h=G'/G. Then h satisfies the Ricecati equation A’ + h*=—K,
with 2(») = 1/ for 0 < » < a,. Note the following facts:

(i) On any interval (a, a,+ &), B =1—h*<1 and thus
o, + &) = h(a,) + €.

(ii) On any interval (a, + & a;+:), the Riecati equation has
the explicit solution k() = (a, + e )h(a, + €,)/r.
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Now let ¢, =12k =1), a, =4, a,., > 4a, +¢). Such a
choice is clearly possible, we will show that A(r) — 0. First we
show inductively that h(a, + &,) < 1/2%.

On the interval 0 <7 < a,, h(r)=1/r and thus ha) < 1/4.
Using (i) above, we have h(a, + &) < h(a,) + & < 1/4 + ¢, = 1/2. Now
if Ala, + ¢,) < 1/2%, then on the interval a, + &, < 7 < a,,, A7) =
hay, + ep)(a, + €)/r and thus h{a,.,) < A/Dhla, + &) < 1/28+%.  Using
(i) again, (@i + &) = M(@pey) + &44q < 1/25

Finally, we check that h(») -0 as #— . Indeed, on the
interval (a, + &, a,+)h is decreasing, and thus A(r) < h(a, + &) <
1/2*. On the interval (@i, @p+, + €1.) We have B’ <1 and thus
h(r) £ hag) + (0 — @) = 1/2F + 1/2°72,

We can now prove that )\, = 0. Indeed, from earlier work [8]
we know that (4n\)"* < lim,_.. G,/G. Thus A, = 0, as required.

REMARKS 1. By modifying the above example, it is possible to
find a metric for which A\, = 0 and liminf__. K(») = —co. Indeed,
it suffices to replace —1 by a sequence going to — o and choose
g, — 0 sufficiently fast.

2. It would be interesting to find a necessary condition for
n = 0, expressed in terms of the curvature function. From our
previous paper [8] we know that )\, = 0 implies lim inf, . h(») = 0.
But we do not know what this says about K(r).
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